Chemical Science

A low-crystalline ruthenium nano-layer supported on praseodymium oxide as an active catalyst for ammonia synthesis

Journal:	Chemical Science
Manuscript ID	SC-EDG-05-2016-002382.R2
Article Type:	Edge Article
Date Submitted by the Author:	25-Aug-2016
Complete List of Authors:	Sato, Katsutoshi; Kyoto University, Elements Strategy Initiative for Catalysts and Batteries Imamura, Kazuya; Oita University, Department of Applied Chemistry Kawano, Yukiko; Oita University, Department of Applied Chemistry Miyahara, Shin-ichiro; Oita University, Department of Applied Chemistry Yamamoto, Tomokazu; Kyushu University, Department of Applied Quantum Physics and Nuclear Engineering Matsumura, Syo; Kyushu University, Department of Applied Quantum Physics and Nuclear Engineering Nagaoka, Katsutoshi; Oita University, Department of Applied Chemistry

SCHOLARONE[™] Manuscripts

1	A low-crystalline ruthenium nano-layer supported on
2	praseodymium oxide as an active catalyst for ammonia
3	synthesis
4	
5	Katsutoshi Sato,* ^[a,b] Kazuya Imamura, ^[b+] Yukiko Kawano, ^[b] Shin-ichiro Miyahara, ^[a]
6	Tomokazu Yamamoto, ^[c] Syo Matsumura, ^[c] and Katsutoshi Nagaoka* ^[b]
7	
8 9	[a] Elements Strategy Initiative for Catalysts and Batteries, Kyoto University. 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245 (Japan)
10 11	[b] Department of Applied Chemistry, Faculty of Engineering, Oita University. 700 Dannoharu, Oita 870-1192 (Japan)
12 13	[c] Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University. 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)
1415	[+] Present address: Research Laboratory of Hydrothermal Chemistry, Faculty of Science, Kochi University. 2-5-1 Akebono-cho, Kochi 780-8520 (Japan)
16	
17	† Electronic supplementary information (ESI) available: Detailed procedures for each method,
18	catalytic performance, STEM-EDX images, detailed characterizations.
19	

20 Abstract

21	Ammonia is a crucial chemical feedstock for fertilizer production and is a potential energy
22	carrier. However, the current method of synthesizing ammonia, the Haber–Bosch process,
23	consumes a great deal of energy. To reduce energy consumption, a process and a
24	substance that can catalyze ammonia synthesis under mild conditions (low temperature
25	and low pressure) are strongly needed. Here we show that Ru/Pr ₂ O ₃ without any dopant
26	catalyzes ammonia synthesis under mild conditions at 1.8 times the rates reported with
27	other highly active catalysts. Scanning transmission electron micrograph and energy
28	dispersive x-ray analyses revealed the formation of low-crystallite nano-layers of
29	ruthenium on the surface of the Pr ₂ O ₃ . Furthermore, CO ₂ temperature-programmed
30	desorption revealed that the catalyst was strongly basic. These unique structural and
31	electronic characteristics are considered to synergistically accelerate the rate-determining
32	step of NH_3 synthesis, cleavage of the $N \equiv N$ bond. We expect that use of this catalyst will
33	be a starting point for achieving efficient ammonia synthesis.

34

 $\mathbf{2}$

35 Introduction

36	Ammonia is one of the most important feedstocks in the modern chemical industry. Globally,
37	>80% of ammonia production is used to produce fertilizer, which is essential for growing crops.
38	¹ In addition, ammonia has recently attracted attention as a carrier of energy and hydrogen. ^{2–5}
39	Ammonia is produced by combining atmospheric N_2 with hydrogen produced by renewable
40	energy. The ammonia is liquefied and transported to where it is used to generate power in
41	engines or electricity in fuel cells. Ammonia is being considered as a carrier of energy and
42	hydrogen because (1) it has a high energy density (12.8 GJ m^{-3}) and (2) a high hydrogen content
43	(17.6 wt%), and (3) carbon dioxide is not released when hydrogen is produced by ammonia
44	decomposition. ² If ammonia can be produced efficiently from renewable energy, it can
45	contribute to the solution of global problems related to energy and food production.
46	Currently, most ammonia is synthesized via the Haber–Bosch process. ^{6–8} This process is a
47	major consumer of energy, accounting for about 1% of global energy consumption. In this
48	process, about 60% of consumed energy is recovered and saved to ammonia as enthalpy.
49	However, the remaining energy is lost, mainly during the production of hydrogen from natural
50	gas, ammonia synthesis, and gas separation. Because ammonia synthesis is carried out at very
51	high temperatures (>450 °C) and high pressures (>20 MPa), a major goal is reduction of the
52	high amount of energy used in this process.9 Curbing global energy consumption requires, inter

