This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Perovskite as nickel catalyst precursor – Impact on catalyst stability on xylose aqueous-phase hydrogenation

Precursors materials with formula mater La$_x$Ce$_{1-x}$Al$_2$O$_3$Ni$_2$O$_2$ (x=0.0, 0.1, 0.5, 0.7) were successfully used as precursors to prepare Ni nanoclusters to be used as catalysts in the hydrogenation of xylose to xylitol. For the Ce free and lower Ce content (x=0.0, 0.1) the perovskite structure was obtained, whereas for higher Ce content (x=0.5, 0.7) an ordinary CeO$_2$-La$_2$O$_3$ solid dissolution with no perovskite structure were obtained. Under reduction conditions, the perovskite structure lead to ~30% of metallic Ni without loss of the perovskite structure (x=0.0, 0.1) and the CeO$_2$-La$_2$O$_3$ solid dissolution allows a Ni reduction of ~40% of Ni (x=0.5, 0.7). As expected, the similar reduced Ni content do not show large differences in the aqueous-phase xylose hydrogenation products distribution, meanwhile, the larger differences in the precursors; perovskite structure (x=0.0, 0.1) and solid dissolution (x=0.5, 0.7) point out the importance of the perovskite structure in the remarkable leaching-resistant showed by Ni perovskite-precursor (x = 0.0; 0.1) catalysts, showing no Ni leaching at all over 6 h of reaction in aqueous medium.

Introduction

Liquid phase hydrogenation of aldoses on porous metal catalyst is an important process in the synthesis of polyhydric alcohols, which have long been used as natural sweetening agents in the food industry. Xylitol, obtained by the hydrogenation of xylose, is a sweetener molecule, which has been increasingly commercialized due to its attractive properties as high solubility in water, stability upon storage and do not caramelize at elevated temperatures. Moreover, the sweetening capacity of xylitol exceeds that of saccharose and do not caramelize at elevated temperatures. Moreover, the sweetening capacity of xylitol exceeds that of saccharose by 20-25% with no insulin requirement.

Xylitol is typically produced by an isothermal hydrogenation process of xylose aqueous solutions in a triphasic batch reactor or a triphasic dispersed catalyst. Wisniak et al. studied different metal catalysts in the hydrogenation of glucose, fructose and xylose, reporting that the activity of the metals decreases in the order Ru>Ni>Rh>Pd. The performance of Ni-based catalysts stands out due to their lower price compared noble metals and that they can be efficiently used in batch reactors, with high activity and selectivity to polyalcohols. Nevertheless, the major drawback of Raney Ni catalysts is their large and fast deactivation due to accumulation of organic impurities (from the starting material) on the catalyst surface, leading to poisoning of the active sites, and metal leaching. These technical hurdles motivate the pursuit of alternative catalysts by changing their chemical formulation and/or their surface architecture through different active surface site assemblies. It can be accomplished by exploring different synthesis procedures and catalyst precursors with distinctive topology or flexible crystalline structure.

Perovskite-type oxides are crystalline structures, represented by the general formula ABO$_3$, where A is a large cation and B is a small cation of the d-transition series. A multitude of chemical compositions is possible since a large number of chemical elements may be accommodated at both A and B positions of such flexible structure. Furthermore these crystalline structures have a large stability in oxidant atmosphere; meanwhile they can be total or partially reduced in reductive atmosphere. Due to such interesting properties, they have been extensively exploited as catalyst precursors for many reactions. The main advantage of perovskite-like oxide as catalyst precursor is the possible formation of small and uniform particle size catalyst, which could provide a distinguished catalytic performance. Ni-containing perovskites have been widely investigated as catalyst precursor for a broad variety of reactions. Natural gas reforming, water-gas shift reaction, methane combustion and soot oxidation can be listed just to mention a few processes. In the case of LaNiO$_3$ perovskite, the reducible element (Ni$^{2+}$) in the perovskite structure can be easily reduced to metallic Ni dispersed on La$_2$O$_3$ under appropriate H$_2$ reduction condition. In hydrogenation reactions, one strategy to tailor catalyst selectivity is the employment of promoters, which can also be accommodated into perovskite catalyst precursor structure leading to a well-
dispersed system. Ceria, a well-known promoter with outstanding redox and acid-base properties, has been exploited in this regard.14,15

