

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	A kinetic and mechanistic study of the degradation of
2	1,2-dichloroethane and methyl tert-butyl ether using
3	alkaline-activated persulfate oxidation
4	
5	Ku-Fan Chen*, Yu-Chen Chang, Kuan-Yu Liu
6	
7	Department of Civil Engineering, National Chi Nan University, Puli, Nantou 54561,
8	Taiwan
9	
10	
11	
12	To whom correspondence should be addressed:
13	Dr. Ku-Fan Chen
14	TEL: +886-49-2910960 ext. 4983
15	Email: kfchen@ncnu.edu.tw
16	Address: 1 Univ. Rd., Puli, Nantou 54561, TAIWAN

17 Abstract

18	In this study, alkaline-activated persulfate is used to treat groundwater that is
19	contaminated with 1,2-dichloroethane (1,2-DCA)- and methyl tert-butyl ether
20	(MTBE). The results show that alkaline-activated persulfate accelerates the
21	degradation of 1,2-DCA. Vinyl chloride that is produced because there is
22	dehydrochlorination of 1,2-DCA at high pH. Although the rate of degradation of
23	MTBE in alkaline-activated persulfate systems is decreased, there is a significant
24	reduction in the accumulation of MTBE-degrading byproducts, tert-butyl alcohol and
25	tert-butyl formate. Alkaline-activated persulfate degrades 1,2-DCA via the
26	mechanisms of oxidation and dehydrochlorination, but oxidation alone contributes to
27	the removal of MTBE. The use of low-cost basic oxygen furnace (BOF) slag
28	increases the pH of the solution (> 12) and allows the alkaline-activated persulfate
29	reaction to proceed. No detectable heavy metals are released from the BOF slag in the
30	persulfate system that is activated by BOF slag. The degradation of 1,2-DCA and
31	MTBE follows the pseudo-first-order kinetics for all persulfate systems.
32	Alkaline-activated persulfate causes a decrease in ORP because there is a high pH,
33	which adversely affects the removal of contaminants if the contaminants do not
34	undergo base-mediated degradation. Therefore, the performance in terms of
35	contaminant removal must be evaluated before alkaline-activated persulfate is used

36	for different compounds. This novel, slag-activated persulfate system is
37	environmentally friendly and cost-effective alternative to the remediation of
38	groundwater.
39	
40	Keywords: 1,2-Dichloroethane (1,2-DCA); Methyl tert-butyl ether (MTBE);
41	Persulfate; Alkaline activation; Basic oxygen furnace (BOF) slag

RSC Advances Accepted Manuscript

42 **1. Introduction**

60

43	Groundwater contamination is a global issue because of the potential threat of
44	toxic pollutants to water resources and human health. Generally, petroleum and
45	chlorinated hydrocarbons are the most commonly detected pollutants in
46	groundwater. ¹⁴ 1,2-dichloroethane (DCA), the most commonly produced halogenated
47	chemical in the world, is mainly used in the synthesis of vinyl chloride (VC), which is
48	used for the production of polyvinyl chloride. 1,2-DCA has been classified as a
49	probable human carcinogen (Group B2) by the US Environmental Protection Agency
50	(US EPA) ⁵ and a possible human carcinogen (Group 2B) by the International Agency
51	for Research on Cancer (IARC). ⁶ The US EPA has set a maximum contaminant level
52	(MCL) for 1,2-DCA in drinking water at 0.005 mg L^{-1} , to protect public health. ⁷
53	Methyl tert-butyl ether (MTBE) is the most commonly used gasoline additive because
54	of its low cost and ease of production and blending. ⁸ Since MTBE is a potential
55	human carcinogen at high doses, the US EPA has set an advisory level for drinking
56	water of 20–40 μ g L ^{-1.9} There is significant potential for groundwater contamination
57	by 1,2-DCA and MTBE because of their widespread use. Both 1,2-DCA and MTBE
58	are also resistant to biodegradation and chemical oxidation, which renders
59	groundwater remediation difficult. ¹⁰⁻¹³

In situ chemical oxidation (ISCO) is a rapid and effective remediation

61	technology that uses powerful oxidants	s to treat high levels	of contaminants in the
62	subsurface. ¹⁴ Hydrogen peroxide, perma	inganate and persulfa	te are common oxidants
63	that are used in aqueous form for ISCC). Persulfate oxidatio	n has been developed to
64	remediate contaminated soil and groun	dwater. Persulfate is	a strong and relatively
65	stable oxidant that is activated by heat (Reaction (1)) ^{15,16} or a transition metal (M ⁿ⁺		
66	(Reaction (2)) ^{$17,18$} to produce more powerful sulfate free radicals that degrade a wide		
67	range of organic pollutants:		
68			
69	$S_2O_8^{2-}$ + heat $\rightarrow 2SO_4^{-}$.		(1)
70	$S_2O_8^{2-} + M^{n+} \rightarrow SO_4^{} + SO_4^{2-} + M^{n+1}$		(2)
71	$\mathrm{SO}_4^- + \mathrm{e}^- \rightarrow \mathrm{SO}_4^{-2-}$	$E^0 = 2.6 V$	(3)
72			
73	In addition to heat and transition metals	, many other activati	on technologies, such as
74	chelated Fe(II) ^{19,20} , zero valent iron (ZVI) ^{21,22} , ultraviolet	light ^{23,24} and activated
75	carbon ²⁵ are also used to activate personant	ulfate. Recently, alka	line-activated persulfate

76 (alkaline persulfate) has been used for groundwater remediation.²⁶⁻²⁸ The notable 77 advantage of alkaline-activated persulfate is that the addition of a base neutralizes the 78 acid that is generated from persulfate during the treatment.²⁹ Since a decrease in pH 79 can result in the dissolution of heavy metals in soil,¹⁴ alkaline persulfate also reduces

