

Metal-based quantum dots: synthesis, surface modification, transport and fate in aquatic environments and toxicity to microorganisms

Journal:	RSC Advances
Manuscript ID	RA-REV-05-2016-013016.R1
Article Type:	Review Article
Date Submitted by the Author:	02-Aug-2016
Complete List of Authors:	Hu, Liang; Hunan University, College of Environmental Science and Engineering Zhang, Chang; Hunan University, Zeng, Guangming; Hunan University, College of Environmental Science and Engineering Chen, Guiqiu; Hunan University, College of Environmental Science and Engineering; Hunan University, Key Laboratory of Environmental Biology and Pollution Control Wan, Jia; Hunan University, College of Environmental Science and Engineering, Changsha, China Hunan University, Key Laboratory of Environmental Biology and Pollution Control Wu, Haipeng; Hunan University, College of Environmental Science and Engineering Yu, Zhigang; Hunan University, College of Environmental Science and Engineering Yu, Zhigang; Hunan University, College of Environmental Science and Engineering Zhou, Yaoyu; Hunan University, College of Environmental Science and Engineering Liu, Jun feng; Hunan University, College of Environmental Science and Engineering
Subject area & keyword:	Biomaterials < Materials

SCHOLARONE[™] Manuscripts

1	Metal-based quantum dots: synthesis, surface modification, transport
2	and fate in aquatic environments and toxicity to microorganisms
3	
4	Liang Hu, ^{ab} Chang Zhang, ^{ab} Guangming Zeng, ^{*ab} Guiqiu Chen, ^{*ab} Jia Wan, ^{ab} Zhi Guo, ^{ab}
5	Haipeng Wu, ^{ab} Zhigang Yu, ^{ab} Yaoyu Zhou ^{ab} and Junfeng Liu ^{ab}
6	
7	
9	^a College of Environmental Science and Engineering, Hunan University, Changsha, Hunan
10	410082, P.R. China
11	^b Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of
12	Education, Changsha, Hunan 410082, P.R. China
13	
14	
15	
16	
17	
18	
19	
20	

*Corresponding author. Address: College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China. Tel.: +86 731 88822829; fax: +86 731 88823701. *E-mail addresses*: zgming@hnu.edu.cn; gqchen@hnu.edu.cn.

21	Abstract: Semiconductor quantum dots (QDs) have raised great attention for their
22	superiorly optical properties and wide utilization in biological and biomedical studies.
23	Recently, intense concerns have been focused on the cytotoxicity assessment of QDs
24	since most QDs are made of heavy metal ions (e.g., Cd^{2+}) which pose a threat to
25	human beings and at the same time hamper their practical applications. This review
26	provides an overview of the synthetic methods, surface modification, dissolution
27	mechanism and cytotoxicity of core-shell QDs. Accordingly, how the polymer coating
28	materials and environmental conditions affect the dissolution kinetics of
29	polymer-coated core-shell QDs are discussed in sufficient details. For offering
30	systematic analysis of the cytotoxicity of QDs to microorganisms, correlative factors
31	such as particle size, surface coating materials, photolysis and oxidation, charge,
32	concentration, exposure time and mechanical stability are taken into consideration
33	with respect to their toxicity mechanism. Future research will concentrate on
34	toxicological and pharmacological studies of QDs to find new strategies with lower
35	risk and higher benefits for public health, providing a unique technique for
36	nanopharmaceuticals application.

Keywords 37

Quantum dots; Surface modification; Transport; Dissolution; Cytotoxicity; Reactive 38 oxygen species 39

40

41

42 **1. Introduction**

43	A variety of engineered nanoparticles (ENs), such as carbon nanotubes, quantum
44	dots (QDs) (e.g., CdS, CdSe, and CdSe/ZnS), metal-containing nanoparticles (e.g.,
45	ZnO, Ag, and TiO ₂), dendrimers, and fullerenes have been extensively used in lots of
46	consumer goods, including detergents, printings, paints, cosmetics, bactericides,
47	coatings, computer electronics, sunscreens, tires and drug delivery systems. ¹⁻⁵ QDs,
48	also known as semiconductor crystals with outstanding photophysical properties, are a
49	class of inorganic fluorophores that increasingly used in medical imaging and
50	industry. ^{6,7} Recent studies showed that QDs have a great potential in promoting the
51	applications of image sensor. ⁸⁻¹⁰ The main unique properties of QDs are: (i) narrow
52	emission spectra, which can be controlled by varying the core size; (ii) broad
53	absorption spectra, which allow for excitation by a wide range of wavelengths; (iii)
54	high quantum yield and photostability. ¹¹ In spite of their growing popularity and
55	widespread use, the impacts of these materials on human health and environments are
56	poorly understood. ¹²⁻¹⁴

highly "size-tunable" fluorescence QDs stable since their 57 have photoluminescence emission band is easily adjustable from the UV to the IR 58 regions.¹⁵ These properties of QDs prepared by binary alloys have been acquired by 59 using distinct synthesis routes with a strict control of the constituent material, shape, 60 size, and surface chemistry.^{16,17} For example, the colloidal chemistry method is the 61 common route to synthesize QDs since the nanocrystals' surface could be 62 functionalized during the produce process. This process enables nanocrystals ability to 63

64	interact with selected species, providing narrow size distribution as well as high
65	luminescence efficiency. ^{3,18} Moreover, the QDs should also be stabilized by some
66	materials to prevent the agglomeration while they are dispersed in a solvent. Because
67	the QDs are very hydrophobic since many nonpolar surfactant molecules are located
68	on the QDs' surface. Therefore, it is of significant importance to find appropriate
69	ligand materials for the surface modification of QDs. This could not only affect the
70	nanocrystals solution properties but also limit their potential use. Meanwhile, the
71	selective ligand materials on the surface of QDs play a key role in the shaping of
72	nanocrystals. ⁹ For example, the ligand materials can control the particle size and size
73	distribution during the QDs synthesis as well as nanocrystals structure and
74	stability. ^{16,19-22}
75	With the rapid development in commercial and biomedical applications, QDs
76	may eventually enter the environment. ²³⁻²⁵ The residual QDs may release toxic metal
77	ions to the environment during the weathering process, exhibiting toxicity to
78	Chlamydomonas reinhardtii, ²⁶ bacteria, ^{27,28} macroinvertebrate, ²⁹ and even human
79	being. Therefore, it is of great importance to understand the environmental transport
80	and fate of QDs. ^{30,31} Meanwhile, the systematic cytotoxicity assessment of QDs is
81	also necessary for their practical biological and biomedical applications. To date, a
82	large number of studies on cytotoxicity of QDs have been carried out. ³²⁻³⁶ For
83	example, Derfus et al. ³² demonstrated that the surface oxidation of QDs released free
84	Cd^{2+} , which directly correlated with cell death. Parak et al. ³⁶ reported that except for

86	They suggested that QDs presented lower cytotoxicity while QDs only existed in the
87	medium surrounding cells other than ingested by cells. Further, several published
88	reports indicated that QDs could generate reactive oxygen species (ROS), which were
89	cytotoxic and genotoxic. ^{31,33,34,37,38} For instance, in Green and Howman's study, ³³ they
90	speculated that DNA damage occurred because the shell ZnS was oxidized to generate
91	SO_2 , which then generated superoxide and hydroxyl radicals. Ipe et al. ³⁷ also
92	reported the similar results: irradiated CdS QDs generated superoxide and hydroxyl
93	radicals, and irradiated CdSe QDs generated hydroxyl radicals. Thus the release of
94	Cd^{2+} and the oxidative stress induced by ROS could function as a mechanism of QDs
95	cytotoxicity. ³⁹⁻⁴³ However, the dissolution kinetics and mechanisms of QDs have not
96	been systematically investigated yet. Moreover, the environmental conditions and the
97	inherent physicochemical characteristics as the significant factors in assessing the
98	QDs' toxicity also have not been well documented.
99	The aims of this article were to overview and highlight recent works on transport
100	and fate of QDs in aquatic environments and evaluate its toxicity to microorganisms.
101	The effects of environmental factors (e.g., light, pH, dissolved oxygen, ionic strength,
102	natural organic matter, and extracellular polymeric substances) and polymer coating
103	on the dissolution kinetics of polymer-coated core-shell QDs were summarized.
104	Finally, we also discussed the QDs' cytotoxicity to microorganisms by analyzing
105	particle size, surface coating materials, photolysis and oxidation, charge,
106	concentration, exposure time, and mechanical stability. To the best of our knowledge,
107	it is the first time to discuss the effects of polymer coating and environmental factors

on dissolution kinetics of core-shell QDs in aquatic environment, as well as its
cytotoxicity to microorganisms. The current knowledge of cadmium nanoparticle
pharmacology and toxicology points out the directions for future research. Focus will
be placed on toxicological and pharmacological studies of QDs to find new strategies
with lower risk and higher benefits for public health, providing a unique technique for
nanopharmaceuticals application.