In this work, perovskite structures were investigated as a strategy to stabilize Ni nanoclusters in metal catalysts for aqueous-phase hydrogenation of xylose to xylitol. All catalyst presented a nominal Ni loading of 20 wt%, which was ensured by adding Al alongside in B position. Different Ce loadings were considered to partially substitute La in A position. A full structural and textural characterization of synthesized La$_{1-x}$Ce$_x$Al$_{0.18}$Ni$_{0.82}$O$_3$ ($x=0.0, 0.1, 0.5, 0.7$) structures was carried out to explain the activity and selectivity of the oxidized and reduced catalysts.

Experimental

Preparation of the catalysts

La$_{1-x}$Ce$_x$Al$_{0.18}$Ni$_{0.82}$O$_3$ ($x=0.0, 0.1, 0.5, 0.7$) materials, all of them with 20 wt% of nominal Ni loading and different Ce and La contents, were prepared by self-combustion method.16 Glycine (H$_2$NCH$_2$CO$_2$H), used as ignition promoter, was added to an aqueous solution of metal nitrates with the appropriate stoichiometry to get a NO$_3$-N$_2$H$_2$ (molar ratio) = 1. The resulting solution was slowly evaporated until a vitreous gel was obtained. The gel was heated up to 265°C, temperature at which the ignition reaction occurs producing a powdered precursor. After the combustion process, the powders were ground and subjected to air thermal treatment calcination to eliminate the remaining carbon and obtain the perovskite structure. Solids were crushed and sieved to obtain the required particle size (<200 µm) and then finally calcined at a heating rate of 1°C min$^{-1}$ up to 700°C and maintained for 5 h. Since hydrogen was used to activate the solids prior to catalytic activity measurements, the calcined perovskites were first reduced under pure hydrogen flow (50 mL min$^{-1}$) at 500°C for 2 h to carry out ex-situ characterization. After reduction, the reactor was purged with nitrogen, cooled down until room temperature and then placed in a cryostatic bath (a mixture of liquid nitrogen and isopropyl alcohol at -70°C). Once reached that temperature, a flow of 5% O$_2$/N$_2$ was admitted into the reactor for 1 h. Finally the bath was removed and the catalysts were stabilized at room temperature for 1 h. These materials are referred to as Ni-reduced solids hereinafter.

Samples were labeled according to their chemical composition: $x=0.0$ to La$_{1-x}$Ce$_x$Al$_{0.18}$Ni$_{0.82}$O$_3$; $x=0.0$ to La$_{0.5}$Ce$_{0.5}$Al$_{0.18}$Ni$_{0.82}$O$_3$; $x=0.5$ to La$_{0.5}$Ce$_{0.5}$Al$_{0.18}$Ni$_{0.82}$O$_3$; $x=0.7$ to La$_{0.3}$Ce$_{0.7}$Al$_{0.18}$Ni$_{0.82}$O$_3$.

Characterization

Chemical analysis was conducted by atomic absorption spectrometry (AAS) using a Perkin Elmer instrument 3100. Samples were heated up in an open Teflon beaker with 2.5 mL of HNO$_3$, 2.5 mL of HCl and 5.0 mL of HF (all in high concentration). Once samples were dissolved, HF was evaporated to minimum volume. Finally, a spatula tip of H$_3$BO$_4$ and up to 50 mL total volume of water was added in a plastic volumetric flask.

The specific areas were calculated using the BET method from the nitrogen adsorption isotherms obtained on a Micromeritics ASAP 2010 apparatus at -196°C. Samples were previously pretreated at 150°C under nitrogen atmosphere for 2 h to dehydrate and clean catalysts surface from adsorbed gases, followed by vacuum. Isotherms were recorded taking 25 relative pressure points ranging from 0.0-1.0 for adsorption and 23 for desorption process.

