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Abstract: An efficient, mild, metal-free, base-mediated intramolecular cyclization of 

N-alkyl, N-propargylic β-enaminones has been realized for the generation of 

polysubstituted pyrrole derivatives. This synthetic transformation tolerates a range of 

substituted N-alkyl, N-propargylic β-enaminones in moderate to good yields. 

 

Introduction 

Polysubstituted pyrroles are an important class of nitrogen heterocycles, which are 

often found in numerous natural products, biologically pharmaceuticals and functional 

artificial materials.
1
 Especially, highly functionalized pyrroles are occasionally 

observed as important structural units in chlorophyll, heme and pyrrole alkaloids in 

the nature.
2
 Moreover, pyrroles are also widely employed as key synthetic 

intermediates to prepare drugs and biologically active compounds (Fig. 1):
3
 CB1 

antagonist can lower food intake and body-weight gain in mice without entering the 

brain or antagonizing central CB1-dependent responses;
3a

 Hsp90 inhibitor exhibits 

nanomolar antiproliferative activities across multiple cancer cell lines;
3b

 and 

Atorvastatin (Lipitor) is used primarily for lowering blood cholesterol and for the 

prevention of events associated with cardiovascular disease.
3c 

Page 1 of 12 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



O

N

NH2

Cl

N
H

O

N

F

COOH

OH

OH

CB1 antagonist

Atorvastatin

O

N

N

N
H2N

Hsp90 inhibitor

C11H23

O

N COOH

mPGES-1 inhibitor

N
H

O

N

H3CO2S

anti-anginal

F3C

F3C

 

Fig.1 Examples of biologically important polysubstituted pyrrole derivatives 

Motivated by these practical applications, strong efforts have been inputted to 

develop efficient methodologies to construct polysubstituted pyrroles during the past 

decades.
4
 In general, the classic methods to prepare pyrrole derivatives include Knorr 

reactions,
5
 Paal-Knorr method

6
 and Hantzsch synthesis.

7
 Although transition 

metal-catalysed processes have been proven to be a highly efficient strategy to 

synthesize pyrrole derivatives,
8
 unfortunately, all these reactions have significant 

drawbacks such as limited starting materials, the use of stoichiometric amounts of 

strong bases, potential contamination of pharmaceuticals because of expensive, 

poisonous, environmentally unfriendly transition-metal reagents, harsh reaction 

conditions and formation of undesired by-products.
9
 All these negative factors 

strongly encourage scientists to develop metal-free methods to approach pyrrole 

derivatives. On the other hand, N-propargylic β-enaminone has received more 

attention and have been recognized as versatile synthetic intermediates to construct 

heterocyclic molecules
10

 including pyrroles,
11

 dihydropyrroles,
12

 pyridines,
13

 

dihydropyridines
14

 and 1,4-oxazepines.
15

 In 2008, Cacchi et al reported the selective 

cyclization of N-propargylic β-enaminone in to pyrroles by using an excess amount of 

base via 5-exo-dig cyclization (Scheme 1, eq 1).
11a

 Au(I)-catalyzed amino-Claisen 

rearrangement of N-tosyl, N-propargylic β-enaminones to pyrroles was developed by 

Saito et al (Scheme 1, eq 2).
11b

 Xin et al described that the similar structure, 

3-aza-1,5-enyne, was selectively transformed into two kinds of functionalized 
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pyrroles via regioselective sulfonyl group migration under thermal or base conditions 

(Scheme 1, eq 3).
11c

 It is worthy to note that all of these works seldom employed 

N-alkyl, N-propargylic β-enaminones as building blocks for the synthesis of 

pyrroles.
11d

 Therefore, the development of new kind of N-substituted, N-propargylic 

β-enaminones to construct functionalized and polysubstituted pyrroles is of great 

interest. Herein, we present the novel base-promoted intramolecular cyclization of 