RSC Advances Accepted Manuscript

80 the possibility of heavy metal contamination during site remediation. In general, a pH of greater than 10 is required to activate persulfate.^{26,27,30,31} At a 81 82 high pH, sulfate radicals react with hydroxyl ions and water to generate hydroxyl radicals:^{27,32} 83 84 $SO_4^{-} + OH^{-} \rightarrow OH + SO_4^{2-}$ 85 (4) $SO_4 \rightarrow H_2O \rightarrow OH + SO_4^2 + H^+$ 86 (5) 87 Two possible mechanisms for alkaline-activated persulfate have been proposed. 88 Corbin III³⁰ reported that under alkaline conditions, sulfate radicals convert hydroxyl 89 90 ions to hydroxyl radicals (Reaction (4)) and then propagation reactions generate other 91 reactive species: 92 $\cdot OH + \cdot OH \rightarrow H_2O_2$ 93 (6) $S_2O_8^{2-} + 2H_2O \rightarrow 2HSO_4^{-} + H_2O_2$ 94 (7) $H_2O_2 + OH^- \rightarrow HO_2^- + H_2O$ 95 (8) $H_2O_2 + HO_2^- \rightarrow O_2 \cdot^- + \cdot OH + H_2O$ 96 (9)

97

98 Furman et al.³³ noted that the first step in the alkaline activation of persulfate is the

113

114

115

116

RSC Advances

base-catalyzed hydrolysis of persulfate to form peroxomonosulfate (SO_5^{2-}) and sulfate 99 and then other reactions occur: 100 101 $^{-}_{3}$ OS-O-O···SO₃ $^{-}$ + H₂O $\xrightarrow{OH^{-}}$ [$^{-}_{3}$ OS-O-O⁻] + SO₄ $^{2-}$ + 2H⁺ 102 (10) $[^{-}_{3}OS-O-O^{-}] + H_2O \xrightarrow{OH^-} H-O-O^{-} + SO_4^{2-} + H^+$ 103 (11) $^{-}_{3}$ OS-O-O-SO $_{3}^{-}$ + 2H₂O $\xrightarrow{OH^{-}}$ HO $_{2}^{-}$ + 2SO $_{4}^{2-}$ + 3H⁺ 104 (12)105 (13) $2S_2O_8^{2-} + 2H_2O \rightarrow 3SO_3^{2-} + SO_4^{-} + O_2^{-} + 4H^+$ 106 (14)107 108 The sulfate radicals that are produced in Reactions (13) and (14) then react with 109 hydroxyl ions to generate hydroxyl radicals, as shown in Reaction (5). 110 Alkaline-activated persulfate has been successfully demonstrated to increase the removal of different contaminants. Block et al.²⁶ reported that alkaline persulfate (pH 111 112 > 10) is an aggressive oxidation system that can completely remove problematic

117 increases, because hydroxyl radicals are generated in the system (Reaction (4)).

compounds, such as chlorinated methanes and ethanes. Liang et al.³⁴ measured

trichloroethylene (TCE) removal by persulfate using ethylenediamine-tetra-acetic acid

(EDTA) chelated Fe^{3+} as an activator at different pH values (pH 3, 7 and 10). The

results showed that the rate at which TCE is removed increases as the pH value

118	Nitrobenzene is used to identify sulfate and hydroxyl radicals in thermally activated
119	persulfate under different pH conditions. ³⁵ The results show that nitrobenzene
120	degradation rates are greater at pH values of 12 and 9 than at pH values of 7, 4 and 2.
121	This study showed that predominant hydroxyl radicals are generated in basic
122	solutions.
123	Although powerful hydroxyl radicals occur in alkaline persulfate systems, many
124	studies have shown that alkaline-activated persulfate retards the degradation of
125	pollutants. The rate at which MTBE is degraded by thermally activated persulfate
126	decreases as the pH value increases (pH 2.5-12) because sulfate radicals and hydroxyl
127	radicals react rapidly with hydroxyl ions under high pH conditions. ³⁶ Huling et al. ³⁷
128	found that MTBE degradation is better under neutral and acid conditions (pH 3.5-7.5)
129	than under alkaline conditions (pH 11-12.5). Sulfate radicals are scavenged by water
130	and hydroxyl ions and the hydroxyl radicals are consumed by sulfate ions and other
131	reactants in the system. The effect of different persulfate processes, such as heating,
132	Fe(III)-EDTA, alkaline activation and hydrogen peroxide-persulfate binary mixtures,
133	on the degradation of organic pollutants has been studied. The results show that
134	alkaline-activated persulfate is the least efficient way to degrade pollutants. ^{29,38}
135	For alkaline-activated persulfate oxidation, KOH or NaOH is mixed with

136 persulfate solution to achieve the required pH.²⁷ Since aquifers usually have a

buffering capacity, a large amount of base may be needed to increase the pH of an
aquifer, which increases the cost of alkaline-activated persulfate oxidation. Therefore,
low-cost activators are required to render alkaline-activated persulfate more
applicable in field. Basic oxygen furnace (BOF) slag is a waste material that is
generated in the basic oxygen furnace steel manufacturing process. BOF slag contains
30-55% CaO, which yields hydroxyl ions that increase the pH of water rapidly, as
shown in Reaction (15):^{39,40}

145
$$\operatorname{CaO} + \operatorname{H_2O} \rightarrow \operatorname{Ca}^{2+} + 2\operatorname{OH}^{-}$$
 (15)

146

147 Therefore, it may be feasible to use BOF slag to activate persulfate. The use of BOF148 slag to activate persulfate also allows the reuse of waste materials.