114

2. Synthesis of quantum dots

In nanotechnology, cadmium is primarily utilized in the construction of 115 nanoparticles such as ODs, which are semiconductor metalloid-crystal structures.⁴⁴⁻⁴⁶ 116 Due to their small size, QDs have unique electronic and optical properties which 117 impart the nanoparticle with highly stable "size-tunable" fluorescence. The large 118 surface area also makes QDs readily to be functionalized with targeting ligands for 119 site-directed activity. Based on these properties, QDs own the potential to innovate 120 cancer detection and treatment, biological imaging at the cellular level.^{7,44,46-49} 121 However, fanaticism for ODs is somewhat diluted by the fact that ODs contain 122 substantial amounts of cadmium in a highly reactive form while we know little about 123 the health risks when exposed to cadmium nanoparticles.^{39,40,45} 124

In the 1980s, CdSe QDs were prepared by top-down techniques such as lithography. However, size variations, poor optical properties, crystal defects, and poor reproducibility of such QDs made them inappropriate for advanced applications.⁵⁰ QDs were very hydrophobic since the nanocrystals were capped with

129	nonpolar surfactant molecules, and these nonpolar aliphatic chains were located on
130	the QDs' surface. ^{15,51} Murray et al. ¹⁸ introduced the currently widespread synthesis of
131	QDs by the injection of organometallic precursors into trioctylphosphine (TOP) and
132	trioctylphosphine oxide (TOPO) surfactants at high temperature (190-320°C). The
133	hydrophobically coated CdS, CdSe, and CdTe QDs could be prepared by pyrolyzing
134	organometallic precursors of cadmium (dimethyl cadmium) and selenium in a mixture
135	coordinating solvent composed by TOP and TOPO. ⁵⁰ Peng et al. ⁵² indicated that the
136	existence of small amounts of impurities in the TOPO (essentially phosphinic acids
137	and alkyl phosphonic) may inhibit the growth of particles. However, adding a certain
138	amount of compounds such as hexylphosphonic acid (HPA) in the reaction medium
139	will make the QDs' size homogenously distributed while the growth of QDs was
140	inhibited. ⁵² Afterwards, dimethyl cadmium was displaced by other less toxic, no
141	pyrophobic, and more superior cadmium precursors such as myristate,53
142	acetylacetonate,54 and oxide.55 Therefore, size-tunable photoluminescence (PL) and
143	better quantum confinement of colloidal QDs were obtained through this method
144	which attracted many researchers. Another more ancient method, Ostwald ripening,
145	which resulted from the gradual dissolution of smaller QDs and the formation of
146	larger ones, was managed by separating the spontaneous nucleation process from the
147	relatively slow nanocrystal growth process. The primary advantage of this method is
148	that the size-tunable QDs could be obtained by selecting an injection and growth
149	temperature. ^{56,57} But the complicated procedure of the method makes it less utilized.
150	The colloidal preparation of CdSe nanocrystals which employs the TOP/TOPO

and high temperatures system is one of the most extensive and wrought methods, and 151 the so-synthesized QDs have been extensively characterized. However, the aqueous 152 synthetic methods have been proposed to employ lower temperatures and aqueous 153 systems.^{15,58} These strategies are essentially based on the utilization of different zinc 154 or cadmium inorganic salts and sodium hydrogen selenide or sodium sulphide 155 precursors, both of which could dissolve in water. Thiol-containing amino acid 156 cysteine is currently applied as coating agents in this kind of methodology owing to 157 its high solvation ability. The thiol groups are stabilized to the QDs surface which the 158 amino acid groups are oriented to the exterior of QDs surface, providing a net charge 159 for the dissolution of QDs in aqueous solution.⁵⁹ Many other coating materials can 160 also be applied for the synthesis of QDs, such as polyphosphates.⁶⁰ poly 161 (N-vinyl-2-pyrrolidone),⁶¹ 1-thioglycerol,^{60,62} thyoglycolic acid (TGA),⁶³ 162 and 3-mercaptopropionic acid.^{64,65} Meanwhile, the secondary coating materials such as 163 polyethylene glycol (PEG) and mercaptopropionic acid are applied to further improve 164 the solubility of QDs, preventing the aggregation. Such coating materials can be 165 further conjugated with targeting molecules such as receptor ligands and antibodies, 166 making the QDs a preferential target to a specific organ or tissue.^{17,46,66,67} The 167 168 purification of QDs is usually obtained through the precipitation with ethanol or methanol, centrifugation, and removal of the supernatant which mainly contains 169 unreacted precursors and other impurities. Some researchers used the size-selective 170 precipitation method by which small amounts of polar solvents (acetone, ethanol, and 171 2-propanol) were employed to precipitate polydisperse mixtures of CdS QDs. 172

173	Repeated the procedure until monodisperse fractions were obtained. ⁶² The dialysis is
174	preferred to overcome the difficulties in QDs' dispersion, especially in the aqueous
175	synthesis of polyphosphate-capped CdS QDs. ⁶⁰

176 *2.1. Structure of quantum dots*

QDs are made up of a metalloid crystalline core and a shell. The shell serves as a 177 shield for the core and enables the bioavailability of QDs (Fig. 1). QDs' cores usually 178 consist of various metal complexes such as magnetic transition metals, 179 semiconductors, and noble metals.^{7,68} Therefore, decorating the QDs' cores with a 180 layer of protecting shells has been widely encouraged. Additionally, the ZnS shell 181 layer presented more positive effects than other capping materials since it could: (i) 182 decrease the Cd toxicity by restricting the dissolution of free ions; (ii) prevent the 183 CdSe core from oxidation; (iii) recombine the surface defects of core; and (iv) 184 enhance the photostability. Simultaneously, the size of QDs' core is unchanged while 185 the ZnS shell layer is directly growing on the cores' surface, thus the luminescence 186 187 characteristics of QDs are mainly reserved and only a tiny shift (less than 5 nm) in the fluorescence maximum wavelength is detected.¹⁵ 188

Fig. 1. The structure of a representative QDs, the core, shell, and targeting ligands.

Further assignation of functional groups or biocompatible coatings can give the 191 core-shell QDs a desired bioactivity.⁶⁹ Newly synthesized QDs are inherently 192 hydrophobic without biological use due to a hydrophobic capping on the metalloid 193 cores' surface during their synthesis in organic solvents.⁷⁰ Generally, the newly 194 synthesized ODs are usually functionalized or given secondary coating materials to 195 improve their water solubility, core durability, and suspension characteristics, 196 rendering the biologically compatible ability.⁷⁰⁻⁷² For instance, QDs' core can be 197 capped with hydrophilic polyethylene glycol (PEG) groups to endow QDs good 198 biocompatibility and dispersity in aqueous solution, and it can also be further 199 conjugated with bioactive compounds to target cellular structural features or specific 200 biologic events.^{73,74} Hence, bonding with various molecular entities can functionalize 201 QDs' cores for specific therapeutic or diagnostic purposes. The functionalization 202 203 methods generally include electrostatic interactions, covalent bonding, and multivalent chelation in consideration of QDs' stability/durability and in vivo 204 reactivity. 205

206

2.2. Concentration of quantum dots

Due to the unquantifiable number of ligand molecules that conjugated to QDs, the concentration of QDs after the colloidal preparation process is hard to ascertain by elemental composition or gravimetric methods. To this end, Peng's group put forward empirical equations to reckon the extinction coefficients for CdS, CdSe, and CdTe QDs, therefore the concentrations of these QDs could be readily determined by the

212	Lambert–Beer's law. ^{22,32,33} But for the water soluble QDs, the empirical equations had
213	no availability since the spectrum was not only influenced by the applied coating
214	materials, but also by the ionic strength and acidity of the working environment.
215	Alternative optimal method has been currently provided for the calculation of the
216	QDs' concentration in aqueous solution, such as the phage-based assays to observe
217	mercaptoacetic acid-capped CdSe/ZnS QDs75 and the single-particle counting of
218	streptavidin-capped CdSe/ZnS QDs. ⁷⁶

~ ~ ~ ~ ~ ~

219

3. Surface modification

As stated earlier, the high surface energy of the crystalline nanoparticles can 220 result in surface defects that quench the fluorescence properties of exposed QDs.⁷⁷⁻⁷⁹ 221 In addition, exposed QDs may suffer photochemical degradation and surface 222 oxidation, and leach metal ions after long term exposure to ionic media or cellular 223 media then result in metal ions toxicity.⁸⁰⁻⁸² Therefore, it is necessary to cap the 224 surface of QDs' core with stable materials to reduce its high reactivity and surface 225 defects. ZnS is usually used as a capping material to increase the stability of QDs core 226 and enhance the quantum yield at room temperature.⁵⁴ 227

The QDs can be prepared by aqueous phase synthesis or the organometallic route. In the former case the QDs can be obtained under normal atmospheric conditions without special requirements of equipment. High temperature thermal decomposition of organometallic compounds is a well-confirmed method for the preparation of QDs. This method is carried out with the absence of oxygen and water to make the

organometallic compounds decomposed into a non-aqueous media at high 233 temperature.⁸³ Organic QDs possess distinctly different surface properties as 234 compared to aqueous QDs. The surface of organic QDs is covered with a large 235 amount of hydrophobic ligand molecules (e.g., TOP/TOPO) while the aqueous QDs' 236 surface is capped by hydrophilic molecules (e.g., 3-mercaptopropionic acid, MPA). 237 Therefore, the organic QDs have to receive additional surface modification to enhance 238 its water-dispersibility while the aqueous QDs are inherently water dispersible 239 without any surface modification.⁸⁴ As shown in Fig. 2. The surface modification 240 could usually significantly enhance the hydrodynamic diameter of QDs as detected by 241 dynamic light scattering (DLS). Consequently, organic QDs and aqueous QDs are of 242 similar particle sizes as determined by transmission electronic microscopy (TEM),⁸⁵ 243 the hydrodynamic diameter of surface modified organic QDs are larger than 5.0 nm 244 while aqueous QDs typically possess small hydrodynamic diameter (less than 5.0 245 nm).⁸⁵⁻⁸⁷ 246