alia, a catalyst that is able to produce ammonia at much lower temperatures and pressures than
 required for the iron-based catalysts used in the Haber–Bosch process.¹⁰⁻¹²

55	Ruthenium is a possible catalyst for ammonia synthesis because of its higher activity at low
56	pressure and temperature than that of iron-based catalysts. The rate-determining step in NH_3
57	synthesis is cleavage of the N=N bond of N_2 , because the bond energy is very high (945 kJ mol ⁻
58	¹). ^{13,14} It has been reported that modification of the morphology of the Ru surface ("structural
59	modification") and of the Ru electronic states ("electronic modification") are effective ways to
60	accelerate the rate-determining step and thus enhance the ammonia-synthesis activity of the Ru
61	catalyst. ^{15,16} In the case of structural modification, the unusual unsaturated B ₅ -type site of Ru
62	has proven to be highly active. ^{17–19} The B_5 -type site consists of five Ru atoms: two at step edges
63	and three on the lower terrace. The five Ru atoms are all associated with the transition state of
64	adsorbed N ₂ , which results in weakening of the N=N bond. ¹⁷ Adjusting the Ru particle size (e.g.,
65	to 5 nm when the Ru particle is spherical) and changing the shape of Ru particles creates an
66	abundance of B_5 -type sites. ^{18,20,21} In the case of electronic modification, the use of basic supports
67	and the addition of a strong basic promoter to Ru catalysts have enhanced ammonia synthesis
68	activity dramatically. ^{15,16} The mechanism involves transfer of electrons to the Ru metal from the
69	basic components. Transfer of electrons from Ru to the antibonding π -orbitals of N ₂ then results
70	in weakening of the N≡N bond and promotion of N≡N cleavage. ²² Weakening of the N≡N bond

Chemical Science

71	by doping with strong basic oxides has been confirmed by observation of the N≡N stretching
72	frequency with infrared spectroscopy (IR); the most effective promoter has been reported to be
73	Cs_2O . ^{23,24} In fact, most of the highly active Ru catalysts contain Cs_2O as a promoter. ^{10,15,25,26}
74	However, CsOH, which may be produced in the presence of an $\mathrm{H}_2\mathrm{O}$ impurity in the reactant,
75	has a low melting point (272 $^{\circ}\mathrm{C})$ and may move on the surface of the catalyst particles or
76	vaporize under the reaction conditions, the eventual result being degradation of the catalyst. ²⁷
77	On the other hand, BaO is also reported as effective promoter and Ba-Ru/activated carbon
78	(Ba-Ru/AC) has been used in commercial industrial processes. ²⁸ Recently, Horiuchi et al.
79	reported that $Ru/BaTiO_3$ and $Ba-Ru/MgO$ show comparable high activity with Cs-Ru/MgO. ²⁶
80	Notably, Ru-loaded electride $[Ca_{24}Al_{28}O_{64}]^{4+}(e^{-})_4$ (Ru/C12A7:e ⁻), which is a new class of Ru
81	catalyst supported on a non-oxide, shows high NH_3 -synthesis activity without any dopant. ^{10,29,30}
82	This high activity has been attributed to the high electron-donating power of the electride.
83	We show here that a praseodymium oxide-supported Ru catalyst (Ru/Pr ₂ O ₃) without any
84	dopant exhibits unparalleled NH ₃ synthesis ability compared with highly active catalysts
85	reported previously. The loading of Ru on the support was characterized by an unusual
86	morphology of low-crystallinity nano-layers, and the basicity of the catalyst was very high. We
87	show that the combination of these features facilitated the activation of $N_{\rm 2}.$