Although alkaline-activated persulfate has been used to treat various contaminants, the performance is variable. Some reports note that the removal of contaminants is enhanced by alkaline persulfate and other reports show that the use of alkaline-activated persulfate is the least efficient way to degrade pollutants.^{26,29,35,38} Recent studies have focused on the effectiveness of alkaline-activated persulfate for the removal of different individual compounds^{34,35,37} and comparisons of the degradation of individual pollutants using different persulfate activation methods.^{29,38}

156	Different experimental parameters were used in other studies, such as the target
157	pollutant, the persulfate dosage and the temperature, so it is difficult to compare the
158	performance of each method, in terms of the removal of different pollutants by
159	alkaline persulfate. There are also few detailed comparative studies of the removal of
160	pollutants by alkaline persulfate that have different properties (e.g., chlorinated and
161	petroleum hydrocarbons). ²⁶ Since 1,2-DCA and MTBE are typical chlorinated and
162	petroleum hydrocarbons that are found in groundwater, these two compounds are the
163	target pollutants for this study. The main objective of this study is to determine the
164	kinetics and the mechanism for the degradation of 1,2-DCA and MTBE by
165	alkaline-activated persulfate. Contaminants are treated using persulfate under
166	un-activated and alkaline-activated conditions. The feasibility of using BOF slag to
167	activate persulfate is also determined.
168	
169	2. Materials and Methods

170 2.1 Materials and Chemicals

The chemicals that are used in this study are 1,2-DCA (99.9%, Merck, Germany),
MTBE (99.9%, Merck, Germany), vinyl chloride (VC) (2,000 ppm in methanol,
Supelco, USA), tert-butyl formate (TBF) (99%, Aldrich, USA), tert-butyl alcohol
(TBA) (99%+, Alfa Aesar, USA), and sodium persulfate (> 99%, Riedel-de Haen,

175	Germany). BOF slag was obtained from the China Steel Corp., Taiwan. The major
176	constituents of BOF slag are CaO (54.4 wt%), Fe ₂ O ₃ (30.6 wt%), SiO ₂ (9.9 wt%) and
177	MnO (3.4 wt%). The slag was sieved before use, to ensure a more uniform particle
178	size (10-18 mesh).
179	
180	2.2 Batch kinetic experiments
181	Batch experiments were conducted using 60 mL serum bottles, in order to

181	Batch experiments were conducted using 60 mL serum bottles, in order to
182	evaluate the removal of 1,2-DCA and MTBE by persulfate under un-activated and
183	different alkaline conditions (pH 10-13). The solution used for the batch experiments
184	was prepared by adding approximately 99 mg of 1,2-DCA or 88 mg of MTBE to 2 L
185	DI water and 20,000 mg of persulfate was then added. 50 mL of the mixed solution
186	was then immediately transferred to each serum bottle, using a dispenser. The initial
187	concentrations of the contaminant and persulfate in the batch bottles were 0.5 mM and
188	42 mM, respectively. The pH for the batch experiments was adjusted using NaOH.
189	BOF slag (20-100 g L ⁻¹) was used to determine whether it increases pH, which allows
190	the alkaline-activated persulfate reaction to proceed. In a dark chamber at a constant
191	temperature at 25 °C, batch bottles were placed on a shaker that operated at 150 rpm.
192	All batch experiments were conducted in duplicate. Since BOF slag can contain heavy
193	metals, such as Cr, heavy metals of interest were analyzed in the experiments where

194 slag was added, in order to determine whether heavy metals are released from BOF195 slag.

196

197 2.3 Analytical methods

198 Analysis of 1,2-DCA, MTBE and their degradation byproducts, including VC, 199 TBF and TBA, was performed using a purge and trap pretreatment system (Atomx, 200 Tekmar, USA), followed by a gas chromatograph-flame ionization detector (Agilent 201 7890A, USA) that was equipped with a capillary column (GsBP-624, 60 m \times 0.32 202 mm, GS-Tek, USA). The respective operating temperatures for the injector and the 203 detector were 180°C and 230°C. The oven temperature was initially maintained at 35°C for 5 min and then increased at a rate of 11°C min⁻¹ to 115°C and held at 115°C 204 for 3 min. The temperature was then increased at a rate of 20°C min⁻¹ to 220°C and 205 206 maintained at 220°C for 1 min. The slag-activated persulfate system was analyzed for 207 the presence of heavy metals, including Cr, Cd, Ni, Zn, Pb and Cu, using inductively coupled plasma optical emission spectrometry (ICP-OES) (Horiba, JY 2000 2, USA). 208 209 The detection limits of Cr, Cd, Ni, Zn, Pb and Cu were 0.001, 0.001, 0.001, 0.002, 0.010, and 0.001 mg L^{-1} , respectively. 210

211

Page 13 of 38

214 **3.1 1,2-DCA degradation by alkaline-activated persulfate**

215	Fig. 1a shows the degradation of 1,2-DCA in the alkaline-activated persulfate
216	systems. There is significantly increased degradation of 1,2-DCA at pH values of
217	more than 12. 98% of 1,2-DCA is removed by alkaline-activated persulfate at a pH
218	value of 12 and 100% of 1,2-DCA is removed by alkaline-activated persulfate at a pH
219	value of 13, but 1,2-DCA is 90% degraded by un-activated persulfate after 120 h of
220	reaction. Although the degradation of 1,2-DCA increases as the pH value is increased,
221	under alkaline conditions, less 1,2-DCA is removed at pH values of 10 and 11 than
222	with un-activated persulfate. It should be noted that under alkaline controls (no
223	addition of persulfate), 1,2-DCA at a pH of 12 and 13 produces a 4 and 11% decrease,
224	respectively, during 120 h of reaction (data not shown in the figure). Although Block
225	et al. ²⁶ reported that alkaline persulfate increases the degradation of 1,2-DCA, this
226	study uses no alkaline control without persulfate. Root et al. ⁴¹ noted that chloroform
227	(CF) concentrations are reduced in both alkaline control and alkaline activated
228	persulfate tests. The removal of CF in the control set was due to alkaline hydrolysis.
229	The results of this study indicate that strong alkaline conditions stimulate additional
230	degradation of 1,2-DCA, so more 1,2-DCA is removed in the alkaline persulfate
231	systems.