247

Fig. 2. Schematic characteristics of aqueous synthesized QDs with hydrophilic

ligands and organic synthesized QDs with hydrophobic ligands.⁸⁵

Page 13 of 51

250	The polarity of the medium which applied to disperse QDs could strongly
251	influence the QDs' luminescent properties as it directly determines the stability of
252	surface capping ligands of QDs. ⁸⁸ It is decisive for QDs to maintain their ability and
253	optical properties during transferring into a polar medium to interact with target
254	analytes. Thus ligand exchange is the usual method that employed to replace the
255	hydrophobic capping ligands on the QDs' surface. To this end, the most widely used
256	capping ligands are thiol-based species, such as L-cysteine or glutathione (GSH) and
257	mercaptoacetic acid (MAA) or 3-mercaptopropionic acid (MPA). Usually, the
258	exchange of the original hydrophobic capping ligands may induce the generation of
259	poor-stability QDs and dramatically reduce the luminescence quantum yields. ⁸⁹
260	Another strategy to promote the solubility of QDs in aqueous media is encapsulation,
261	thereby avoiding ligands exchange. ⁹⁰ Encapsulation is usually carried out in polymer
262	layers or silica shells to protect QDs' cores efficiently with optical properties and
263	original hydrophobic coating layers unchanged.91 The two encapsulation methods
264	present different advantages: the polymer layers could incorporate multifarious
265	functionalities on the QDs' surface, and then enhance their interaction with target
266	analytes while the silica shells are chemically inert. Amphiphilic polymers such as
267	calaxirenes, cyclodextrins, and other similar organic cyclic species are the most
268	widely employed polymers in the synthesis. ^{92,93} In addition, the polyethylene glycol
269	(PEG) derivatives, which are commercial available and simplicity for encapsulation,
270	become another popular material used for the QDs' synthesis. The only drawback of
271	micelle encapsulation is that not all of the nanoparticle sizes are suitable for

encapsulation.⁹⁴

273 *3.1. Inorganic surface*

Most of the binary QDs cannot meet the obligatory band gap and band alignment 274 demands due to the lattice mismatch between the shell and the core, thus an overall 275 276 coating for the QDs is necessary. Inorganic surface modification of QDs can establish a multilayer semiconductor heterogeneous system with relative conduction band and 277 valence band. The main advantage of such a heterogeneous system is that it could 278 279 provide extraordinary photoluminescence, higher quantum yield, increased half life time, enhanced optical properties, better structural properties and improved stability 280 towards photo-oxidation. If an inorganic semiconducting layer is provided over the 281 core-shell QDs and its band gap is higher than that of the shell, the particle is called a 282 quantum dot quantum well (QDQW).^{95,96} Core-shell structured nanoparticles combine 283 favorable properties of the magnetic core with a protective polymer, gold, silica, 284 carbon or metal oxide shell. These coating materials may not only protect the 285 286 chemical-active metal core from acid erosion and oxidative degradation but also be responsible for further surface modification.⁹⁷ Coating the surface of nanoparticles 287 with an amorphous silica layer is called silanization. As shown in Fig. 3. Surface 288 silanization renders QDs biocompatible for cancer diagnosis and therapy. Replacing 289 the surface ligand with a thiol-derived silane such as mercaptopropyltris silane is the 290 first step of surface silanization. The trimethoxysilane groups can be well cross-linked 291 by the formation of siloxane bonds. During further growth of the shells, other types of 292

Page 15 of 51

RSC Advances

293	silicon can also be added to provide functional groups and different charge on the
294	QDs' surface. Generally, the additional materials that used frequently are
295	phosphor-silanes, aminopropyl-silanes, and polyethylene glycol silanes. Silanized
296	QDs are extremely steady since the silica shells are highly cross-linked. ⁷⁴ In addition,
297	the electrochemical properties of silica make it a perfect material to improve the
298	solubility of QDs in aqueous media. ⁷⁴ Apart from silica, other metals and metal oxides
299	can also be employed as shell materials. For example, gold as a shell material has
300	been widely studied by many researchers. ^{65,98,99} Wang et al. ¹⁰⁰ successfully
301	synthesized Fe ₃ O ₄ @PAH@Au multifunctional QDs, which presented both magnetism
302	and near-infrared absorption. Xuan et al.99 also reported Fe ₃ O ₄ @PANI@Au
303	multifunctional QDs with well-defined core-shell structures, optical property,
304	magnetic separability, and catalytic activity. On the other hand, the gold could also
305	endow the QDs with biocompatibility through the modification of thiol/amine
306	terminal groups. When the core is composed of a polymer or different copolymers, an
307	inorganic surface modification could be applicable. Coating the polymeric core with
308	an inorganic shell is greatly beneficial to QDs' mechanical strength, thermal and
309	colloidal stability, as well as the resistance ability against oxidation and corrosion.
310	Meanwhile, these particles also present perfectly polymeric properties such as
311	flexibility, toughness, and excellent optical properties.

312 *3.2. Organic surface*

313

The QDs produced by colloidal synthetic method are mostly hydrophobic and

314	could only dissolve in non-polar solvents such as toluene or chloroform. Nevertheless,
315	almost all the biological applications of QDs demand the aqueous conditions, thus a
316	direct modification on the QDs' surface to improve the water solubility without
317	altering the cores' properties is necessary. For this purpose, water-soluble QDs are
318	obtained by introducing functional groups (hydroxyl, carboxyl, or amino) over its
319	surface to achieve a total net charge. Additionally, the surface modification makes
320	QDs more convenient to conjugate with biomolecules. ^{15,101-103} In general, the usual
321	method for organic surface modification is to coat the QDs with thiolate ligands
322	during the growth period. As shown in Fig. 3. Mercaptoacetate, thioglycerol,
323	2-mercaptoethanol, 1,4-dithiothreitol, cysteine, glutathione, and methionine have been
324	applied as capping ligands. Amines like n-butylamine, n-hexylamine, and
325	hexadecylamine have also been applied in conjugating with TOP and TOPO. ⁷⁴

27 Fig.

326

Fig. 3. Schemes of different QDs surface modification methods. An additional coating can further protect the QDs core from oxidation. Surface chemistry influences the QDs propensity to aggregate, particularly in biological solutions.¹⁰⁴

Ligand exchange occurred during the substitution process of hydrophilic ligands 330 for native hydrophobic ligands through mass action.^{105,106} Generally, these substituting 331 ligands possess bifunctional groups: a) thiols (-SH) to bind the ZnS shell on the QDs' 332 surface; b) hydroxyls (-OH), carboxyls (-COOH), and amines (-NH₂) to enhance the 333 water solubility and provide secondary conglutination for biomolecules such as 334 antibodies, proteins or drugs.^{105,107} The main advantage of these ligands is that they 335 can effectively prevent the QDs from aggregation and at the same time passivate 336 surface defects, ensuring the quantum yield.¹⁰⁸⁻¹¹⁰ Organic ligands, which can be 337

338 replaced by water soluble ligands through simple mass action, could provide excellent stability and solubility for QDs to cooperate with organic non-coordinating 339 solvents.¹¹⁰ Evidences showed that the ligands on QDs' surface are in a dynamic 340 equilibrium with the native ligands in solvent, thus these two kinds of ligands could 341 substitute for each other under the equilibrium conditions.¹¹¹ In general, the ligand 342 exchange can be proceeded by increasing the local probability of replaceable ligands 343 through supplying more replaceable ligands in the solution than the existing ligands 344 when the surface affinity of the replaceable ligands is low.¹¹² 345

The QDs' surface can also be encapsulated by TOP/TOPO ligands with 346 amphiphilic phospholipids or polymers which could unite both hydrophilic groups 347 and hydrophobic alkyl chains (Fig. 3). Under the circumstances, non-specific 348 hydrophobic interactions are competent for linking the alkyl chains, including the 349 phosphine ligands and the phospholipid/polymer, while the polar functional groups 350 located outside provide water solubility for QDs. The amphiphilic polymers are 351 usually applied on the base of a polyester backbone (maleic anhydride) with a 352 hydrophobic alkyl chain, including dodecyl,¹¹³ octadecane,¹¹⁴ and tetradecene.¹¹⁵ 353 These polymers wrap the ODs' surface by forming an amine-type cross-linker like 354 355 hexamethylene triamine. Other polymer coating compounds such as alginate, polyvinyl pyrrolidone, and chitosan, also have been applied to produce water-soluble 356 and less toxicity ODs.15 357

358 Several researches have demonstrated that the stabilization of QDs through 359 ligand exchange, covalent modification and other chemical surface modification