Temperature programmed reduction (TPR) experiments were performed in a TPR/TPD 2900 Micromeritics system with a thermal conductivity detector (TCD). Prior to the reduction experiments the samples (50 mg) were thermally treated under air stream at 700°C to remove any contaminants on catalysts surface. The reduction profiles were recorded under 10% H$_2$/N$_2$ flow at 25 mL min$^{-1}$ at a heating rate of 5°C min$^{-1}$ from room temperature to 1000°C.

NH$_3$-TPD experiments were carried out on the reduced samples (2 h at 500°C) on a TPR/TPD 2010 apparatus, saturating the catalyst surface at 100°C with ammonia pulses. Then the sample was cooled down to room temperature and, once the baseline was restored, the temperature linearly increased up to 500°C.

The XPS measurements were performed using a VG Escalab 200R electron spectrometer equipped with a hemispherical electron analyzer and Mg Kα (1253.6 eV) X-ray source. Prior to analysis, the samples were reduced in situ under hydrogen at 500°C for 1 h and transported to the analysis chamber without contact with air. Charging effects on the samples were corrected by taking the C1s peak of adventitious carbon at 284.8 eV. The peaks were decomposed into several components assuming a Gaussian/Lorentzian shape.

Catalytic activity

The catalytic activity evaluation in aqueous-phase hydrogenation of xylose was performed in a semi-batch Parr reactor at conditions (catalyst weight and agitation speed) to ensure absence of any transport limitations, evaluated by the Weisz-Prater parameter. Catalysts were reduced previous to the reaction in a conventional fixed bed reactor at 36 mL min$^{-1}$ of H$_2$ and heating of 5°C min$^{-1}$ up to 500°C and maintained at this temperature for 2 h. Afterwards, reducing gas was switched to nitrogen stream and catalyst was cooled down to room temperature. Preliminary reaction runs were performed to settle suitable reaction conditions. A selected sample ($x=0.1$ catalyst) was used and reaction temperature and H$_2$ pressure in the reactor were systematically modified. High xylose conversion to xylitol and low secondary product formation were taken into consideration to evaluate the catalyst performance of the reaction carried out at three different experimental conditions: i) 130°C and 25 bar of H$_2$; ii) 100°C and 25 bar of H$_2$; iii) 100°C and 15 bar of H$_2$. Hydrogenated products were the
main compounds when reaction was performed at 100°C and 25 bar of H₂, therefore, those were the operation conditions used to assess the behaviour of the synthesized samples.

In a typical run, the reactor was fed with 40 mL of water and 100 mg of catalyst, sealed and purged five times with N₂ and at last with H₂ to avoid contamination with other gases. The reactor was heated up to 100°C and stirring was set at 600 rpm. Once reached the desired temperature, 40 mL of xylose aqueous solution was admitted into the reactor, providing a starting reaction medium at 0.083 mol xylose L⁻¹. Hydrogen pressure was adjusted and kept constant at 25 bar. Samples were taken periodically during the reaction and analysed by a Waters HPLC chromatograph model Alliance e2695, coupled to a PDA detector model 2998 at wavelength of 280 nm and a RID Waters HPLC chromatograph model Alliance e2695, coupled to a PDA detector model 2998 at wavelength of 280 nm and a RID.

Xylose conversion and product selectivity were calculated as:

\[\text{Xylose conversion} = \frac{[\text{xylose}]_{i} - [\text{xylose}]_{f}}{[\text{xylose}]_{i}} \]

\[\text{Selectivity} = \frac{[\text{product}]_{i} - [\text{xylose}]_{f}}{[\text{xylose}]_{i}} \]

Results and Discussion

Atomic Absorption Spectrometry (AAS)

The elemental composition of Ni in the prepared solids determined by AAS is compiled in Table 1. The obtained values are similar to the nominal one (20 wt% Ni), indicating no metal loss during synthesis. For all samples, aluminium content was 1.8 wt%, added as a non-reducible element to ensure the required 20 wt% of Ni in the perovskite formulation.