RSC Advances Accepted Manuscript

232	Fig. 1b shows the production of VC in the alkaline-activated persulfate systems.
233	During 1,2-DCA degradation, VC is detected in alkaline persulfate and the control
234	runs at pH 12 and 13. VC concentrations in the control runs at pH values of 12 and 13
235	respectively increase to 0.023 and 0.098 mM, during 120 h of reaction. The
236	production of VC reaches the highest concentrations of 0.006 and 0.010 mM in the
237	alkaline persulfate systems at respective pH values of 12 and 13, after 48 h of reaction,
238	and then gradually decrease to less than 0.001 mM because of persulfate oxidation.
239	Jeffers et al. ⁴² reported that VC is produced in 1,2-DCA solution at high pH values.
240	The decrease in 1,2-DCA and the production of VC in the control sets may result from
241	the dehydrochlorination of 1,2-DCA. ⁴²⁻⁴⁴ Dehydrochlorination removes hydrogen and
242	chloride ions from an alkane and results in the formation of an alkene under strong
243	basic conditions. ^{45,46} The transformation of 1,2-DCA to VC at high pH values is
244	shown as below:

245

$$246 \quad \text{ClH}_2\text{C}-\text{CH}_2\text{Cl}+\text{OH}^- \rightarrow \text{H}_2\text{C}=\text{CHCl}+\text{Cl}^-+\text{H}_2\text{O}$$
(16)

247

To the best of the authors' knowledge, this is first time that the dehydrochlorination of
1,2-DCA to VC has been demonstrated in an alkaline persulfate system. Since
chlorinated hydrocarbons can undergo base-mediated degradation, such as

RSC Advances

nuscript
pted Mai
ces Acce
; Advand
RSC

251	base-catalyzed hydrolysis or dehydrochlorination, ^{42,43} it is necessary to consider the
252	possible contribution of alkaline degradation to the removal of contaminants when
253	alkaline persulfate is used for the treatment of chlorinated compounds.
254	The pseudo-first-order rate constants for 1,2-DCA degradation by un-activated
255	and alkaline-activated persulfate are shown in Table 1. The degradation of 1,2-DCA
256	by persulfate fits well with the pseudo-first-order kinetics ($R^2 > 0.96$). The rate
257	constants for the removal of 1,2-DCA at pH values of 12 and 13 are approximately 1.7
258	and 3.1 times greater than that for un-activated persulfate. It should be noted that
259	although the total amount of 1,2-DCA degradation by persulfate after 120 h is not
260	much different with or without activation, the rate of 1,2-DCA degradation is
261	increased by alkaline activation. Since higher concentration of 1,2-DCA has higher
262	toxicity, it is beneficial to the environment to reduce 1,2-DCA concentration rapidly
263	during a short time. These results demonstrate that a pH value of greater than 12 is
264	required to increase 1,2-DCA degradation in alkaline persulfate systems. Since sulfate
265	radicals and hydroxyl radicals are generated in alkaline-activated persulfate systems, ²⁹
266	better performance may result from the synergistic contribution of oxidation and
267	dehydrochlorination. The VC that is produced by the dehydrochlorination of 1,2-DCA
268	is subsequently removed by the oxidative radicals.

3.2 MTBE degradation by alkaline-activated persulfate 270

271	Fig. 2a shows the degradation of MTBE in the alkaline-activated persulfate
272	systems. MTBE degradation was retarded under all alkaline conditions. 77% of
273	MTBE is removed in un-activated persulfate, but only 41 to 58% of MTBE is
274	degraded at pH values between 10 and 13. The degradation of MTBE is also greater at
275	pH values of 12 and 13 than at pH values of 10 and 11. These findings are in
276	agreement with those of a previous study that was conducted by Deng et al. ²⁹ That
277	study reported that the removal of MTBE under alkaline conditions is much slower
278	than by persulfate alone at 25 °C. Huang et al. ³⁶ also noted that the rate at which
279	MTBE is degraded by thermally activated persulfate (40 °C) decreases as the pH
280	value increases (pH 2.5-12). No MTBE degradation is observed for the alkaline
281	control sets (data not shown in the figure). Therefore, only persulfate oxidation is
282	responsible for the removal of MTBE by alkaline persulfate. The pseudo-first-order
283	rate constants for the degradation of MTBE by un-activated and alkaline-activated
284	persulfate are shown in Table 1. The degradation of MTBE by persulfate follows the
285	pseudo-first-order kinetics ($R^2 > 0.99$). Un-activated persulfate gives the greatest
286	removal rate for MTBE. This rate is approximately 1.7 to 3.0 times greater than the
287	rate for alkaline persulfate.

During the oxidation of MTBE, the byproducts, TBF and TBA, are produced.

Figs. 2b and 2c respectively show the production of TBF and TBA in the

290	alkaline-activated persulfate systems. Notably, the final concentrations of TBF
291	(0-0.003 mM) in the alkaline systems are much lower than that in the un-activated
292	system (0.137 mM). TBF is a major byproduct of the oxidation of MTBE. The TBF
293	that is produced subsequently undergoes hydrolysis to yield TBA. ³⁶ Church et al. ⁴⁷
294	noted that the respective rate constants for the hydrolysis of TBF to TBA under basic,
295	neutral and acid and conditions are 1.7 ± 0.3 M ⁻¹ s ⁻¹ , $(1.0 \pm 0.2) \times 10^{-6}$ s ⁻¹ and (2.7 ± 0.3)
296	0.5) \times 10 ⁻³ M ⁻¹ s ⁻¹ . The rate constant for the basic hydrolysis of TBF is 500 times
297	greater than that for the acid hydrolysis of TBF. Therefore, the TBF that is produced
298	in the alkaline persulfate systems is rapidly converted to TBA, so less TBF
299	accumulates. The concentrations of TBA in the alkaline persulfate systems are also
300	significant lower than that in the un-activated system, which is consistent with the
301	results of the study by Deng et al., ²⁹ which showed that alkaline persulfate degrades
302	TBA more effectively than persulfate alone at 25 °C. It has been reported that TBF
303	hydrolysis generates the same stoichiometric amount of TBA.47 Therefore, the final
304	concentrations of TBF and TBA can be added and expressed as "mM as TBA". Table
305	2 shows the molar ratio of TBF and TBA accumulation/MTBE removal in the
306	un-activated and alkaline-activated persulfate systems after 120 h of reaction. At the
307	end of the experiments, the molar ratios of TBF and TBA accumulation/MTBE