N-alkyl, N-propargylic β-enaminones to prepare polysubstituted N-alkyl pyrroles 

without using transition-metal reagents as catalyst (Scheme 1, eq 4). 
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Scheme 1 Conversion of substituted N-propargylic β-enaminones to pyrroles 

 

Results and discussion 

In our initial attempt, 3a (3-(benzyl(3-phenylprop-2-yn-1-yl)amino)-1-phenyl- 

but-2-en-1-one) was selected as a model substrate for the intramolecular cyclization to 

prepare the corresponding pyrrole derivative 4a. Initially, the cyclization reaction of 
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3a in the presence of NaOH or KOH with DMF as solvent at room temperature, only 

a trace of the cyclized products were formed (Table 1, entries 1 and 2). Importantly, 

the desired pyrrole 4a was successfully obtained in 49% yield when the base was 

changed to stronger base MeONa (Table 1, entry 3). Encouraged by this result, other 

strong bases, such as EtONa, t-BuOLi, t-BuONa, t-BuOK and NaH were screened 

(Table 1, entries 4−8). It was found that t-BuOK in DMF for 30 minutes gave the best 

result, affording pyrrole 4a in 69% yield (Table 1, entry 7). We then tested the effect 

of polar aprotic solvents on the intramolecular cyclization of 4a in the presence of 

t-BuOK (Table 1, entries 9−15). Among the evaluated solvents, only THF gave a 

comparable result (Table 1, entry 11). Protonic solvent t-BuOH was proven to be 

ineffective for this transformation and the desired pyrrole 4a was only obtained in 

20% yield (entry 16). Furthermore, the amounts of t-BuOK were aslo investigated and 

all the reactions could precede smoothly, albeit with slightly decreased yields (Table 1, 

entries 17 and 18). Finally, lower temperature (0
°
C) has been employed to conduct 

this reaction. The result suggests that a relatively longer reaction time is needed at low 

temperature (0
°
C) than at rt (Table 1, entry 19). 

 

Table 1 Optimization of the reaction conditions for the synthesis of 4a
a
 

 

entry base (equiv) solvent time (min) yield
b
 (%) 

1 NaOH (1.0) DMF 60 traces 

2 KOH (1.0) DMF 30 traces 

3 MeONa (1.0) DMF 30 49 

4 EtONa (1.0) DMF 30 48 

5 t-BuOLi (1.0) DMF 30 30 

6 t-BuONa (1.0) DMF 30 60 

7 t-BuOK (1.0) DMF 30 69 

8 NaH (1.0) DMF 60 traces 

9 t-BuOK (1.0) DMAC
c
 30 51 

10 t-BuOK (1.0) DMSO 30 53 

11 t-BuOK (1.0) THF 30 65 

12 t-BuOK (1.0) 1,4-dioxane 30 59 

13 t-BuOK (1.0) DCM 30 55 

14 t-BuOK (1.0) CH3CN 30 60 

15 t-BuOK (1.0) toluene 60 nr
d
 

16 t-BuOK (1.0) t-BuOH 30 20 

17 t-BuOK (2.0) DMF 30 58 
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18 t-BuOK (0.5) DMF 30 48 

 19
e
 t-BuOK (1.0) DMF 120 60 

a
Reaction conditions: 3a (0.5 mmol 1.0 equiv), base (0.5-2.0 equiv), in 

3 mL solvent, rt. 
b
Isolated yields.

 c
DMAC: N, N-dimethylacetamide. 

d
nr: no reaction. 

e
Reaction performed at 0 

°
C.  