X-ray diffraction (XRD)

The XRD patterns of the calcined solids shown in Figure 1a indicate significant differences in the crystalline phases as lanthanum is gradually partially substituted by cerium. Ce-free

Table 1. Ni loading, specific area (S_{BET}) and total acidity of LaₓCeₓAl₂₋ₓNiₓO₃ (x=0.0, 0.1, 0.5, 0.7) samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>%Ni*</th>
<th>S_{BET} (m²g⁻¹)</th>
<th>Total acidity (mmol g⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x=0.0</td>
<td>19</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>x=0.1</td>
<td>21</td>
<td>21</td>
<td>15</td>
</tr>
<tr>
<td>x=0.5</td>
<td>19</td>
<td>16</td>
<td>30</td>
</tr>
<tr>
<td>x=0.7</td>
<td>20</td>
<td>17</td>
<td>13</td>
</tr>
</tbody>
</table>

*: nominal content 20 wt%
Those lower values may be explained by a sintering process upon reduction since the surface areas are almost equal to the geometrical ones as they do not possess internal microporosity.

Temperature programmed reduction (TPR)

As the main objective of this work is the preparation of stable nickel nanoclusters as chemoselective catalysts for hydrogenation of xylene to xylitol, it is of great importance to define the minimum reduction temperature to obtain reduced nickel nanoparticles without sintering. Complete reduction of non-substituted LaNiO$_3$ perovskite structure has been reported in two well-defined reduction steps; Ni$^{3+}$ to Ni$^{2+}$ at around 350°C followed by Ni$^{2+}$ to Ni° at about 470°C.\(^{10,18,24}\) TPR profiles of calcined materials (Figure 2) showed different reduction peaks, as it can be expected for complex systems. Taking into account that reduction of Ni$^{3+}$ to Ni$^{2+}$ in LaNiO$_3$ occurs at 350°C, in LaAl$_{0.18}$NiO$_{3-\delta}$ (x=0.0) perovskite, the first reduction peak recorded at lower temperatures (250°C) can be assigned to the partial reduction of the perovskite structure with formation of La$_2$Ni$_2$O$_6$\(^{35}\) and NiAl$_2$O$_4$\(^{36}\) spinels, and the small reduction peak at 320°C can be associated to the reduction of surface OH- groups and adsorbed oxygen.\(^{37}\) As for x=0.1 solid, even though same reduction peaks are seen, they are shifted to lower temperatures. Furthermore, peaks related to CeO$_2$ phase reduction are also seen.\(^{17}\) As regarding higher Ce content (x=0.5; 0.7) samples, TPR profiles (Figure 2) show only one asymmetrical and broad reduction peak corresponding mainly to the reduction of NiO segregated on CeO$_2$-La$_2$O$_3$ solid solution.\(^{28}\) However, CeO$_2$ bulk reduction could not be ruled out.\(^{7,29}\) From these results, a reduction temperature of 500°C was selected for all solids, which corresponds to the temperature at which Ni reduction is starting for Ce-free perovskite (x=0.0).

This mild reduction condition leads to Ni reduction but without the complete destruction of perovskite structure, aiming at maximizing metal dispersion while avoiding Ni sintering.

Indeed, after the reduction treatment, XRD patterns of the Ni-reduced solids (Figure 1b) do not show significant differences when compared to the corresponding calcined samples. A different behavior has been reported for LaNiO$_3$ and La$_{0.9}$CeNiO$_3$ perovskites elsewhere\(^{6,8,21,24}\), and a complete loss of the perovskite structure was evidenced under hydrogen at 500°C forming Ni metal nanoparticles supported on a La$_2$O$_3$ matrix. Such an apparent discrepancy is indeed an important finding, which might indicate that the presence of only ~2 wt% of aluminum may avoid the destruction of the perovskite structure. At larger Ce contents (x=0.5; 0.7), reductive atmosphere does not produce any structural difference in CeO$_2$-La$_2$O$_3$ solid solution\(^{35}\) with no sensitive effect of Al content.\(^{6}\)