89 **Results and discussion**

90 NH₃-synthesis activity and some properties over Ru/Pr₂O₃ catalysts

91	Fig. 1 compares the NH_3 -synthesis activity of the Ru/Pr_2O_3 with those of other supported Ru
92	catalysts under the same reaction conditions. Ba-Ru/activated carbon (Ba-Ru/AC) has been used
93	in industrial processes; 28 Cs-Ru/MgO is one of the most active Ru catalysts in NH ₃ synthesis;
94	25,31 and Ru/C12A7:e^ has attracted attention as a new active NH3-synthesis catalyst. $^{10-12}$ At
95	400 °C and 0.1 MPa (Fig. 1a), Ru/Pr ₂ O ₃ and Cs-Ru/MgO gave NH ₃ yields near thermodynamic
96	equilibrium (0.88%). Both the yields and NH ₃ production rates were higher than those achieved
97	with Ru/C12A7:e ⁻ and Ba-Ru/AC catalysts. In the industrial process, it is important to obtain
98	high one-pass NH ₃ yields to avoid the high energy use required for gas separation. Furthermore,
99	from the standpoint of thermodynamic regulation, NH ₃ synthesis is favored if the reaction is
100	carried out under high pressure. ⁹ We therefore measured NH ₃ -synthesis activity at 1.0 MPa (Fig.
101	1b), where the NH_3 yield at thermodynamic equilibrium increases to 7.9%. Note that 1.0 MPa is
102	still much lower than the reaction pressure used for the Haber-Bosch process. With the increase
103	in reaction pressure, the differences in the activities of the catalysts were more pronounced: the
104	NH_3 yield reached 4.8% and the rate of formation obtained over Ru/Pr_2O_3 reached 19,000 μmol
105	h^{-1} g ⁻¹ , >1.8 times the values associated with other catalysts.

106	To understand why rates of NH_3 synthesis are so high when catalyzed by $\mathrm{Ru}/\mathrm{Pr}_2\mathrm{O}_3,$ we
107	compared the characteristics of Ru/Pr_2O_3 with those of Ru/MgO and $Ru/CeO_2.$ All of the
108	catalysts were loaded with 5 wt% Ru. Among the dopant-free simple oxide-supported Ru
109	catalysts, Ru/MgO and Ru/CeO ₂ have shown relatively high NH_3 -synthesis activity, ³² and CeO ₂
110	is a rare-earth oxide like Pr ₂ O ₃ . Fig. S2 shows x-ray diffraction patterns of the catalysts after
111	activation in pure H_2 at 400 °C. In the cases of Ru/MgO and Ru/CeO ₂ , only diffraction patterns
112	assigned to cubic-type MgO and CeO ₂ were obtained. In the case of Ru/Pr ₂ O ₃ , the diffraction
113	peaks were attributed to rare earth C-type Pr_2O_3 . ³³ On the other hand, that no diffraction peaks
114	of Ru species were apparent in the patterns of the catalyst samples suggests that crystallite size
115	of loaded Ru was too small to be detected. NH3-synthesis activities of the Ru catalysts were
116	then measured at 0.9 MPa after reduction at 400 °C. Ru/Pr ₂ O ₃ catalyzed a much higher rate of
117	$\rm NH_3$ synthesis than Ru/MgO and Ru/CeO_2 at all temperatures from 310 to 390 °C (Fig. 2). At
118	390 °C in particular, the NH ₃ synthesis rate of Ru/Pr ₂ O ₃ was 15,200 μ mol g ⁻¹ h ⁻¹ , much higher
119	than those of Ru/CeO ₂ (7,400 μ mol g ⁻¹ h ⁻¹) and Ru/MgO (1,500 μ mol g ⁻¹ h ⁻¹). Furthermore, the
120	long-term stability of the Ru/Pr ₂ O ₃ catalyst at 390 °C under 0.9 MPa was evidenced by the fact
121	that the rate of NH_3 synthesis was stable for 50 h (Fig. S3).
122	Specific surface areas of Ru/Pr ₂ O ₃ , Ru/CeO ₂ , and Ru/MgO were 20.4, 33.5, and 46.4