 

On the basis of the optimal reaction conditions established (Table 1, entry 8), the 

generality of this reaction and the scope of t-BuOK-promoted intramolecular 

cyclization of various substituted pyrroles have been tried and all results are 

summarized in Table 2. Neutral, electron-donating, or electron-withdrawing groups on 

the ring of the aromatic β-enaminones could be tolerated to deliver the corresponding 

pyrrole derivatives (4a-4i) in 55−72% yields. The desired product 4j could be 

obtained only in 30% yield and with 35% yield of isomeric product 4j´́́́(Scheme 2, eq 

1) under the same conditions when substrate with terminal alkyne was employed. By 

the way, the structure of pyrrole 4j was further confirmed by X-ray crystal structure 

analysis (Fig. 2). Aryl group substitutions on N-propargylic β-enaminones substrates 

with internal alkyne proceed smoothly to give pyrroles (4k-4m and 4p-4t) in excellent 

yields (60−74%), regardless of electron-donating and weak electron-withdrawing 

groups on the ring. In contrast, substrates with stronger electron-donating groups 

(4-CF3-C6H4, 4-Acetyl-C6H4 and 3,5-Cl2-C6H3) provided products in relatively lower 

yields. Pleasingly, substrates with naphthalene and thiophene substituents could be 

employed successfully in this system, affording 4v and 4w in 66% and 67% yields, 

respectively. Varying the β-substituted groups from methyl to ethyl and aryl led to full 

substrate conversions with product 4x-4z in high yields. The N1 position including 

4-methoxybenzyl, 4-chlorobenzyl phenethyl, n-butyl and t-butyl groups also worked 

well, furnishing pyrroles in 62-69% yields.  

 

Table 2 Scope of the synthesis of pyrrole derivatives
a,b

 

 

Page 5 of 12 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



O

N

Bn

Ph

R1

4a R1 = H, 69%

4b R1 = Me, 60%

4c R1 = Ph, 65%

4d R1 = F, 55%

4e R1 = Cl, 72%

O

N

Bn

Ph

O

4f 59%

O

N

Bn

PhR1

4g R1 = Me, 58%

4h R1 = Cl, 62%

O

N

Bn

Ph

Cl

Cl

4i 61%

Ph

O

N

Bn

R2
4k R2 = Me, 65%

4l R2 = OMe, 60%

4m R2 = Cl, 68%

4n R2 = CF3, 42%

4o R2 = Acetyl, 40%

Ph

O

N

Bn

R2

4p R2 = Me, 61%

4q R2 = Cl, 65%

Ph

O

N

Bn

R2

4r R2 = Me, 74%

4s R2 = Cl, 71%

Ph

O

N

Bn

4x 67%

Ph

O

N

Ph

4cc 62%

Ph

O

N

Ph

O 4aa 69%

Ph

O

N

Ph

Cl 4bb 65%

4t 63%

Ph

O

N

Bn

Cl

Cl

4u 43%

Ph

O

N

Bn

4v 66%

Ph

O

N

Bn

S

4w 67%

Ph

O

N

Bn

Ph

Ph

O

N

Bn

4j 30%

Ph

O

N

Bn

R3

4y R3 = H, 70%

4z R3 = Cl, 67%

Ph

O

N

R4

Ph

4dd R4 = n-Bu 66%

4ee R4 = t-Bu 64%

Ph

 
a
Reaction conditions: 3 or 2a (0.5 mmol 1.0 equiv), t-BuOK (0.5 mmol, 1.0 equiv), in 
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Fig. 2 ORTEP diagram of compound 4j (CCDC 1470929) 

To investigate the possible mechanism of this transformation, a series of control 

experiments were carried out, and the results are shown in Scheme 2. When 

subjecting substrate 2a with terminal alkyne under the standard conditions, two 

products 4j and 4j´́́́were generated in 30% and 35% yield (Scheme 2, eq 1). The 4j´́́́

was probably due to an attack of the anion generated in situ from the CH3 at the 

β-position on the carbon of allene (5) generated in the presence of t-BuOK(Scheme 