Ammonium temperature programmed desorption (NH$_3$-TPD)

The measurement of acid strength by NH$_3$-TPD assumes that the temperature of maximum desorption rate is a rough measure of the acid strength of the sorption sites. An acid strength distribution is thus usually proposed considering both NH$_3$ physically adsorbed and hydrogen-bound at T≤250°C\(^{31}\) and acid site-bound NH$_3$ at T>250°C. Particularly it is generally accepted to classify the acid sites as i) weak (T<250°C) and moderate to strong (T>250°C) acid sites.\(^{32}\)

NH$_3$ desorption profiles shown in Figure 3 indicate a wide distribution of acidic site strength on the surface of Ni-reduced solids. The first desorbed NH$_3$ peak at temperatures ≤150°C observed for all solids is attributed to physically adsorbed as previously discussed.\(^{31}\) The second broad unresolved NH$_3$ desorption peak recorded for both x=0.0 and 0.1 Ni-reduced catalysts is similar to the supported alumina catalysts.\(^{33}\) Upon Ce substitution, it is observed that for 6 wt% of Ce loading (x=0.1) almost the same TPD pattern is seen when compared to Ce free catalyst. Accordingly, only one of the strong acidic site peak at around 350°C is flattened in the x=0.1 catalyst. The total amount of desorbed NH$_3$ was estimated with a confidence level of 94% by deconvoluting the peaks and the data is also summarized in Table 1.
As it can be seen, there is no large difference in the total amount of acid sites upon Ce substitution for x=0.5 catalysts. For the catalyst with larger substitution degree a small drop in total acidity is detected according to previous discussions where a large presence of Ce covers acid sites.

X-ray photoelectron spectroscopy (XPS)

The Ni 2p core-levels spectra for the Ni-reduced solids are shown in Figure 4, (La 3d, Ce 3d and O 1s in Figure 52) and their respective binding energies (BE) compiled in Table 2. The most intense peak of La3d½ shows two components at 834.3 eV and 838.1 eV, both attributed to La3+.34,35 A doublet followed by a satellite peak is seen for Ni 2p2/3. The first peak of the doublet is attributed to Ni4+, the largest peak at 852.5±0.1 eV39, and the second one and the satellite peak to oxidized (Ni5+ and Ni3+) nickel species. It is not possible to distinguish between those two oxidic species due to their close BE, in line with previously assigned crystalline phases as identified by XRD. Likewise the upshift of 529.7 eV for x=0.5 and 0.7 solids has been reported for oxygen species with cations in lower oxidation state,44,45 in agreement with the shift of BE of the Ni 2p3/2 values.

Table 3 displays the surface atomic composition and surface Ni content, calculated from the peaks at 852 eV for the Ni-reduced samples. Unfortunately, the loss of oxygen produced during reduction treatment does not allow informing the nominal ratios. The expected decrease in La/La+Ce and increase in the Ce/La+Ce upon Ce content is seen. With regard to Al/La+Ce and Ni/La+Ce ratio, the nominal values for the calcined precursors were 0.18 and 0.82 respectively; therefore much lower values in the Ni/La+Ce ratio are seen. The decrease in surface Ni content upon Ce addition is in line with XRD results regarding the contraction of ceria crystal lattice by insertion of Ni3+ (0.056 nm) or Ni4+ (0.069 nm) in CeO2 upon reduction treatment.47 An opposite trend observed to other reduced perovskite-type structures, where B-site cations are the ones which are surface enriched.48,49

![Figure 4: XPS spectra for Ni 2p3/2 for the Ni-reduced catalysts.](image)