308	removal in the alkaline-activated persulfate systems range from 0.30 to 0.40 and the
309	molar ratio for TBF and TBA accumulation/MTBE removal is 0.98 in the un-activated
310	persulfate system. These results show that alkaline-activated persulfate reduces the
311	production of byproducts during MTBE degradation. Since TBA is a known toxin and
312	an animal carcinogen and it is the only degradation byproduct that has the potential to
313	persist in the environment, ^{47,48} the use of alkaline persulfate is beneficial because it
314	reduces the accumulation of this harmful byproduct.
315	
316	3.3 The effect of pH and ORP on the removal of contaminants
317	Table 1 shows that the pH values for the sets with pH values of 11, 12 and 13 are
318	maintained at the required pH during the experiments, in order to evaluate 1,2-DCA
319	and MTBE oxidation. However, the pH values for the sets for pH 10 are maintained at
320	pH 10 for 48 h of reaction and then gradually decrease to around 3.2. The ORP values,
321	measured for the sets for pH 11, 12 and 13 are stable during the experiments and the
322	final ORP for these sets is much lower than that for un-activated persulfate. In general,
323	H^+ concentration affects the measured redox potential according to Eq (17): ³⁴
324	
325	$E_{\text{measured}} = K - 0.059 \text{ pH} $ (17)
326	

327	where K is a constant and the unit of K and E is volts. Eq (17) shows that ORP
328	decreases as the pH increases. Even if the oxidative radicals are generated by
329	alkaline-activated persulfate, the ORP may decrease because of the effect of a high pH
330	Therefore, it is necessary to correct the ORP that is measured at different pH values to
331	the value for the same pH, in order to determine the real effect of alkaline persulfate
332	on the system ORP. Using Eq (17), the ORP measured at different pH values is
333	corrected to a reference pH, as shown Eq (18):
334	

335
$$E_{corrected} = E_{measured} - 0.059 (pH_{reference} - pH_{measured})$$
 (18)

336

337 In this study, the ORP levels at different pH values are corrected for a pH of 7. As 338 shown in Table 1, the corrected ORP values for the sets for pH 11, 12 and 13 are much 339 greater than that for un-activated persulfate when the effect of pH on the ORP measurement is eliminated. Liang et al.^{28,34} reported the presence of hydroxyl radicals 340 341 (predominant) and sulfate radicals under strong alkaline conditions (pH > 11). 342 Therefore, the production of the oxidative radicals by alkaline persulfate (Reactions 343 (4), (9), (13) and (14)) contributes to the oxidative power of the system. Otherwise, 344 the measured ORP in the high pH systems would be even lower than the measured 345 ORP that is shown in Table 1.

-	
0	
C	
()	
Ĭ	
σ	
O	
Ð	
T	
0	
U	
C	
ŏ	
Q	
0	
0	
()	
U)	
C	

346	Under alkaline conditions (pH 11 to 13), both the measured and the corrected
347	ORP increase as the pH value increases. An increase in pH also results in greater
348	removal of 1,2-DCA and MTBE, especially at pH values of 12 and 13. This
349	demonstrates that higher pH values result in stronger persulfate activation. The
350	removal of 1,2-DCA and MTBE is least efficient at pH 10. The corrected and
351	measured ORP values for the sets for pH 10 are similar to that for un-activated
352	persulfate. Therefore, the high ORP for the sets for pH 10 mainly results from the low
353	pH and the un-activated persulfate. Although the pH is initially maintained at around
354	10, alkaline activation of persulfate is not as strong as that for the sets where the pH is
355	greater than 11, so insufficient radicals are produced for the oxidation of 1,2-DCA and
356	MTBE. Since the pH gradually decreases, there is a moderate increase in the ORP, so
357	1,2-DCA and MTBE do not stay in a high ORP solution for the duration of the
358	experiments. There is also no degradation of 1,2-DCA or MTBE at a pH value of 10,
359	as shown by the results for the alkaline controls. These may be the reasons that less
360	contaminants are removed at a pH value of 10. Note that in reality, the pH has a
361	dominant effect on ORP value in the persulfate solution. If no other mechanisms
362	contribute to the degradation of contaminants, the efficiency with which the
363	contaminant is treated decreases at high pH because ORP values are low. This may
364	explain why less contaminant is removed in many other reports that use

365 alkaline-activated persulfate for the treatment.²⁷

366	Some studies note that the removal of contaminants is increased by alkaline
367	persulfate because hydroxyl radicals are produced, ^{34,35} but other studies report that
368	sulfate radicals are scavenged by hydroxyl ions and the hydroxyl radicals that are
369	produced are rapidly consumed by sulfate ions, hydroxyl ions and other reactants in
370	the alkaline persulfate systems, so the contaminants experience less
371	degradation. ^{32,36,37,49} However, no direct evidence that affects the degradation of
372	pollutants is provided by previous reports and relatively few studies concern the
373	relationship between contaminant removal, pH and ORP. ³⁴ The results for the ORP
374	measurement may explain the poor performance of alkaline persulfate in the removal
375	of some contaminants.