360	showed several drawbacks: (i) Small ligand with one head group attached to the QDs
361	surface can easily be released and influence the stabilization process, especially when
362	excessively unbound ligands exist in the suspension; (ii) The thiol-containing ligands
363	can bind strongly to QDs, but it should be carefully selected on the basis of the core
364	material. ^{74,116} It has been well established in a variety of reports that using
365	multifunctional ligand molecule to modify QDs could not only improve their water
366	solubility but also enhance the stabilization effect. ^{116,117} Interestingly, owing to the
367	various bonding points on the particle surface, the amphiphilic molecules could avoid
368	facile desorption of the polymer molecule during the modification of QDs. For
369	instance, the amphiphilic coating could interlink the amphiphilic molecule with its
370	hydrophobic ligand groups by hydrophobic interaction which neither depends on the
371	type of ligand molecule nor exacts material composition (Fig. 3). Such observations
372	are mainly based on hydrophobic interaction between hydrocarbon chains and the
373	polymer molecules. Meanwhile, the amphiphilic molecules coated on QDs' surface
374	exhibit the same physicochemical surface properties as the independent of core
375	material. ^{74,116}

Core-shell QDs are more desirable for biological applications as the shell could enhance their fluorescent properties and decrease the leaching ability.¹¹⁸ The ligand functional group, which has the electron donating and withdrawing ability, can induce trapping effects on the QDs' surface.¹¹⁸ CdSe/ZnS-ssDNA fluorescent dye conjugates were applied as bioprobes by Huang et al.¹¹⁹ to detect micrococcal nuclease with high sensitivity and specificity. Furthermore, water-soluble encapsulation CdTe/ZnS QDs

were also served as a pH probe for tiopronin determination¹²⁰ and enzyme kinetics.¹²¹ One-step DNA functionalization on QDs or core-shell QDs synthesis in aqueous media was reviewed by Samanta et al..¹²² The polydentate-phosphine coating QDs have been employed in cancer diagnosis¹²³ for large animals through imaging. Additionally, capped InP/ZnS QDs have also been applied to cellular imaging.¹²⁴

387

388

4. Environmental conditions for transport and fate of quantum dots in aquatic environments

As a new type of pollutant in aquatic environments, QDs will cause the 389 390 ecological pollution, and it is closely related to the composition and chemical properties of the core-shell. To thoroughly evaluate the potential environmental and 391 ecological risks of QDs, it is necessary to make a better understanding of the 392 environmental transport and fate of QDs. Although a number of studies have 393 investigated the weathering process of QDs, our knowledge about its potential 394 mechanisms and dissolution kinetics is limited. Coexistence of heavy metals in 395 aquatic environment could significantly enhance the ODs' toxicity while the natural 396 organic matter would affect the adsorption and migration reaction on QDs' interface. 397 On the other hand, the pollution characteristics of QDs could be influenced by many 398 environmental factors, such as light, pH, dissolved oxygen and ionic strength etc. At 399 the same time, aquatic organism could secrete extracellular polymeric substances 400 (EPS) and stabilize QDs on EPS layer or subcellular structure to change the form of 401 QDs in aquatic environments. 402

403 *4.1. Light*

When QDs were excited by incident light carrying higher photon energies than 404 405 the band gap of QDs, a bound electron-hole pair that could react with the surrounding oxygen molecules was formed and produced ROS including OH, ¹O₂, and 406 O₂^{-.37,125-127} As shown in Fig. 4. Two independent methods, UV-vis and scavenging 407 experiments were executed to analyze the formation of ROS during the dissolution of 408 ODs under UV irradiation.³¹ Previous studies showed that the release rate of Cd^{2+} did 409 not change distinctly when excess OH and $^{1}O_{2}$ scavengers were expended, indicating 410 that OH and ${}^{1}O_{2}$ were not the main substances during the formation of ROS. 411 However, when excess O_2^{-1} scavengers were added before the reaction, an obvious 412 retardation on the release of Cd²⁺ was observed, suggesting that the photoexcitation 413 may lead to the generation of O_2^{-1} , a precursor of oxidative dissolution of QDs.^{31,37} 414 Interestingly, several studies confirmed that superoxide dismutase (SOD) could 415 increase the release of Cd²⁺ observably after irradiation, probably because the SOD 416 could catalyze the conversion of O_2^- into H_2O_2 , which accelerated the release of 417 $Cd^{2+,35,128}$ The reaction was shown as follows: 418

419
$$2O_2^{-} + 2H_2O \iff O_2 + H_2O_2 + 2OH^{-}$$

420 Therefore, H_2O_2 is the most likely intermediate oxidant that reacts rapidly with 421 QDs.¹²⁹

To explore the stoichiometry reaction of QDs, the possible ionic species are firstly determined after photooxidation of QDs, as shown in the reaction.

424 $Cd_{5.68}SeZn_{4.1}S_x + (x - 8.78) H_2O + (1.5x + 6.39) O_2 \longleftrightarrow 5.68 Cd^{2+} + SeO_4^{2-} +$

425
$$4.1 \operatorname{Zn}^{2+} + x \operatorname{SO}_4^{2-} + (2x - 17.56) \operatorname{H}^4$$

The photooxidation of QDs is a proton-generating process, as confirmed by the observed decrease in pH value.^{59,130} The above chemical formula is determined on the basis of the total element composition measurement with ICP-MS. The photo-degradation products (Cd^{2+} , Zn^{2+} , and SeO_4^{2-}) may release from the core-shell structure, decreasing the hydrodynamic size of QDs.

Fig. 4. Effects of light, nature organic matter, and extracellular polymeric substance

433 on the dissolution and stability of QDs in aquatic environments.

434 *4.2. Weathering of QDs at pH variation*

431

In a previous study, the laboratory condition was adjusted to pH value ranging from 2 to 12 to investigate possible QDs weathering process.²⁷ Several different processes, including QDs aggregation, core-shell QDs leaching, and precipitation of metal oxides, could be conducted under extremely acidic or alkaline conditions. Low pH value was expected to solubilize core-shell QDs readily, while high pH value may relate to the chemical speciation, precipitation, and bioavailability of Cd and Se (Table 1).

Table 1

Supernatant concentrations of QD constituents measured at various pH values²⁷

QD	pH treatment	total Cd (mg/L)	total Se (mg/L)
QD557-PMAO	coated (pH 7)	29.2 ± 5.3	23.0 ± 3.8
	weathered (pH 2)	2853 ± 93.3	2760 ± 129
	weathered (pH 12)	1511 ± 97.6	1617 ± 94.5
QD559-PEI	coated (pH 7)	28.0 ± 7.3	21.5 ± 5.6
	weathered (pH 2)	3362 ± 207.4	3029 ± 42.5
	weathered (pH 12)	3123 ± 101.9	2819 ± 103.8
QD655-carboxyl	coated (pH 7)	14.9 ± 1.2	5.3 ± 0.8
	weathered (pH 2)	3528 ± 74.5	934 ± 106.7
	weathered (pH 12)	3729 ± 99.0	1052 ± 88.3

Note: values represent the average \pm the range of 3 observations.

It is well documented that luminescent properties of QDs depend on pH 442 values.^{59,130-132} Nevertheless, pH may have a dual influence on luminescent properties 443 of QDs since it affects QDs' structure and the function of capping ligands.¹³⁰ For 444 445 instance, pH-dependent cadmium-thiol complexes can be produced at the interface of Cd-containing QDs and capping ligands when pH > 5.⁵⁹ But at pH < 5, protonation 446 could result in the detachment of capping ligands from QDs' surface and induce the 447 agglomeration of QDs, thus making the luminescence intensity and lifetime 448 declined.¹³³ Zhang et al.¹³⁰ have reported that the decline of pH value from 12 to 5 449 could result in the agglomeration of QDs (Fig. 5), causing the change of the 450

451 luminescence intensity of QDs.

452 *4.3. Dissolved oxygen*

453	It has been demonstrated that the dissolved oxygen can induce and catalyze the
454	oxidation of QDs. ^{31,134-137} For instance, several phenomena have been observed after
455	exposing the QDs to an oxidative environment: (i) A blue-shift in the excitonic
456	fluorescence spectra; (ii) A broad red-shifted adjacent to the excitonic fluorescence
457	peak; (iii) A progressive change in the absorbance profile of QDs solution; and (iv) A
458	decline in the quantum yield. ³² Shifts in the fluorescence and absorbance spectra may
459	result from the decline of the QDs' size (a result of oxidative damage on surface
460	atoms) while the broad red-shifted fluorescence peak can be attributed to the
461	formation of lower-energy band gaps (a result of newly-formed defective structures).
462	It has been established that O ₂ molecules can oxidize chalcogenide atoms (S and Se)
463	to form oxides (SO ₄ ²⁻ and SeO ₂) on the QDs' surface (Fig. 5). ^{27,32} In the case of CdSe
464	QDs, these SeO ₂ molecules could desorb from the QDs' surface, leaving the
465	"dangling" decreased Cd atoms behind. Therefore, prolonging exposure of QDs to an
466	oxidative environment could induce the decomposition of nanocrystal, leading to the
467	desorption of Cd ²⁺ or CdSe complexes from the QDs' core. ^{32,138,139}

468 *4.4. Ionic strength*

469 Ionic strength is an important parameter in analyzing the transport and fate of 470 QDs in granular aquatic environments.^{140,141} However, as limited by available

. . .