Table 2. Core levels BE (eV) of La 3d½, Ce 3d½, Ni 2p½ and O 1s of La1-xCe(x)Al1-xNiAl0.2O2 (x=0.0, 0.1, 0.5, 0.7) reduced catalysts.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>La 3d½</th>
<th>Ce 3d½</th>
<th>Ni 2p½</th>
<th>O 1s</th>
</tr>
</thead>
<tbody>
<tr>
<td>x=0.0</td>
<td>834.3</td>
<td>-</td>
<td>852.5</td>
<td>529.3</td>
</tr>
<tr>
<td>x=0.1</td>
<td>834.4</td>
<td>852.4</td>
<td>855.7</td>
<td>531.5</td>
</tr>
<tr>
<td>x=0.5</td>
<td>834.3</td>
<td>852.6</td>
<td>855.4</td>
<td>531.5</td>
</tr>
<tr>
<td>x=0.7</td>
<td>834.4</td>
<td>855.6</td>
<td>852.6</td>
<td>529.8</td>
</tr>
</tbody>
</table>

*nominal content of 4.1×10²⁰ at g⁻³

The lowest value of reduced Ni surface content (Table 3) for the Ce free Ni-reduced catalyst can be explained considering the higher thermal stability of this perovskite upon ≈2 wt% aluminium insertion (Fig 3). It is proposed that the higher stability of the as-synthesized La1-xAl1-xNi0.2O2 perovskite as well as that of La2NiO4 25 and NiAl2O4 26 reported spinels, which would collapse when the reduction temperature reaches 600°C, does not allow to increase the concentration of surface reduced nickel at the reduction temperature of 500°C.
used for both x=0.0 and x=0.1, obtaining thus a Ni surface extent of ~30%. As concerning CeO$_2$-La$_2$O$_3$ solid solution precursors (x=0.5; 0.7), the reported strong metal support interaction (SMSI) effect for Ni/CeO$_2$ catalysts30 is likely to explain the reducibility extent of Ni of ~36 to 40%.

Due to the lower specific surface of the Ni-reduced solids it can be extrapolated that similar surface and bulk composition would be present.51 Therefore, considering the surface atomic composition (Table 2) and atomic ratios (Table 3), it can be possible to estimate the metallic Ni$^+$ content values. The atomic Ni$^+$ g$^{-1}$ of reduced sample displayed in Table 3 will be used to the further calculate TOF as an intrinsic measurement of catalytic activity on aqueous-phase hydrogenation of xylose (Table 4).

Catalytic activity

The experimental results of total conversion and products distribution of xylose hydrogenation are depicted in Figure 5a and Figure 6, respectively. Additionally, the successfully fit of the experimental data with a pseudo first order reaction3,4 is displayed in Figure 5b, allowing to calculate the global pseudo first order constant. The obtained values as well as the initial reaction rate, TOF values and selectivity are shown in Table 4.

Table 4. Global pseudo first order constant (kglobal), initial reaction rate (vo), TOF and xylitol selectivity of La$_{1-x}$Ce$_x$Al$_{0.18}$Ni$_{0.82}$O$_3$ (x=0.0, 0.1, 0.5, 0.7).

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>k$_{global}$ (min$^{-1}$ g$^{-1}$)</th>
<th>vo (mmol L$^{-1}$ min$^{-1}$)</th>
<th>TOF (min$^{-1}$)</th>
<th>$S_{xylitol}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x=0.0</td>
<td>0.068</td>
<td>4.6</td>
<td>1.42</td>
<td>39</td>
</tr>
<tr>
<td>x=0.1</td>
<td>0.139</td>
<td>6.9</td>
<td>2.15</td>
<td>35</td>
</tr>
<tr>
<td>x=0.5</td>
<td>0.148</td>
<td>7.6</td>
<td>2.06</td>
<td>39</td>
</tr>
<tr>
<td>x=0.7</td>
<td>0.084</td>
<td>5.7</td>
<td>1.39</td>
<td>51</td>
</tr>
</tbody>
</table>

*selectivity at 98% conversion.

It can be seen an increase in the global constant and reaction rate upon Ce content up to x=0.5 catalyst and a further decrease for the Ni-reduced catalyst with the larger Ce loading (x=0.7).