376

377 3.4 1,2-DCA and MTBE degradation by BOF slag-activated persulfate

Fig. 3a shows the degradation of 1,2-DCA by persulfate when different dosages of BOF slag are added. When BOF slag is added, the pH in the system rapidly increases and then remains between 12.3 and 12.6 during the experiments. 100% of 1,2-DCA is removed for different dosages of BOF. A small amount of VC is also produced during the degradation of 1,2-DCA and this is then completely removed at the end of the experiments (Fig. 3b). The addition of 20 g L^{-1} slag or more increases

	Manuscript
	Accepted N
	RSC Advances

384	the pH and increases the degradation of 1,2-DCA. Table 3 shows the
385	pseudo-first-order rate constants for the degradation of 1,2-DCA and MTBE by BOF
386	slag-activated persulfate. The rate constants for the removal of 1,2-DCA by BOF
387	slag-activated persulfate are approximately 2.4-2.7 times greater than that for
388	un-activated persulfate. Figure 4a shows the degradation of MTBE by persulfate when
389	different dosages of BOF slag are added. Less MTBE is degraded at high pH values.
390	The removal rate for MTBE by un-activated persulfate is 1.7 to 1.8 times greater than
391	that for persulfate that is activated by BOF slag (Table 3). As shown in Figs. 4b and 4c,
392	the accumulation of TBF and TBA is mitigated by the addition of BOF slag because
393	the pH is high. The results of the heavy metal analysis show that no detectable
394	amounts of heavy metals are found during treatment with persulfate that is activated
395	by BOF slag. Therefore, it is safe to use BOF slag as an activator for persulfate.
396	The removal of 1,2-DCA and MTBE and the production of the byproducts by
397	persulfate that is activated by BOF slag are quite similar to the results
398	alkaline-activate persulfate using NaOH as the activator. This study's findings
399	demonstrate that BOF slag is a good alternative for the alkaline-activated persulfate
400	reaction. Although BOF slag contains a significant amount of iron oxide, iron oxide is
401	not involved with the activation of persulfate because iron ions are only released with
402	difficulty at high pH values. BOF slag has been successfully used to catalyze

403	hydrogen peroxide in Fenton-like systems, under acid conditions. The homogeneous	
404	catalytic reaction of hydrogen peroxide by the Fe^{2+} that is leached from BOF slag	
405	plays a dominant role in increasing the removal of contaminants and the	
406	heterogeneous reaction of hydrogen peroxide with the iron that is contained in BOF	
407	slag plays a minor role. ⁵⁰ Liang et al. ⁴⁹ reported that the use of BOF slag (1 g L^{-1})	
408	results in an increase in the pH of the solution to 11, which is unfavorable to a	
409	Fenton-like reaction because iron ions are not produced at such a high pH value. Tsai	
410	et al. ⁵¹ noted that less TCE is removed as the pH value increases in a H_2O_2/BOF slag	
411	system because there is less dissociation of iron minerals from BOF slag. Teel et al. (F_{2}, O_{1}) does not activate persulfate to generate	
412	oxidative radicals. Therefore, hydroxyl ions (Eq. (15)) that are released from BOF slag	
414	are the main contributors to the activation of persulfate, rather than the dissolved iron	
415	ions or the iron oxide on the surface of the BOF slag.	

416

417 4. Conclusions

In this study, 1,2-DCA and MTBE is removed using alkaline-activated persulfate, with NaOH and BOF slag as activators. The results show that 1,2-DCA removal is increased when alkaline-activated persulfate is used at pH values greater than 12. VC is generated due to the dehydrochlorination of 1,2-DCA in the alkaline-activated

persulfate systems. Although MTBE degradation decreases, the accumulation of TBF

422

ript
Aanusc
epted N
es Acc
dvance
RSC A

423 and TBA is significantly reduced when alkaline-activated persulfate is used. 424 Alkaline-activated persulfate degrades 1,2-DCA via the mechanisms of oxidation and 425 dehydrochlorination and oxidation alone contributes to the removal of MTBE. Low-cost BOF slag (> 20 g L^{-1}) increases the pH of the solution and drives the 426 427 alkaline-activated persulfate reaction. No detectable amounts of heavy metals are 428 found during the experiments, which demonstrates that it is safe to use BOF slag for the alkaline activation of persulfate. The removal of 1,2-DCA and MTBE in 429 430 un-activated systems and those that are activated by NaOH and BOF obeys the 431 pseudo-first-order kinetics. Although a high pH can cause a decrease in ORP, which is 432 not favorable to the oxidation of contaminants, sulfate and hydroxyl radicals that are 433 generated by alkaline activation of persulfate increase the ORP in the alkaline solution 434 and still play an important role in the removal of contaminants. The use of 435 alkaline-activated persulfate also reduces the potential for the release of heavy metals 436 from aquifer sediments during site remediation. Since alkaline-activated persulfate 437 decreases the removal rate for MTBE, it is necessary to evaluate the performance in 438 terms of the removal of contaminants before alkaline-activated persulfate is used for 439 other target compounds. This study demonstrates a novel alkaline-activated system 440 that uses BOF slag as the activator to treat groundwater contaminants. The results of

441	this study will allow the design of an environmentally friendly and cost-effective
442	alkaline persulfate system for groundwater remediation.
443	
444	Acknowledgement
445	This research was funded by the Ministry of Science and Technology, Taiwan
446	(103-2221-E-260-001-MY3; 104-2622-E-260-003-CC3). Additional thanks are
447	extended to the personnel and graduate students at National Chi Nan University,
448	Taiwan, for their assistance throughout this project.
449	
450	References
451	1 U. S. EPA, Cleaning Up the Nation's Waste Sites Markets and Technology, EPA
452	542-R-04-015, 2004.
453	2 U. S. EPA, How to Evaluate Alternative Cleanup Technologies for Underground
454	Storage Tank Sites: A Guide for Corrective Action Plan Reviewers, EPA
455	510-R-04-002, 2004.
455 456	 510-R-04-002, 2004. 3 K. F. Chen, C. M. Kao, J. Y. Wang, T. Y. Chen and C. C. Chien, <i>J. Hazard. Mater.</i>,
455 456 457	 510-R-04-002, 2004. K. F. Chen, C. M. Kao, J. Y. Wang, T. Y. Chen and C. C. Chien, <i>J. Hazard. Mater.</i>, 2005, 125, 10-16.
455 456 457 458	 510-R-04-002, 2004. 3 K. F. Chen, C. M. Kao, J. Y. Wang, T. Y. Chen and C. C. Chien, <i>J. Hazard. Mater.</i>, 2005, 125, 10-16. 4 S. Y. Wang, Y. C. Kuo, Y. Z. Huang, C. W. Huang and C. M. Kao, <i>Environ. Pollut.</i>,