123 $m^2 g^{-1}$, respectively (Table 1). There was no clear correlation between specific surface area and

 $\mathbf{7}$

124 catalytic activity. Interestingly, the H/Ru ratio, a measure of Ru dispersion, was very low for 125 Ru/Pr₂O₃ compared with the other catalysts. As a result, the turnover frequency of Ru/Pr₂O₃ was 126 >3.5 times that of Ru/CeO₂ and Ru/MgO. These results suggest that the high turnover frequency 127 of Ru/Pr₂O₃ makes possible the excellent rate of synthesis of NH₃ (activity per weight of 128 catalyst).

129

130 Structural properties of Ru/Pr₂O₃

131As the NH₃-synthesis ability of a supported Ru catalyst is related to the morphology of the 132loaded Ru and the basicity of the support material, we used scanning transmission electron 133micrograph (STEM) observations and energy dispersive x-ray (EDX) analyses to investigate the morphology. Figs. 3 and S4 show high-angle annular dark-field (HAADF) images and EDX 134135maps of Ru/Pr₂O₃ following treatment of the catalyst with H₂ at 400 °C. Figs. S5 and S6 show 136analogous images and maps of Ru/CeO2 and Ru/MgO, respectively. A number of particles 137identified as Ru species by EDX were supported on MgO and CeO₂, but were seldom observed over Pr_2O_3 . However, the EDX map showed that Ru was dispersed over the entire Pr_2O_3 surface. 138In the reconstructed overlapping EDX images, the greenish edges of the catalyst particles 139140indicated that the surfaces of the catalyst particles were covered by Ru species. These results 141suggest that the state of Ru is completely different when it is loaded over Pr₂O₃ versus MgO and

Chemical Science

142	CeO ₂ . To further investigate the surface morphology, we made high-resolution STEM
143	(HR-STEM) observations (Fig. 4, and see Figs. S7-9). On Ru/MgO and Ru/CeO ₂ , the lattice
144	fringes of the Ru species and supports were clearly apparent. The d space of the Ru species was
145	0.21 nm, which is consistent with that of the (101) plane of metallic Ru. Mean diameters of the
146	Ru particles were 1.8 \pm 0.7 nm on Ru/MgO and 2.5 \pm 0.8 nm on Ru/CeO2. In addition, the
147	surface of the support of these catalysts was smooth, and changes in the lattice fringe were
148	clearly observed on the boundaries between Ru particles and supports (Figs. 4b, 4c, S8, and S9).
149	In contrast, on Ru/Pr_2O_3 , the surface of the Pr_2O_3 was covered by layers of Ru rather than by
150	particles. That lattice fringes of most parts of the Ru layers were not apparent indicated that
151	crystallinity of the Ru layers was low. The thickness of the Ru layers was 0.5-3 nm, and Ru
152	particles were sometimes included in the layers. Thus, we considered that the surface of the
153	Pr ₂ O ₃ was covered mainly with low-crystalline Ru nano-layers.

To explain why the Ru on the Pr_2O_3 support possessed such a unique morphology, we measured x-ray diffraction patterns of the catalyst precursors of Ru/Pr₂O₃. As shown in Fig. S10, the bare support [before impregnation with $Ru_3(CO)_{12}$] showed the structure of fluorite-type Pr_6O_{11} . However, after impregnation with $Ru_3(CO)_{12}$ in tetrahydrofuran (THF) and drying, the peaks assigned to Pr_6O_{11} became smaller, and peaks attributed to $Pr(OH)_3$ and PrOOH appeared instead. Furthermore, after heat treatment under a stream of Ar at 350 °C, only PrOOH was