Selectivity to xylitol, on the other hand, did not show significant changes up to x=0.5 while an increase was seen over the sample with the highest content (x=0.7). Regarding product distribution during reaction time, it was seen, as expected, that hydrogenation reaction is the preferred pathway, with large formation of xylitol along with ethylene glycol and glycerol. To assess the genesis of those lower carbon chain polyalcohols and infer whether they are formed straight from xylose in a parallel reaction or from xyitol hydrogenolysis as a cascade reaction, blank experiments were carried out at the same experimental conditions, but feeding the reactor with xylitol or glycerol instead of xylose. No conversion could be observed both cases, indicating that under the experimental reaction conditions (reductive atmosphere and presence of metallic sites) xylose hydrogenation is indeed the preferential reaction route and no consecutive reactions seem to take place. It is thus proposed that xylose undergoes retro-aldol condensation to produce both glycaldehyde and glyceraldehyde, which can be rapidly hydrogenated to ethylene glycol and glycerol, respectively.

Such a side reaction pathway has indeed been previously claimed by some authors elsewhere.$^{52-56}$ The production of these side reaction products is attributed to metallic sites promoted by basic sites.$^{55-60}$ One should also bear in mind that Lewis acid sites can isomerise xylene to xylulose52 and in presence of Brønsted acid sites, xylose and xylulose may produce furfural by dehydration followed by the aldehyde hydrogenation to furfuryl alcohol on metallic sites.53 Moreover, it has been also reported that highly dispersed metallic sites closer to acid sites are able to produce furfuryl alcohol in only one step.53 Based on the above considerations and the observed trends in the formation of xylulate and furfuryl alcohol in the experiments reported in this work (Figure 6) - xylulose reaches a maximum concentration and then consistently decreases when furfuryl alcohol is formed - a simplified reaction pathway is proposed as shown in Scheme 1.
According to our reaction pathway scheme, k_1, k_2, k_3 and k_4 correspond to parallel reactions steps from xylose, while k_5 represents a consecutive reaction from xylulose to furfuryl alcohol. The specific pseudo first order reaction constants for each step were calculated and are collected in Table 5. The higher values of k_1, k_3 and k_4, all corresponding to hydrogenation reactions, confirm the hydrogenation character of these catalysts. This finding is also supported by k_5 since only k_2 corresponds to a reaction (isomerisation) rather than hydrogenation. To further corroborate k_2 dependence with acidity, Figure 7 shows both total acidity and k_2 values. It can be seen that the high correlation between this curves confirm k_2 dependence upon acidity.

The turnover frequency (TOF) calculated from the surface Ni atoms as determined by XPS (Table 4) is in good agreement with some reports in the literature for Pt supported catalysts. The little differences in TOF values for all the studied catalysts shows that intrinsic activity in the catalyst series is the same, without influence of neither composition nor structural differences of the catalysts. Product selectivities did not change along reaction time as revealed by the experimental data collected at 30% (Table 4) and 98% (Figure 8) isosconversion levels. Nevertheless, selectivity to xylitol increases on x=0.7 sample. This behaviour may be associated with the lower acidity of this catalyst (Table 1), which was shown to determine the reaction constant of the isomerisation reaction (Figure 7).

Indeed the k_1/k_2 ratio is expressively higher for x=0.7 catalyst ($k_1/k_2=3.14$) than for all the other samples with lower amounts of Ce (k_1/k_2 ranges from 1.63 to 1.86), indicating that straight hydrogenation to xylitol is preferred on this catalyst. To address one of the major drawbacks concerning the use of Ni-based catalyst in aqueous-phase hydrogenation, the studied catalysts were recovered by filtration after each batch reaction and analyzed in regard to its chemical composition, particularly Ni loading, and crystalline structure. AAS results indicate a different behaviour according to the catalyst original structure (Table 1). It can be seen that Ni content remains unchanged when the catalyst comes from a precursor holding a perovskite-type structure (x=0.0 and 0.1). On the other hand, metal leaching is evidenced for the catalysts obtained from a mixture of oxide phases (x=0.5 and 0.7). A metal loss of 15% is consistently observed for both samples, irrespective of their Ce content. This finding is quite promising since it points to a simple bottom-up approach, through a perovskite structure, able to lead to leaching-resistant catalysts.