3) . Moreover, only a trace amount of decrease in yield was detected when 1.2 equiv 

of TEMPO (2,2,6,6-tetramethylpipridine-N-oxyl), a radical inhibitor, was introduced 

into the standard reaction system (Scheme 2, eq 2). Furthermore, when the 67% 

deuterated substrate 3a-d was used to react under the optimal condition, no deuterium 

incorporation was observed at the methylene group (Scheme 2, eq 3). This proves that 

the protonation of the anion is carried out by the hydrogen of α-carbon and not by the 

CH3 group at the β-position in 2a or 3a.  
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Scheme 2 Preliminary mechanistic studies 
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On the basis of the above-mentioned results, a plausible mechanism is proposed 

in Scheme 3. First, the propargyl moiety of 3 or 2a would transform into the allene 

intermediate 5 
19

 in the presence of t-BuOK. Subsequently, a 5-exo-dig cyclization via 

an intramolecular nucleophilic attack to the allene bond would take place.
20

 The 

proton of intermediate 6 at α-position would be transferred intramolecularly to furnish 

the final pyrroles 4. 
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Scheme 3 Plausible reaction mechanism for the formation of polysubstituted pyrroles 

4 

Finally, we converted the tetrasubstituted pyrrole 4a to the corresponding oxime 

4a-1 (80% yield) through a condensation process with hydroxylamine 

hydrochloride.
16

 The oxidation of pyrrole 4a with Dess-Martin periodinane proceeded 

to give the γ-lactam 4a-2 in 40% isolated yield.
17

 Meanwhile, pentasubstituted pyrrole 

4a-3 was obtained in 86% yield by the introduction of an aldehyde group at the 

5-position
18

 (Scheme 4). These derivatives could be further used for building more 

complex organic molecules. 

 

Scheme 4 Synthetic application for this transformation 

 

Experimental 

General experimental information 

All of the chemicals were obtained from commercial sources or prepared according to 

standard methods. 
1
H, 

19
F and 

13
C NMR spectra were recorded using a Bruker AV 400 

MHz NMR spectrometer. TMS was used as an internal standard. Chemical shifts are 

reported in ppm downfield from CDCl3 (δ = 7.26 ppm) for 
1
H NMR and relative to 
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the central CDCl3 resonance (δ = 77.0 ppm) for 
13

C NMR spectroscopy. Multiplicities 

were reported as follows: singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), 

dd (doublet of doublets) and dt (doublet of triplets). Coupling constants were reported 

in Hertz (Hz). Melting points were measured on a RY–I apparatus and uncorrected. 

HRMS were recorded on an IonSpec FT-ICR mass spectrometer with Electron Spray 

Ionization (ESI) resource. 

 

Typical procedure for the preparation of 1,2,3,4-tetrasubstituted pyrroles (4) 

A mixture of N-alkyl, N-propargylic β-enaminones 3 or 2a (0.5 mmol, 1.0 equiv), 

t-BuOK (56.1 mg, 0.5 mmol, 1.0 equiv) and DMF (3 mL) was stirred at room 

temperature for 30 min. After this time, ethyl acetate was added and the resulting 

mixture was washed with a saturated NH4Cl solution and subsequently with a 

saturated NaCl solution. The organic phase was separated, dried over Na2SO4, filtered 

and concentrated under reduced pressure. The residue was purified by 

chromatography (silica gel, hexane/ethyl acetate = 100:1) to give desired compound 

4. 

Conclusions 

In conclusion, a novel strategy has been developed for the synthesis of tetrasubstituted 

pyrroles in moderate to good yields from N-alkyl, N-propargylic β-enaminones in the 

presence of t-BuOK under mild reaction conditions. Many functional groups have 

been tried to produce a series of synthetically relevant pyrroles via an intramolecular 

5-exo-dig cyclization. This method is very efficacious due to its metal-free mediation 

and high atom economy. 
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An efficient, mild, metal-free, base-mediated intramolecular cyclization of N-alkyl, 

N-propargylic β-enaminones has been realized for the generation of polysubstituted 

pyrrole derivatives. 
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