471 6	experimental technic	ues, the sizing suspe	ended QDs are difficu	ult to be obtained. ¹⁴²
			`	

It has been reported that the addition of monovalent electrolyte (e.g., K⁺ and Na⁺) will increase the ionic strength and compress the electric double layers (EDLs) in QDs (shown in Fig. 5). A plausible explanation is that the capping ligands on the QDs' surface may extend into the electric double layers and protect QDs from approaching to each other when the ionic strength increases.^{25,143,144}

The aggregation behavior of QDs in most surface water within the presence of 477 divalent cations has also been examined in some studies. The main reason for the 478 destabilization of divalent cations is the formation of complexes with the thioglycolate 479 capping ligands on QDs' surface, through which the negative charge on it could be 480 neutralized. Furthermore, the complexes could bridge the gap between one QD and 481 the other QD to form aggregates. Therefore, the divalent cation complexation 482 constants of capping ligands can be used to quantify QDs' aggregation. Here we set 483 Ca^{2+} for an example in this paper. Ca^{2+} complexes are formed through the 484 combination of Ca^{2+} and carboxyl groups on the ODs' surface. A Ca^{2+} may bond to 485 either monodentate or bidentate capping ligand sites.^{145,146} The Ca²⁺ complexation 486 constants are determined by calcium titration. According to the results of previous 487 aggregation experiments, even a low concentration of Ca^{2+} could lead to the formation 488 of Ca^{2+} complexes with QDs' capping ligands, supported by the high complexation 489 constants of the bound capping ligands.^{25,147,148} 490

491 Similar to the divalent electrolyte, the trivalent electrolyte (e.g., Al^{3+}) could also 492 reduce the negative zeta-potentials of QDs and cause the aggregation. The

493 inconformity in QDs aggregation with Al^{3+} at pH value between 5 and 8 is correlative 494 to the complexation mechanism of Al^{3+} with the capping ligands.^{59,130} In liquid media, 495 Al^{3+} can be hydrolyzed and present as $Al^{3+}(H_2O)_n[(OH)_{6-n}]^{n-6}$. Thus the complexation 496 of Al^{3+} with the capping ligands may occur through the substitution reaction between 497 OH⁻ groups or the original water molecules and amino groups or carboxyl groups in 498 $Al^{3+}(H_2O)_n[(OH)_{6-n}]^{n-6}.^{25,149}$

499

Fig. 5. Effects of pH, dissolved oxygen, and ionic strength on the dissolution andstability of QDs in aquatic environments.

502 *4.5. Natural organic matter*

Transport and fate of QDs in aquatic environment are not only dependent on physicochemical parameters, such as light, pH, dissolved oxygen, and ionic strength as described by the DLVO theory,^{150,151} but also related to the natural organic matter (NOM). Some researchers have confirmed that the humic substances (HS) which are

507	commonly present in aquatic environment as a kind of NOM, ^{152,153} could affect the
508	environmental transformations of QDs. ^{31,154,155} Evidence showed that HS could alter
509	the surface properties of QDs, thus influenced the dispersibility and aggregation state
510	of QDs, ²⁴ or even transferred the primitively hydrophobic QDs to aqueous QDs. ¹⁵⁶⁻¹⁵⁸
511	While the content of NOM in aquatic environments exceeds the charge of DLVO
512	theory, the QDs will tend to form larger aggregations, especially when the ionic
513	strength is high. ¹ NOM can either enhance the QDs stability through coating the QDs'
514	surface with negative charges by static repulsion ¹⁵⁹ or decline the QDs stability
515	through a variety of mechanisms, including pearls-on-a-string formation ¹⁶⁰ and
516	bridging effect. ¹⁶¹ Hence, NOM could greatly affect the stability of QDs through both
517	direct physicochemical processes and indirect chemical reactions (Fig. 4).

518

4.6. Extracellular polymeric substances

Extracellular polymeric substances (EPS) are widespread in aquatic 519 environments and have an effect on QDs transport and toxicity.¹⁵⁴ As with many other 520 engineered nanoparticles, quantitative information on the transport and fate of QDs in 521 aquatic environments is confined, particularly in open waters. Owing to their 522 amphipathy, EPS are ubiquitous in the environment and have a remarkable ability for 523 self-assembly or assembly with other molecules, including metal ions, nanoparticles, 524 and NOM (Fig. 4). Therefore, EPS can act as a strong agent for QDs to aggregate in 525 aquatic environments through electrostatic and hydrophobic interactions.¹ The 526 electrostatic interactions are based on the surface properties of QDs. For example, 527

positively charged amine-functionalized QDs have a more strongly affinity to EPS 528 than the negatively charged carboxyl-functionalized QDs¹⁶² since the positively 529 charged surfaces could contribute to stabilize QDs to EPS by enhancing cross-links in 530 the gel networks.^{1,163} Furthermore, due to the formation of aggregate networks 531 between ODs and EPS, the release of ODs into the aquatic environments can 532 potentially disturb the aquatic biosphere and at the same time change their own 533 biological pathways. On the other hand, EPS could reduce QDs' stability, promote the 534 degradation of ODs and facilitate the release of Cd^{2+} into the aquatic environments 535 when exposed to light.¹⁶⁴ According to some researchers' study, the increased 536 degradation of QDs is directly related to the ROS provided by EPS³¹ as well as the 537 composition (ratio of carbohydrates/proteins) of the EPS.^{1,164} but the mechanisms 538 539 involved need to be further studied.

540

5. Toxicity of quantum dots to microorganisms

QDs are composed of semiconductor core (e.g., CdS and CdSe) and usually 541 encapsulated by a shell (e.g., ZnS) to improve the electronic and optical properties 542 and prevent the core metal from leaching.^{32,165,166} For many applications, QDs are 543 often coated with organic molecule ligands to enhance their dispersibility in solution 544 and guide them to biological targets.^{17,167-169} Recent advances lead to the 545 large-quantity production of water soluble QDs. Given their wide applications, 546 substantial productions of QDs are envisioned in the nature.^{7,43,170,171} However, most 547 currently produced QDs consist of heavy metal chalcogenides (e.g., PbS and CdSe) 548

549 which may cause a hazard to humans and microorganisms in consideration of toxic metal releases and nanoscale properties. The toxicity of QDs depends on multiple 550 factors derived from both the inherent physicochemical properties and the acquired 551 environmental conditions. Particle size, charge, concentration, bioactivity of the 552 surface coatings (capping ligands and functional groups), exposure time, photolysis, 553 oxidation, and mechanical stability are the main factors that determine ODs' toxicity 554 individually or collectively. Functional capping, physicochemical characteristics, and 555 the stability of ODs' core are recognized as the significant factors in assessing the 556 QDs' toxicity to microorganisms in real world exposure. 557

558 5.1. Particle size

Particle size is critical for the biological performances of nanoparticles.¹⁷²⁻¹⁷⁴ 559 Several reports have proved that particle size affects QDs toxicity at the intracellular 560 level. In cellular studies, CdTe QDs within 2.2 nm had greater toxicity than the 561 particles within 5.2 nm.^{35,175} Additionally, the intracellular biodistribution of QDs also 562 showed an obviously size-dependent in some studies.^{84,176} Larger particles were 563 distributed in the cytoplasm while smaller particles were localized around and in the 564 nucleus of the cell.^{35,45,177} Hardman⁷ has also found that ODs size could influence the 565 subcellular distribution, in which larger cationic QDs presented in the cytosol and the 566 smaller cationic QDs distributed in the nuclear compartment. Endocytosis, including 567 pinocytosis and phagocytosis, has been well-recognized as the main mechanism for 568 QDs to enter the cells (Fig. 6).^{178,179} The pinocytosis is further classified into at least 569

570	four mechanisms (e.g., caveolae-mediated, clathrin-mediated, macropinocytosis, and
571	clathrin/caveolae-independent endocytosis) depending on the product of intracellular
572	vesicles. ^{180,181} Additionally, the intracellular localization of QDs is also particularly
573	important for the cytotoxicity. ^{175,182} The confocal fluorescence images demonstrated
574	that CdTe QDs were predominantly located in the cytoplasmic and perinuclear area. ¹⁸³
575	However, the distribution of QDs was not uniform but presented in dotted pattern with
576	the differential intensity. Especially, high-intensity dots were concentrated in the
577	marginal and perinuclear area of the cell. ⁸⁴ Such heterogeneous distribution of QDs
578	might cause an abnormally high local concentration of Cd^{2+} in the nuclei or other
579	organelles, aggravating the damage to these organelles. The concentrated effect of
580	Cd ²⁺ on organelles was responsible for the higher cytotoxicity of CdTe QDs than
581	CdCl ₂ . All in all, CdTe QDs may enter the subcellular organelles and directly result in
582	a functional loss of the organelles.