- 460 5 U. S. EPA, Integrated Risk Information System (IRIS) Chemical Assessment
- 461 Summary: 1,2-Dichloroethane Carcinogenicity Assessment (CASRN 107-06-2),
- **462** 1987.
- 463 6 I. A. R. C. (International Agency for Research on Cancer), IARC Monogr. Eval.
- 464 *Carcinog. Risks Hum.*, 1999, **71**, 501–529.
- 465 7 U. S. EPA, EPA Protocol for the Second Six-Year Review (Updated), EPA
- 466 815-B-09-002, 2009.
- 467 8 K. F. Chen, C. M. Kao, L. C. Wu and S. H. Liang, *Water Environ. Res.*, 2009, 81,
 468 687-694.
- 469 9 U. S. EPA, Drinking Water Advisory: Consumer Acceptability Advice and Health
- 470 *Effects Analysis on Methyl Tertiary-butyl Ether (MTBE)*, EPA-822-F-97-009, D.C.,
- 471 1997.
- 472 10 S. G. Huling, B. E. Pivetz, Engineering Issue: In-Situ Chemical Oxidation,
- 473 EPA-600-R-06-072, U. S. Environmental Protection Agency, 2006.
- 474 11 B. A. Kocamemi and F. Cecen, Int. Biodeterior. Biodegrad., 2009, 63, 717-726.
- 475 12 K. F. Chen, Y. C. Chang and S. C. Huang, Desalin. Water Treat., 2012, 48,
- **476** 278-284.
- 477 13 S. Ko, M. Crimi, B. K. Marvin, V. Holmes and S. G. Huling, J. Environ. Manage.,
- **478** 2012, **108,** 42-48.

479	14 I. T. R. C. (Interstate Technology & Regulatory Council), Technical and Regulatory
480	Guidance for In Situ Chemical Oxidation, 2nd Ed, 2005.

- 481 15 R. L. Johnson, P. G. Tratnyek and R. O. Johnson, Environ. Sci. Technol., 42,
- **482 9350-9356**.
- 483 16 J. Costanza, G. Otano, J. Callaghan and K. D. Pennell, *Environ. Sci. Technol.*, 44,
- 484 9445-9450.
- 485 17 G. P. Anipsitakis and D. D. Dionysiou, *Environ. Sci. Technol.*, 2004, 38,
 486 3705-3712.
- 487 18 C. Liang, C. J., Bruell, M. C. Marley and K. L. Sperry, *Chemosphere*, 55,
 488 1213-1223.
- 489 19 C. Liang, C. J., Bruell, M. C. Marley and K. L. Sperry, *Chemosphere*, 55, 1225-1233.
- 491 20 C. Liang, C. F. Huang and Y. J. Chen, *Water Res.*, 42, 4091-4100.
- 492 21 S. Y. Oh, H. W. Kim, J. M. Park, H. S. Park and C. Yoon, J. Hazard. Mater., 2009,
- **168,** 346-351.
- 494 22 I. Hussain, Y. Zhang, S. Huang and X. Du, Chem. Eng. J., 2012, 203, 269-276.
- 495 23 Y. T. Lin, C. Liang and J. H. Chen, *Chemosphere*, 2011, **82**, 1168-1172.
- 496 24 Y. Q. Gao, N. Y. Gao, Y. Deng, Y. Q. Yang and Y. Ma, Chem. Engine. J., 2012,
- **497 195–196**, 248-253.

- 498 25 S. Yang, X. Yang, X. Shao, R. Niu and L. Wang, J. Hazard. Mater., 2011, 186,
- **499 695-666**.
- 500 26 P. A. Block, R. A. Brown and D. Robinson, Novel activation technologies for
- sodium persulfate in situ chemical oxidation. *Proceedings of the 4th International*
- 502 *Conference on the Remediation of Chlorinated and Recalcitrant Compounds*, 2004.
- 503 27 A. Tsitonaki, B. Petri, M. Crimi, H. Mosbaek, R. L. Siegrist and P. L. Bjerg, Crit.
- 504 *Rev. Environ. Sci. Technol.*, 2010, **40**, 55-91.
- 505 28 H. Y. Liang, Y. Q. Zhang, S. B. Huang and I. Hussain, *Chem. Eng. J.*, 2013, 218,
 506 384-391.
- 507 29 D. Deng, L. Peng, M. Guan and Y. Kang, J. Hazard. Mater., 2014, 264, 521-528.
- 508 30 J. F. Corbin III, Mechanisms of Base, Mineral, and Soil Activation of Persulfate for
- 509 Groundwater Treatment, A dissertation submitted in partial fulfillment of the
- 510 requirements for the degree of Doctor of Philosophy, 2008.
- 511 31 R. J. Watts, Enhanced Reactant-contaminant Contact through the Use of Persulfate
- 512 In Situ Chemical Oxidation (ISCO), SERDP Project ER-1489, 2011.
- 513 32 G. D. Fang, D. D., Dionysiou, D. M. Zhou, Y. Wang, X. D. Zhu, J. X. Fan, L. Cang
- and Y. J. Wang, *Chemosphere*, 2013, **90**, 1573-1580.
- 515 33 O. S. Furman, A. L. Teel and R. J. Watts, Environ. Sci. Technol., 2010, 44, 6423-
- **516** 6428.