160	observed. At this point, the HAADF STEM and overlay of the EDX maps of the Ru/Pr ₂ O ₃
161	demonstrated that the surfaces of the catalyst particles were covered by Ru species (Fig. S11).
162	These results indicate that $Ru_3(CO)_{12}$ reacted with the O^{2-} in Pr_6O_{11} Pr^{4+} was reduced to Pr^{3+}
163	with the formation of CO_2 . The support then reacted with the H_2O impurity in the THF, and
164	after heat treatment in the Ar stream, Ru and PrOOH were formed. In brief, the results reveal
165	that the high reactivity between $Ru_3(CO)_{12}$ and Pr_6O_{11} prevented aggregation of $Ru_3(CO)_{12}$ with
166	$Ru_3(CO)_{12}$ and contributed to formation of the unique structure of the loaded Ru. The rough
167	surface of the Pr_2O_3 and fuzziness of the boundary between Ru and Pr_2O_3 in the HR-STEM
168	image in Fig. 4a and S7 was probably due to the reaction between $Ru_3(CO)_{12}$ and Pr_6O_{11} .
169	Furthermore, during H ₂ treatment, PrOOH was converted to Pr ₂ O ₃ (Figs. S2). During this
170	process, part of the Ru included in the Ru layers was crystalized to Ru particles, and thus Ru
171	particles were sometimes observed in the Ru layers in HR-STEM (Fig. S7). As shown in the
172	HR-STEM images, the Ru species over Pr ₂ O ₃ were arranged in a low-crystalline, nano-layered
173	structure. In such a structure, unsaturated Ru atoms were not precisely arranged and formed
174	step-and-terrace sites similar to a B5-type site. The unique surface morphology of Ru in
175	Ru/Pr_2O_3 would promote N_2 adsorption and subsequent cleavage of the N=N bond.

stability test shown in Fig. S3. As shown in Figs. S12 and S13, the Pr_2O_3 was still covered with

176

In addition, we carried out STEM-EDX observations of Ru/Pr2O3 after the long-term

low-crystalline Ru nano-layers, as it was before reaction, and distinct changes of structure were
not observable. These results demonstrate the high durability of the unique surface structure of
Ru/Pr₂O₃ under the conditions used for NH₃ synthesis.

181

182 Basic properties of Ru/Pr₂O₃

183We used CO₂ temperature-programmed desorption (CO₂-TPD) measurements of the catalysts 184(Fig. 5) to evaluate another crucial determinant of NH₃-synthesis ability, the basicity of the 185support. To remove the contribution of the CO2 that remained on the surface even after H2 186reduction, we subtracted the CO₂-TPD profile without CO₂ adsorption from that after CO₂ adsorption (see Fig. S14 for original figures). CO₂ desorption was observed at 50-680 °C on 187Ru/Pr₂O₃, 50-600 °C on Ru/CeO₂, and 50-500 °C on Ru/MgO. CO₂ desorption observed at 188189high temperature region (\geq 300 °C) was greatest on Ru/Pr₂O₃, intermediate on Ru/CeO₂, and 190 least on Ru/MgO. These results indicate that the basic sites on Ru/Pr₂O₃ are the strongest, and 191 those on Ru/MgO are the weakest. We used the total amount of CO2 desorbed as a metric of basic density over the catalysts. Ru/Pr₂O₃ had the highest basic density, 4.4 μ mol m⁻², almost 192twice those of Ru/CeO₂, 2.3 μ mol m⁻², and Ru/MgO, 2.2 μ mol m⁻². These results reveal that the 193194 surface basicity of Ru/Pr₂O₃ was much stronger than those of Ru/MgO and Ru/CeO₂. This 195strong surface basicity results in the most effective electron donation to Ru and promotes N₂

196	adsorption and subsequent cleavage of the N \equiv N bond. Furthermore, we can say that Pr_2O_3 is
197	covered by islands of Ru nano-layers, which allow large amounts of CO ₂ to adsorb on the
198	surface of uncovered Pr ₂ O ₃ . Note also that the CO ₂ desorption temperature and total density of
199	basic sites were higher on Ru/CeO ₂ than on Ru/MgO. This difference accounts for the higher
200	NH ₃ -synthesis activity of Ru/CeO ₂ than of Ru/MgO.