Table 5. Specific pseudo first order reaction constants of La$_x$Ce$_{1-x}$Al$_0.18$Ni$_{0.82}$O$_3$ (x=0.0, 0.1, 0.5, 0.7) reduced catalysts.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>k_1</th>
<th>k_2</th>
<th>k_3</th>
<th>k_4</th>
<th>k_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>x=0.0</td>
<td>0.026</td>
<td>0.016</td>
<td>0.013</td>
<td>0.013</td>
<td>0.257</td>
</tr>
<tr>
<td>x=0.1</td>
<td>0.047</td>
<td>0.033</td>
<td>0.029</td>
<td>0.029</td>
<td>0.394</td>
</tr>
<tr>
<td>x=0.5</td>
<td>0.054</td>
<td>0.029</td>
<td>0.032</td>
<td>0.032</td>
<td>0.413</td>
</tr>
<tr>
<td>x=0.7</td>
<td>0.044</td>
<td>0.014</td>
<td>0.034</td>
<td>0.034</td>
<td>0.441</td>
</tr>
</tbody>
</table>

Figure 7. Total acidity and k_2 constant comparison.

Figure 8. Selectivity to detected products at 30% of isosconversion during xylose hydrogenation. T= 100°C, PH$_2$=25 bar.
Perovskite, CeO$_2$, NiO, La$_2$O$_3$.

![Graph](image)

Figure 9: Post-reaction X-ray diffraction patterns. Inset figure: enlargement of region within 26–30° Bragg angle.

XRD patterns of all spent catalysts are displayed in Figure 9. It is noted that catalyst obtained from a bare perovskite structure (x=0.0) undergoes some structural modification upon xylose aqueous-phase hydrogenation conditions since new diffraction lines are now registered. Such peaks are associated with a crystalline La$_2$O$_3$ (22-369) isolated phase. It may have arisen from a previously highly dispersed and/or amorphous lanthanum phase not detected on the fresh sample. The presence of the perovskite structure, as evidenced by their corresponding diffraction peaks, suggests that such structure is stable, consistent with the higher metal leaching-resistance observed for this sample as already discussed. As for the other systems (x=0.1; 0.5; 0.7), no significant change was detected whatsoever, revealing, as expected, the stability of the single oxides used in the formulation.

Conclusions

La$_{1-x}$Ce$_x$Al$_{18}$Ni$_{6-x}$O$_{37}$ (x=0.0, 0.1, 0.5, 0.7) systems prepared by self-combustion method were successfully used as precursors to prepare Ni nanoclusters. Perovskite structure was obtained for Ce-free and lower Ce content samples (x=0.0; 0.1), whereas at higher Ce content (x=0.5; 0.7) a mixture of NiO and CeO$_2$-La$_2$O$_3$ solid solution were the main structures. All catalysts were active in aqueous-phase hydrogenation of xylose, leading mostly to xylitol and other lower carbon polyalcohols (glycerol and ethylene glycol). The highest selectivity toward xylitol was obtained on the catalysts prepared from ordinary metal oxide phases, the promising use of perovskites as catalysts precursors for aqueous-phase processing of biomass-derived compounds is corroborated.

Acknowledgements

Authors acknowledge the support from CONICYT-Fondecyt Grant 1130005 and fellowship 21130572 (Chile) and CNPq and FAPERJ (Brazil).

Notes and references

‡ Footnotes relating to the main text should appear here. These might include comments relevant to but not central to the matter under discussion, limited experimental and spectral data, and crystallographic data.

50 A. Caballero, J. P. Holgado, V. M. Gonzalez-delaCruz, S. E. Habas, T. Herranz and M. Salmeron, *Chemical Communications*, 2010, **46**, 1097.

52 V. Choudhary, S. Caratzoulas and D. G. Vlachos, *Carbohydrate Research*, 2013, **368**, 89.