583

5.2. Surface coating materials

A main cause of the QDs toxicity is the cadmium contained in the QDs core. The 584 toxicity of uncoated CdSe or CdTe QDs has been extensively studied in several 585 reports.^{184,185} Results showed that the QDs' toxicity is closely associated with the free 586 Cd released from QDs' core into the suspensions since it was found that the 587 cytotoxicity of QDs was consistent with Cd²⁺ toxicity from the QDs' core.^{32,34,186,187} 588 Derfus et al.³² found that the uncoated QDs could release Cd²⁺ through the surface 589 oxidation when incubated with rat hepatocytes, indicating that the uncoated QDs 590

591	cores could be degraded in biological environment. Therefore, the Cd ²⁺ toxicity from
592	QDs' cores is likely to be responsible for QDs' cytotoxicity. However, CdSe or CdTe
593	QDs are also highly charged and can be easily affected by air or photo oxidation.
594	Hence, the generation of free radical is also considered as another major mechanism
595	for QDs' cytotoxicity. ^{33,37,188,189} Cho et al. ¹⁹⁰ found that the CdTe QDs cytotoxicity
596	was not relevant to the Cd^{2+} released from the QDs' core, but related to the formation
597	of free radical (Fig. 6). Additionally, similar to the findings we mentioned above, the
598	uncoated QDs have also been involved in other cytotoxicity. For example, in
599	SH-SY5Y neuroblastoma cells, the damage CdTe QDs induced was relevant to
600	up-regulation of Fas expression, which may result from the oxidative stress caused by
601	the QDs. ¹⁹¹⁻¹⁹³ Tang et al. ¹⁹⁴ carried out the neurotoxicity of CdSe QDs in
602	hippocampal neurons and found a dose dependent augment in neuronal death.
603	However, evidences showed that the influx of extracellular Cd^{2+} and release of
604	intracellular Cd ²⁺ were enhanced even at low doses.

Encapsulation of QDs with a ZnS shell or other coating materials has been 605 testified as an effective way to reduce the QDs' toxicity, although much work remains 606 to be accomplished in this arena. Derfus et al.³² indicated that free Cd released from 607 CdSe QDs into the aqueous media could be dramatically declined by ZnS shell. In 608 addition to decreasing the free Cd release, ZnS shell was also observed to reduce the 609 generation of free radical by protecting the QDs from air oxidation. Hence, the 610 encapsulation of QDs with a ZnS shell or other coating materials appears to be a 611 promising way to inhibit the release of Cd²⁺ and the generation of free radicals.^{195,196} 612

However, in order to accurately assess the toxicity of shell or coated QDs, the 613 degradation of shell or coating materials, along with the toxicity must also be 614 considered adequately. Previous studies showed that the ZnS shell did not completely 615 eliminate the QDs' toxicity due to the effect of photo or air oxidation on the shell³² 616 and on the other hand, the CdSe/ZnS ODs could also induce the generation of free 617 radical species.^{33,189} These researchers hypothesized that the ZnS shell could prevent 618 the CdSe core from oxidation, but it could not inhibit the generation of 619 electron-induced radical in the surrounding environment, indicating that the ZnS shell 620 might be slowly oxidized in the presence of air or water, thus generating the SO^{2-} 621 radical.45 622

In addition, several groups have also found to enhance the toxicity when 623 associated with coating materials such as TOPO and MPA.⁴⁶ Hoshino et al.¹⁹⁷ 624 observed that the surface coatings of QDs such as MPA could be detached under 625 oxidative and acidic conditions in endosomes and then released into the cytoplasm. To 626 assess the toxicity of surface capping materials. Hoshino et al.¹⁹⁷ employed three 627 capping materials (thioglycerol, MPA, and cysteamine) and two possible impurities 628 (ZnS and TOPO) in the study. The result demonstrated that the removal of TOPO 629 630 from the QDs samples was important in decreasing cytotoxicity since the TOPO was observed to be genotoxic and cytotoxic. Their findings provided obvious evidence to 631 prove that the QDs induced genotoxicity and cytotoxicity were not caused by the QDs 632 core but by the hydrophilic QDs' coating materials. Taken together, these reports 633 indicated that the ingredient of a shell or capping materials needs to be more 634

636

635 thoroughly assessed.

Fig. 6. Schematic illustration of the cytotoxicity induced by CdSe QDs. When CdSe QDs are transported across the cell membrane, free Cd^{2+} is released into the cytoplasm. The QDs nanocrystal and free Cd^{2+} induced a serious of protective responses including the up-regulation of proteins and an increase in oxidative stress.

641 *5.3. Photolysis and oxidation*

QDs' stability, both in vivo and storage, is a significant aspect for assessing their toxicity. Some reports indicated that QDs' cytotoxicity may relate to photolysis or oxidation.^{7,32,198,199} Under photolytic and oxidative conditions, the core-shell QDs coatings were too labile to maintain the stability of QDs, thus the potentially toxic coating materials or intact core metalloid complexes were exposed to the environment and caused the dissolution of the core complexes. Zhang's group²⁰⁰ demonstrated that the fluorescence intensity of CdSe/ZnS QDs showed a shift to blue spectra and was

649	reduced with contacting time when exposing to the living cells, indicating that the
650	ZnS shell was deteriorated intracellularly. ^{200,201} Hardman ⁷ reported that the primary
651	rat hepatocytes exposed to 62.5 $\mu\text{g/mL}$ MAA-CdSe QDs appeared cell death, which
652	may relate to photolysis and oxidation of the QDs' capping material. Derfus et al. ³²
653	deduced that QDs' toxicity was relevant to environmental conditions, and lengthened
654	exposure time of QDs to photolytic and oxidative environments could lead to the
655	decomposition of MAA-TOPO capped CdSe QDs. Although ZnS coating materials
656	could significantly decrease the ambient air oxidation, it did not completely eliminate
657	the photooxidation, with high levels of free Cd^{2+} found in solution under
658	photooxidative conditions. ^{7,192} Aldana et al. ²⁰² have also observed the photochemical
659	instability of thiol-coated CdSe QDs in the experiment, although not at correlative UV
660	wavelengths (254 nm), it was noted that the photochemical stability of CdSe QDs was
661	nearly related to the packing and thickness of the ligand monolayer. Kloepfer et al. ²⁰³
662	reported that when exposing Staphylococcus aureus cultures to conjugated QDs
663	solution for 2 weeks, a noteworthy increase in fluorescence was observed. The change
664	of fluorescence may relate to the intracellular oxidation of QDs since a remarkable
665	increase of Se was found in cells. Therefore, the photostability of QDs' conjugates is a
666	considerable issue during the preparation, and at the same time the QDs' conjugation
667	procedures should also be performed under little or no light condition to avoid the
668	photolysis of QDs. Some studies suggested that QDs may be susceptible to photolysis
669	and oxidation, thus the possibility of QDs' degradation in vivo or intracellular could
670	be increased. For example, recent study indicated that QDs' surface coatings and

671	ligands were slowly degraded in vivo, leading to the surface defects and fluorescence
672	quenching. ²⁰⁴ However, several reports noted that QDs coated with a grafted 8-carbon
673	alkyl side chain and a high molecular weight copolymer even showed a greater
674	stability in vivo than those with simple polymer and amphiphilic lipid coatings. ⁷
675	Hoshino et al. ²⁰⁵ observed CdSe/ZnS-SSA QDs in EL-4 cells within approximately
676	10% of the cells reserving QDs after exposure for 10 days, and the fluorescent
677	intensity of the cells was found to gradually decline and highly concentrate in
678	endosomes. Likewise, a substantial loss of QDs' fluorescence was declared by Gao et
679	al. ²⁰⁴ upon implement of QDs to live animals.

680 *5.4. Charge, concentration, and exposure time*

As with pharmacological studies, QDs' toxicity studies confront the same 681 difficulties in terms of charge, concentration, and exposure time, which underscore the 682 requirement for their rigorous physicochemical properties. Existed evidences showed 683 that surface modifications could influence QDs' properties such as surface net charge, 684 which may contribute to QDs' cytotoxicity.^{32,165} For example, uncharged 685 (polyethylene glycol; PEG), negatively charged (carboxyl-modified; COOH), and 686 positively charged (amino-terminated; NH2) CdSe/ZnS QDs were employed to 687 monitor the uptake, ingestion and depuration procedures of nanoparticles in 688 Ceriodaphnia dubia and Daphnia magna over 24 h of exposure.¹⁶² Their studies 689 proved that CdSe/ZnS QDs with higher negative charge (QDs-COOH) were taken up 690 to a greater extent by *Daphnia* (259.17 \pm 17.70) than either positive charge (QDs-NH₂) 691

692 (150.01 ± 18.91) or uncharged PEG-QDs (95.17 ± 9.78) . To some extent, these results 693 are also relevant to the surface functional groups attached to QDs.