201

202 Activation of N₂ over Ru/Pr₂O₃

203Finally, to understand the activation of N2 molecules over the Ru/Pr2O3 catalyst, we examined 204 the states of the absorbed N₂ with FT-IR techniques. The IR spectra after the addition of N₂ to 205Ru/MgO, Ru/CeO₂, and Ru/Pr₂O₃ at room temperature are shown in Fig. 6. Each catalyst showed broad peaks around 2350 to 2100 cm⁻¹; such peaks are assignable to the stretching 206vibration mode of the N₂ absorbed with an end-on orientation to the Ru surface.^{21,23,24} Note that 207the peak absorbance of N_2 adsorbed on Ru/Pr₂O₃ occurred at a lower frequency (2178 cm⁻¹) 208209 than the corresponding peak absorbances on Ru/MgO (2210 cm^{-1}) and Ru/CeO₂ (2189 cm^{-1}). In the spectrum of ¹⁵N₂ adsorbed on Ru/Pr₂O₃, the peak absorbance was shifted to a lower 210frequency (2104 cm⁻¹) than on Ru/Pr₂O₃ (2178 cm⁻¹), is in good agreement with the frequency 211estimated from the isotope effect $(2178 \text{ cm}^{-1} \times (14/15)^{1/2} = 2104 \text{ cm}^{-1})$.^{23,24} These results suggest 212213that these peaks are associated with N_2 on the Ru surfaces. The lower frequencies of the peak

Chemical Science

absorbances of N₂ adsorbed on Ru/Pr₂O₃ than on Ru/MgO and Ru/CeO₂ indicate that the N \equiv N bond of N₂ was further weakened over the low-crystalline Ru nano-layers on Pr₂O₃ relative to Ru nanoparticles on the other supports. We surmise that the morphology of the Ru surface and the basicity of the catalyst contributed synergistically to weakening the N \equiv N bond and enhancing the catalytic activity for NH₃ synthesis.

219

220 Conclusions

221In summary, we demonstrated that Ru/Pr_2O_3 without any dopant catalyzed a high rate of NH₃ 222synthesis under mild reaction conditions (0.1–1.0 MPa). Characteristics of the Ru/Pr_2O_3 include 223low-crystalline Ru nano-layers formed by the reaction between Ru₃(CO)₁₂ and Pr₆O₁₁ and strong 224basicity of the Pr₂O₃. These characteristics are considered to synergistically accelerate the rate-determining step of ammonia synthesis, cleavage of the N≡N bond of N₂. In addition, 225226substitution of a part of praseodymium with other element without degrading its activity for 227 NH₃ synthesis is currently in progress, because it is a kind of expensive elements. The reserch outcome will appear in coming contribution. We believe that our catalyst will facilitate the 228229development of an effective method for synthesizing ammonia from renewable energy under 230environmentally benign conditions. Such a method can be expected to contribute to the solution 231of food and energy crises globally.

232 Acknowledgements

233	This work was supported by CREST, Japan Agency of Science and Technology (JST).
234	STEM/TEM observations were performed as part of a program conducted by the Advanced
235	Characterization Nanotechnology Platform Japan, sponsored by the Ministry of Education,
236	Culture, Sports, Science and Technology (MEXT), Japan. K. Sato thanks the Program for
237	Elements Strategy Initiative for Catalysts & Batteries (ESICB) commissioned by MEXT.
238	STEM/TEM observations with T. Toriyama (Kyushu University) is acknowledged. The authors
239	thank Mr. Y. Wada, Ms. M. K. Nakao, and Mr. T. Terasawa (Oita University) for assistance
240	with sample preparation, catalytic activity tests, and characterization techniques. We
241	acknowledge Prof. K. Shimizu (Hokkaido University) for fruitful discussions concerning IR
242	analysis.