- 517 34 C. Liang, C. P. Liang and C. C. Chen, J, Contam. Hydrol., 106, 173-182.
- 518 35 C. Liang and H. W. Su, *Ind. Eng. Chem. Res.*, 2009, **48**, 5558-5562.
- 519 36 K. C. Huang, R. A. Couttenye and G. E. Hoag, *Chemosphere*, 2003, 49, 413-420.
- 520 37 S. G. Huling, S. Ko, S. Park and E. Kan, J. Hazard. Mater., 2011, **192**, 1484-1490.
- 521 38 D. Zhao, X. Liao, X. Yan, S. G. Huling, T. Chai and H. Tao, J. Hazard. Mater.,
- **522** 2013, **254-255**, 228-235.
- 523 39 L. de Windt, P. Chaurand and J. Rose, *Waste Manage.*, 2011, **31**, 225-235.
- 524 40 C. Shi, J. Mater. Civ. Eg., 2004, 16, 230-236.
- 525 41 D. K. Root, E. M. Lay, P. A. Block and W. G. Cutler, Investigation of chlorinated
- 526 methanes treatability using activated sodium persulfate, *Proceedings of the First*
- 527 International Conference on Environmental Science and Technology, 2005.
- 528 42 P. M. Jeffers, L. M. Ward, L. M. Woytowltch and N. L Wolfe, Environ. Sci.
- 529 *Technol.*, 1989, **23**, 965-969.
- 530 43 J. W. Washington, *Ground Water*, **33**, 415-424.
- 531 44 P. M. Jeffers and N. L. Wolfe, *Environ. Toxicol. Chem.*, 1996, **15**, 1066–1070.
- 532 45 K. A. Marshall, Chlorocarbons and Chlorohydrocarbons, Survey. In: Kirk-Othmer
- 533 Encyclopedia of Chemical Technology. Vol. 6, New York, NY: John Wiley & Sons,
- 534 Inc., 226-253, 2003.
- 46 U. S. G. S. (US Geological Survey), Description, Properties, and Degradation of

- 536 Selected Volatile Organic Compounds Detected in Ground Water— A Review of
- 537 *Selected Literature*, Open-File Report 2006-1338, 2006.
- 538 47 C. D. Church, J. F. Pankow and P. C. Tratnyek, Toxicol. Chem., 1999, 18,
- **539** 2789-2796.
- 540 48 W. Q. Zhuang, J. H. Tay, S. Yi and S. T. Tay, J. Biotechnol., 2005, 118, 45-53.
- 49 J. Liang, S. Komarov, N. Hayashi and E. Kasai, Ultrason. Sonochem., 2007, 14,
- **542** 201-207.
- 543 50 C. S. Chiou, C. F. Chang, C. T. Chang, J. L. Shie and Y. H. Chen, Chemosphere,
- 544 2006, **62**, 788-795.
- 545 51 T. T. Tsai, C. M. Kao and J. Y. Wang, *Chemosphere*, 2011, **83**, 687-692.
- 546 52 A. L. Teel, M. Ahmad and R. J. Watts, J. Hazard. Mater., 2011, 196, 153-159.

Contaminant (mM)	Persulfate (mM)	рН	$k \times 10^{3} (h^{-1})$	R ²	Final pH	Final ORP (mV)	Corrected ORP for pH 7
	- 42	4 (un-activated)	13.6	0.993	2.4	760	488
0.5 (1,2-DCA)		10	5.2	0.962	3.2	706	481
		11	9.0	0.992	11.2	356	604
		12	23.7	0.976	12.5	389	714
0.5 (MTBE)		13	42.1	0.994	13.2	449	815
		4 (un-activated)	12.6	0.991	2.7	652	398
		10	4.2	0.990	3.3	625	406
		11	5.2	0.997	11.6	278	550
		12	7.4	0.992	12.7	347	684
		13	6.6	0.997	13.3	463	835

548 Table 2. The molar ratio of TBF and TBA production to MTBE removal for un-activated and alkaline-activated persulfate systems after 120 h of

549 reaction

рН	MTBE removal (mM)	Final TBF (mM)	Final TBA (mM)	TBF + TBA (mM as TBA)	TBF/TBA production (mM)/ MTBE removal (mM)
4 (un-activated)	0.41	0.14	0.26	0.40	0.98
10	0.22	0.003	0.083	0.086	0.39
11	0.25	0	0.10	0.10	0.40
12	0.31	0	0.11	0.11	0.35
13	0.30	0	0.09	0.09	0.30

Contaminant (mM)	Persulfate (mM)	BOF slag (g L ⁻¹)	Final pH	$k \times 10^{3} (h^{-1})$	R ²
0.5		0 (un-activated)	2.4	13.6	0.993
		20	12.3	32.5	0.974
		40	12.6	34.7	0.954
(1,2 - DCA)		60	12.6	36.7	0.954
		80	12.6	33.8	0.970
	- 42	100	12.6	34.8	0.968
		0 (un-activated)	2.6	12.6	0.991
0.5		20	12.4	7.6	0.998
0.5 (MTDE)		40	12.6	7.6	0.995
(MIBE)		60	12.6	7.1	0.994
		80	12.7	7.1	0.991
		100	12.7	7.1	0.993

Table 3. The rate constants for the degradation of 1,2-DCA and MTBE by persulfate

553 Figure Captions

554	Fig. 1. (a) The degradation of 1,2-DCA and (b) the production of VC in the
555	alkaline-activated persulfate systems
556	
557	Fig. 2. (a) The degradation of MTBE, (b) the production of TBF and (c) the
558	production of TBA in the alkaline-activated persulfate systems
559	
560	Fig. 3. (a) The degradation of 1,2-DCA and (b) the production of VC in the persulfate
561	systems that are activated by slag
562	
563	Fig. 4. (a) The degradation of MTBE, (b) the production of TBF and (c) the

564 production of TBA in the persulfate systems that are activated by slag

565 Fig. 1.

567

566

(a)

570 Fig. 2.

571

572

(a)

574

573

577 Fig. 3.

582 Fig. 4.

RSC Advances Accepted Manuscript

587

(c)