Particle concentration is also intricately related to the QDs' toxicity since surface 694 area is critical for nanoparticle actions. QDs' dosage or exposure concentration has 695 been widely reported in the literature using various units of measurement (e.g., ODs 696 per cell, molarity, micrograms per milliliter, and milligrams per kilogram body 697 weight). However, correlative dosage studies are currently challenging. For instance, 698 no cytotoxicity was observed during a 2 h acute exposure of cells to ODs.²⁰⁶⁻²⁰⁸ 699 Critical questions related to toxicological researches are relevant to how to estimate 700 the effects of QDs' exposure on humans and what will be the effective way to describe 701 the express concentration of QDs to humans. 702

703 Finally, exposure time deserves further consideration. QDs appear to widely distribute in tissues and almost cannot be excreted or metabolized.¹⁹⁰ In consideration 704 of the tissues' resistance, it is critical to assess the toxicological risk of QDs in long 705 term researches. In the case of QDs, an electronically active Cd nanoparticle may be 706 excessively reserved in tissues for years. In general, QDs cause the toxicity by 707 releasing Cd^{2+} and generating free radicals to the environment, both of which could 708 709 influence the transcription and synthesis of DNA or even changed the signal transduction in long term treatment. 710

711

712

6. Conclusions and perspectives

It is critical to understand the transport and fate mechanism as well as the

713 toxicity of QDs for its practical biomedical and biological applications in diagnostics, therapy, and imaging. However, it is difficult to assess the overall environmental 714 implications of QDs from present reported studies due to the complexity of inherent 715 716 physicochemical properties, environmental conditions, and analytic methods. The synthetic methods and surface modifications of ODs will greatly affect its 717 physicochemical properties and its interaction with cellular membrane and the 718 subsequent uptake into the cells. So the transport and fate of QDs in aquatic 719 environment and their toxicity to microorganisms depend on the multiple synthesis 720 methods and surface modification ways. Light, pH, dissolved oxygen, ionic strength, 721 NOM, and EPS have been implicated as the determining factors in evaluating the 722 transport and fate of QDs in aquatic environment. And unless stabilized by NOM and 723 724 EPS or other natural species in the environment, QDs may ultimately be degraded in aquatic environment and serve as a source for toxic mobile Cd species. The increasing 725 production and utilization of QDs nanoparticles caused the concerns for the possibility 726 of the contamination in the aquatic and terrestrial ecosystems. Thus it is necessary to 727 make extensive investigations on the toxicological and pharmacological for the 728 applications of ODs to reduce the environmental risk. Therefore, studies on the ODs' 729 730 behavior in aquatic environment and the cytotoxicity of QDs become critical important, and future directions need to include: (i) complete physicochemical 731 characterization of QDs structure; (ii) environmental considerations—with increasing 732 application of Cd-containing QDs in biomedical study and therapy, researches are 733 required to consider the environmental risk of core-shell particles and the dissolution 734

extent of shell materials; and (iii) increase animal toxicity studies to evaluate biological persistence of QDs in tissues, particularly in long term studies. Research without overall assessing these critical areas will make human health at risk and impede the progress on nanomedicine development. However, sensible further researches into these areas will undoubtedly contribute to the public health and development of pharmaceuticals for drug delivery and cancer treatment.

741 Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (51521006, 51178171, 51378190, and 51579099), the Environmental Protection Technology Research Program of Hunan (2007185) and the Program for Changjiang Scholars and Innovative Research Team in University (IRT-13R17).

746 **References**

747	1.	S. Zhang, Y. Jiang, C.S. Chen, J. Spurgin, K.A. Schwehr, A. Quigg, W.C. Chin
748		and P.H. Santschi, Environ. Sci. Technol., 2012, 46, 8764-8772.
749	2.	J.L. Gong, B. Wang, G.M. Zeng, C.P. Yang, C.G. Niu, Q.Y. Niu, W.J. Zhou and
750		Y. Liang, J. Hazard. Mater., 2009, 164, 1517-1522.

- 751 3. R. Zhang, F. Yan, Y. Huang, D. Kong, Q. Ye, J. Xu and L. Chen, *Rsc Adv.*,
 752 2016, 6, 50732-50760.
- J. Mal, Y.V. Nancharaiah, E.D. van Hullebusch and P.N.L. Lens, *Rsc Adv.*,
 2016, 6, 41477-41495.
- 5. S.A. Lim and M.U. Ahmed, *Rsc Adv.*, 2016, **6**, 24995-25014.
- 756 6. F. Chen and D. Gerion, *Nano Lett.*, 2004, **4**, 1827-1832.
- 757 7. R. Hardman, *Environ. Health Persp.*, 2006, 165-172.

758	8.	S. Coe-Sullivan, Nat. Photon., 2009, 3, 315-316.
759	9.	S.M. Ng, M. Koneswaran and R. Narayanaswamy, Rsc Adv., 2016, 6,
760		21624-21661.
761	10.	M. Ganguly, J. Jana, A. Pal and T. Pal, Rsc Adv., 2016, 6, 17683-17703.
762	11.	S. Kim, B. Fisher, H.J. Eisler and M. Bawendi, J. Am. Chem. Soc., 2003, 125,
763		11466-11467.
764	12.	G. Zeng, M. Chen and Z. Zeng, Nature, 2013, 499, 154-154.
765	13.	G. Zeng, M. Chen and Z. Zeng, Science, 2013, 340, 1403.
766	14.	F. Ahmad, A.K. Pandey, A.B. Herzog, J.B. Rose, C.P. Gerba and S.A.
767		Hashsham, J. Nanopart. Res., 2012, 14, 1-24.
768	15.	F.A. Esteve-Turrillas and A. Abad-Fuentes, Biosens. Bioelectron., 2013, 41,
769		12-29.
770	16.	C. Frigerio, D.S.M. Ribeiro, S.S.M. Rodrigues, V.L.R.G. Abreu, J.A.C.
771		Barbosa, J.A.V. Prior, K.L. Marques and J.L.M. Santos, Anal. Chim. Acta,
772		2012, 735 , 9-22.
773	17.	I.L. Medintz, H.T. Uyeda, E.R. Goldman and H. Mattoussi, Nat. Mater., 2005,
774		4 , 435-446.
775	18.	C. Murray, D.J. Norris and M.G. Bawendi, J. Am. Chem. Soc., 1993, 115,
776		8706-8715.
777	19.	D. Vasudevan, R.R. Gaddam, A. Trinchi and I. Cole, J. Alloy. Comp., 2015,
778		636 , 395-404.
779	20.	P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei,
780		C. Huang, G.X. Xie and Z.F. Liu, Sci. Total Environ., 2012, 424, 1-10.
781	21.	W.W. Yu, Y.A. Wang and X. Peng, Chem. Mater., 2003, 15, 4300-4308.
782	22.	W.W. Yu, L. Qu, W. Guo and X. Peng, Chem. Mater., 2003, 15, 2854-2860.
783	23.	D.A.G. Navarro, 3475351 Ph.D., State University of New York at Buffalo,
784		2011.
785	24.	V.I. Slaveykova and K. Startchev, Environ. Pollut., 2009, 157, 3445-3450.
786	25.	Y. Zhang, Y. Chen, P. Westerhoff and J. C. Crittenden, Environ. Sci. Technol.,
787		2008, 42 , 321-325.

788	26.	R.F. Domingos, D.F. Simon, C. Hauser and K.J. Wilkinson, Environ. Sci.
789		Technol., 2011, 45 , 7664-7669.
790	27.	S. Mahendra, H. Zhu, V.L. Colvin and P.J. Alvarez, Environ. Sci. Technol.,
791		2008, 42 , 9424-9430.
792	28.	Q. Wang, T. Fang, P. Liu, X. Min and X. Li, J. Colloid Inter. Sci., 2011, 363,
793		476-480.
794	29.	J. Lee, K. Ji, J. Kim, C. Park, K.H. Lim, T.H. Yoon and K. Choi, Environ.
795		<i>Toxicol.</i> , 2010, 25 , 593-600.
796	30.	Y. Wang, R. Hu, G. Lin, I. Roy and KT. Yong, ACS Appl. Mater. Inter., 2013,
797		5, 2786-2799.
798	31.	Y. Li, W. Zhang, K. Li, Y. Yao, J. Niu and Y. Chen, Environ. Pollut., 2012,
799		164 , 259-266.
800	32.	A.M. Derfus, W.C.W. Chan and S.N. Bhatia, Nano Lett., 2004, 4, 11-18.
801	33.	M. Green and E. Howman, Chem. Commun., 2005, 121-123.
802	34.	C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A. Muñoz Javier, H.E. Gaub, S.
803		Stölzle, N. Fertig and W.J. Parak, Nano Lett., 2005, 5, 331-338.
804	35.	J. Lovrić, S.J. Cho, F.M. Winnik and D. Maysinger, Chem. Biol., 2005, 12,
805		1227-1234.
806	36.	W.J. Parak, T. Pellegrino and C. Plank, Nanotechnology, 2005, 16, R9.
807	37.	B.I. Ipe, M. Lehnig and C.M. Niemeyer, Small, 2005, 1, 706-709.
808	38.	J. Liang, Z. He, S. Zhang, S. Huang, X. Ai, H. Yang and H. Han, Talanta,
809		2007, 71 , 1675-1678.
810	39.	E.Q. Contreras, M. Cho, H. Zhu, H.L. Puppala, G. Escalera, W. Zhong and
811		V.L. Colvin, Environ. Sci. Technol., 2012, 47, 1148-1154.
812	40.	P.N. Wiecinski, K.M. Metz, T.C. King Heiden, K.M. Louis, A.N. Mangham,
813		R.J. Hamers, W. Heideman, R.E. Peterson and J.A. Pedersen, Environ. Sci.
814		Technol., 2013, 47 , 9132-9139.
815	41.	S.H. Cheng, A.W.K. Wai, C.H. So and R.S.S. Wu, Environ. Toxicol. Chem.,
816		2000, 19 , 3024-3031.
817	42.	E.S.H. Chow and S.H. Cheng, Toxicol. Sci., 2003, 73, 149-159.