243

244 Notes and references

- J. W. Erisman, M. A. Sutton, J. Galloway, Z. Klimont and W. Winiwarter, *Nat. Geosci.*,
 2008, 1, 636-639.
- A. Klerke, C. H. Christensen, J. K. Nørskov and T. Vegge, *J. Mater. Chem.*, 2008, 18, 2304-2310.
- 249 3. R. Schlogl, *ChemSusChem*, 2010, **3**, 209-222.
- 250 4. F. Schüth, R. Palkovits, R. Schlögl and D. S. Su, *Energy Environ. Sci.*, 2012, 5,

- 251 6278-6289.
- 252 5. J. W. Makepeace, T. J. Wood, H. M. A. Hunter, M. O. Jones and W. I. F. David, *Chem.*253 *Sci.*, 2015, 6, 3805-3815.
- 254 6. H. Bielawa, O. Hinrichsen, A. Birkner and M. Muhler, *Angew. Chem. Int. Ed.*, 2001, 40,
 255 1061-1063.
- 256 7. T. Kandemir, M. E. Schuster, A. Senyshyn, M. Behrens and R. Schlogl, *Angew. Chem.* 257 *Int. Ed.*, 2013, **52**, 12723-12726.
- 258 8. S. Perathoner and G. Centi, *ChemSusChem*, 2014, 7, 1274-1282.
- 259 9. C. W. Hooper, in Catalytic Ammonia Synthesis, Fundamentals and Practice, ed. J. R.

260 Jennings, Springer, US, 1991, Ammonia Synthesis: Commercial Practice, 253 - 283.

- 261 10. M. Kitano, Y. Inoue, Y. Yamazaki, F. Hayashi, S. Kanbara, S. Matsuishi, T. Yokoyama,
 262 S. W. Kim, M. Hara and H. Hosono, *Nat. Chem.*, 2012, 4, 934-940.
- 263 11. F. Hayashi, M. Kitano, T. Yokoyama, M. Hara and H. Hosono, *ChemCatChem*, 2014, 6,
 264 1317-1323.
- 265 12. Y. Inoue, M. Kitano, S.-W. Kim, T. Yokoyama, M. Hara and H. Hosono, *ACS Catal.*,
 266 2014, 4, 674-680.
- 267 13. S. Gambarotta and J. Scott, Angew. Chem. Int. Ed., 2004, 43, 5298-5308.
- 268 14. H. K. Chae, D. Y. Siberio-Perez, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger, M.
- 269 O'Keeffe and O. M. Yaghi, *Nature*, 2004, **427**, 523-527.
- 270 15. K. Aika, H. Hori and A. Ozaki, J. Catal., 1972, 27, 424-431.
- 16. K. Aika, M. Kumasaka, T. Oma, O. Kato, H. Matsuda, N. Watanabe, K. Yamazaki, A.
 Ozaki and T. Onishi, *Appl. Catal.*, 1986, 28, 57-68.
- 273 17. S. Dahl, A. Logadottir, R. C. Egeberg, J. H. Larsen, I. Chorkendorff, E. Törnqvist and J.
- 274 K. Nørskov, *Phys. Rev. Lett.*, 1999, **83**, 1814-1817.

- 275 18. C. J. H. Jacobsen, S. Dahl, P. L. Hansen, E. Törnqvist, L. Jensen, H. Topsøe, D. V. Prip,
- 276 P. B. Møenshaug and I. Chorkendorff, J. Mol. Catal. A: Chem., 2000, 163, 19-26.
- 277 19. S. Dahl, E. Tornqvist and I. Chorkendorff, J. Catal., 2000, 192, 381-390.
- 278 20. Z. Song, T. Cai, J. C. Hanson, J. A. Rodriguez and J. Hrbek, *J. Am. Chem. Soc.*, 2004,
 279 126, 8576-8584.
- 280 21. Z. You, K. Inazu, K. Aika and T. Baba, J. Catal., 2007, 251, 321-331.
- 281 22. K. Aika, A. Ohya, A. Ozaki, Y. Inoue and I. Yasumori, J. Catal., 1985, 92, 305-311.
- 282 23. J. Kubota and K. Aika, J. Chem. Soc., Chem. Commun., 1991, 1544.
- 283 24. J. Kubota and K. Aika, *The Journal of Physical Chemistry*, 1994, **98**, 11293-11300.
- 284 25. K. Aika, T. Takano and S. Murata, J. Catal., 1992, 136, 126-140.
- 285 26. Y. Horiuchi, G. Kamei, M. Saito and M. Matsuoka, Chem. Lett., 2013, 42, 1282-1284.
- 286 27. J. G. van Ommen, W. J. Bolink, J. Prasad and P. Mars, J. Catal., 1975, 38, 120-127.
- 287 28. D. E. Brown, T. Edmonds, R. W. Joyner, J. J. McCarroll and S. R. Tennison, *Catal.*288 *Lett.*, 2014, 144, 545-552.
- 289 29. M. Kitano, Y. Inoue, H. Ishikawa, K. Yamagata, T. Nakao, T. Tada, S. Matsuishi, T.
- 290 Yokoyama, M. Hara and H. Hosono, *Chem. Sci.*, 2016, 7, 4036-4043.
- 291 30. Y. Lu,Li, T. Tada, Y. Toda, S. Ueda, T. Yokoyama, M. Kitano and H. Hosono, *J. Am.*292 *Chem. Soc.*, 2016, **138**, 3970-3973.
- 293 31. F. Rosowski, A. Hornung, O. Hinrichsen, D. Herein, M. Muhler and G. Ertl, Appl.
- 294 *Catal., A*, 1997, **151**, 443-460.
- 295 32. Y. Niwa and K.-i. Aika, Chem. Lett., 1996, 3-4.
- 296 33. G. Adachi and N. Imanaka, Chem. Rev., 1998, 98, 1479-1514.
- 297

299

300

Fig. 1 Catalytic performance of supported Ru catalysts for NH₃ synthesis at (a) 0.1 MPa and (b) 1 MPa. Reaction conditions: catalyst, 0.2 g; reactant gas, $H_2/N_2 = 3$ with a flow rate of 60 mL min⁻¹; reaction temperature, 400 °C. With the exception of Ru/Pr₂O₃, NH₃ synthesis rates are reproduced from Ref. [10].

307

308

309 Fig. 2 Rate of NH₃ synthesis over supported Ru catalysts. Reaction conditions: catalyst, 0.2 g;

310 reactant gas, $H_2/N_2 = 3$ with a flow rate of 60 mL min⁻¹; pressure, 0.9 MPa.

313 314

- Fig. 3 HAADF-STEM image, Pr-L, O-K, and Ru-L STEM-EDX maps, and reconstructed
- 316 overlay image of Pr, O, and Ru for Ru/Pr₂O₃ after H₂ reduction.

320

319

321 Fig. 4 HR-STEM images of (a) Ru/Pr₂O₃, (b) Ru/CeO₂, and (c) Ru/MgO after H₂ reduction.

324 325

Fig. 5 CO₂-TPD profiles of supported Ru catalysts. Following H₂ reduction at 400 °C, CO₂

327 adsorption was carried out at 50 °C. These curves show the difference between curves shown in

328 Fig. S14 to remove the contribution of CO_2 that remained on the surface of the catalyst even

329 after H₂ pre-treatment.

332

333

 $334 \qquad \mbox{Fig. 6 Difference infrared spectra of N_2 molecules before and after N_2 adsorption on supported}$

335 Ru catalysts. Spectra were collected under 6 kPa of N_2 ($^{15}N_2$ for Ru/Pr₂O₃) at 25 °C.

337 Table 1

338 **Table 1.** Physicochemical properties of supported Ru catalysts.

Catalyst	Specific surface area ^[a] $(m^2 g^{-1})$	H/Ru	Turnover frequency ^[b] (s^{-1})	Density of base sites ^[c] (µmol m ⁻²)
Ru/Pr ₂ O ₃	20.4	0.17	0.050	4.4
Ru/CeO ₂	33.5	0.29	0.014	2.3
Ru/MgO	46.4	0.3	0.003	2.2

339 [a] Estimated by using H₂ chemisorption capacity. [b] Calculated by using H/Ru value and NH₃ yield at

340 390 °C under 0.9 MPa. [c] Estimated by using CO₂-TPD.

342 Table of contents (Maximum 20 words)

343

- 344 Low-crystalline Ru nano-layers and strong basicity of Ru/Pr₂O₃ synergistically accelerated the
- 345 rate-determining step of ammonia synthesis.

346

347