818	43.	A. Kermanizadeh, D. Balharry, H. Wallin, S. Loft and P. Møller, Crit. Rev.
819		<i>Toxicol.</i> , 2015, 45 , 837-872.
820	44.	P. Juzenas, W. Chen, Y.P. Sun, M.A.N. Coelho, R. Generalov, N. Generalova
821		and I.L. Christensen, Adv. Drug Deliver. Rev., 2008, 60, 1600-1614.
822	45.	B.A. Rzigalinski and J.S. Strobl, Toxicol. Appl. Pharm., 2009, 238, 280-288.
823	46.	A.M. Smith, H. Duan, A.M. Mohs and S. Nie, Adv. Drug Deliver. Rev., 2008,
824		60 , 1226-1240.
825	47.	P. Alivisatos, Nat. Biotechnol., 2004, 22, 47-52.
826	48.	Y. Li, J. Xu and C. Sun, <i>Rsc Adv.</i> , 2015, 5, 1125-1147.
827	49.	S.Y. Lim, W. Shen and Z. Gao, Chem. Soc. Rev., 2015, 44, 362-381.
828	50.	V. Biju, T. Itoh, A. Anas, A. Sujith and M. Ishikawa, Anal. Bioanal. Chem.,
829		2008, 391 , 2469-2495.
830	51.	H. Pan, S. Zhu, X. Lou, L. Mao, J. Lin, F. Tian and D. Zhang, Rsc Adv., 2015,
831		5 , 6543-6552.
832	52.	X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich and A.P.
833		Alivisatos, Nature, 2000, 404, 59-61.
834	53.	O. Carion, B. Mahler, T. Pons and B. Dubertret, Nat. Protoc., 2007, 2,
835		2383-2390.
836	54.	A.R. Clapp, I.L. Medintz and H. Mattoussi, ChemPhysChem, 2006, 7, 47-57.
837	55.	Z.A. Peng and X. Peng, J. Am. Chem. Soc., 2001, 123, 183-184.
838	56.	J.B. Katari, V.L. Colvin and A.P. Alivisatos, J. Phys. Chem., 1994, 98,
839		4109-4117.
840	57.	D.V. Talapin, A.L. Rogach, M. Haase and H. Weller, J. Phys. Chem. B, 2001,
841		105 , 12278-12285.
842	58.	L. Cui, X.P. He and G.R. Chen, Rsc Adv., 2015, 5, 26644-26653.
843	59.	I. Costas-Mora, V. Romero, I. Lavilla and C. Bendicho, TrAC Trend. Anal.
844		Chem., 2014, 57 , 64-72.
845	60.	Y. Chen and Z. Rosenzweig, Anal. Chem., 2002, 74, 5132-5138.
846	61.	X.H. Li, Z. Xie, H. Min, C. Li, M. Liu, Y. Xian and L. Jin, <i>Electroanalysis</i> ,
847		2006, 18 , 2163-2167.

848	62.	T. Vossmeyer, L. Katsikas, M. Giersig, I. Popovic, K. Diesner, A.
849		Chemseddine, A. Eychmüller and H. Weller, J. Phys. Chem., 1994, 98,
850		7665-7673.
851	63.	H. Bao, Y. Gong, Z. Li and M. Gao, Chem. Mater., 2004, 16, 3853-3859.
852	64.	Y. Chen, H.L. Ren, N. Liu, N. Sai, X. Liu, Z. Liu, Z. Gao and B.A. Ning, J.
853		Agricul. Food Chem., 2010, 58 , 8895-8903.
854	65.	C. Wang, X. Gao, Q. Ma and X. Su, J. Mater. Chem., 2009, 19, 7016-7022.
855	66.	W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu and X. Chen, Chem. Soc. Rev.,
856		2015, 44 , 1379-1415.
857	67.	Z. Fan, S. Li, F. Yuan and L. Fan, Rsc Adv., 2015, 5, 19773-19789.
858	68.	O.S. Wolfbeis, Chem. Soc. Rev., 2015, 44, 4743-4768.
859	69.	Z. Xiao, D. Liu, Z. Tang, H. Li and M. Yuan, Mater. Lett., 2015, 148, 126-129.
860	70.	J.B. Blanco-Canosa, M. Wu, K. Susumu, E. Petryayeva, T.L. Jennings, P.E.
861		Dawson, W.R. Algar and I.L. Medintz, Coord. Chem. Rev., 2014, 263,
862		101-137.
863	71.	H. Kuang, Y. Zhao, W. Ma, L. Xu, L. Wang and C. Xu, TrAC Trend. Anal.
864		<i>Chem.</i> , 2011, 30 , 1620-1636.
865	72.	K.D. Wegner and N. Hildebrandt, Chem. Soc. Rev., 2015, 44, 4792-4834.
866	73.	I.Y. Goryacheva, E.S. Speranskaya, V.V. Goftman, D. Tang and S. De Saeger,
867		TrAC Trend. Anal. Chem., 2015, 66, 53-62.
868	74.	A.S. Karakoti, R. Shukla, R. Shanker and S. Singh, Adv. Colloid Inter. Sci.,
869		2015, 215 , 28-45.
870	75.	S. Mardyani and W.C.W. Chan, J. Mater. Chem., 2009, 19, 6321-6323.
871	76.	C.Y. Zhang and L.W. Johnson, J. Am. Chem. Soc., 2008, 130, 3750-3751.
872	77.	B. Hess, I. Okhrimenko, R. Davis, B. Stevens, Q. Schulzke, K. Wright, C.
873		Bass, C. Evans and S. Summers, Phys. Rev. Lett., 2001, 86, 3132.
874	78.	T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani and A.M. Seifalian,
875		Biomaterials, 2007, 28, 4717-4732.
876	79.	L. Manna, E.C. Scher, L.S. Li and A.P. Alivisatos, J. Am. Chem. Soc., 2002,
877		124 , 7136-7145.

878	80.	J. Kloepfer, R. Mielke and J. Nadeau, Appl. Environ. Microb., 2005, 71,
879		2548-2557.
880	81.	S. Singh, A. Sharma and G.P. Robertson, Cancer Res., 2012, 72, 5663-5668.
881	82.	M. Saleem and K.H. Lee, <i>Rsc Adv.</i> , 2015, 5 , 72150-72287.
882	83.	M.N. Nadagouda and R.S. Varma, Crystal Growth Design, 2007, 7,
883		2582-2587.
884	84.	N. Chen, Y. He, Y. Su, X. Li, Q. Huang, H. Wang, X. Zhang, R. Tai and C.
885		Fan, Biomaterials, 2012, 33, 1238-1244.
886	85.	Y. Su, F. Peng, Z. Jiang, Y. Zhong, Y. Lu, X. Jiang, Q. Huang, C. Fan, S.T. Lee
887		and Y. He, Biomaterials, 2011, 32, 5855-5862.
888	86.	S.S. Banerjee and D.H. Chen, Chem. Mater., 2007, 19, 6345-6349.
889	87.	Y. He, Z.H. Kang, Q.S. Li, C.H.A. Tsang, C.H. Fan and S.T. Lee, Angew.
890		Chem., 2009, 121 , 134-138.
891	88.	C. Bullen and P. Mulvaney, Langmuir, 2006, 22, 3007-3013.
892	89.	M. Green, J. Mater. Chem., 2010, 20, 5797-5809.
893	90.	C. Yang, X. Sun and B. Liu, Anal. Chim. Acta, 2012, 746, 90-97.
894	91.	Y. Shen, L. Li, Q. Lu, J. Ji, R. Fei, J. Zhang, E. Abdel-Halim and J.J. Zhu,
895		Chem. Commun., 2012, 48, 2222-2224.
896	92.	Y. Li, J. Zhou, C. Liu and H. Li, J. Mater. Chem., 2012, 22, 2507-2511.
897	93.	Z.B. Shang, S. Hu, Y. Wang and W.J. Jin, <i>Luminescence</i> , 2011, 26, 585-591.
898	94.	B. Dubertret, P. Skourides, D.J. Norris, V. Noireaux, A.H. Brivanlou and A.
899		Libchaber, Science, 2002, 298, 1759-1762.
900	95.	E. Lifshitz, H. Porteanu, A. Glozman, H. Weller, M. Pflughoefft and A.
901		Echymüller, J. Phys. Chem. B, 1999, 103, 6870-6875.
902	96.	D. Schooss, A. Mews, A. Eychmüller and H. Weller, Phys. Rev. B, 1994, 49,
903		17072.
904	97.	I.K. Herrmann, R.N. Grass, D. Mazunin and W.J. Stark, Chem. Mater., 2009,
905		21 , 3275-3281.
906	98.	L. Sun, J. Wang and Z. Wang, Nanoscale, 2010, 2, 269-276.
907	99.	S. Xuan, Y.X.J. Wang, J.C. Yu and K.C.F. Leung, <i>Langmuir</i> , 2009, 25 , 43

000		11025 11042
908	100	
909	100.	L. Wang, J. Bai, Y. Li and Y. Huang, Angew. Chem. Inter. Edition., 2008, 47,
910		2439-2442.
911	101.	S. Silvi and A. Credi, Chem. Soc. Rev., 2015, 44, 4275-4289.
912	102.	H. Chen, D. Shi, Y. Wang, L. Zhang, Q. Zhang, B. Wang and C. Xia, Rsc Adv.,
913		2015, 5 , 79572-79584.
914	103.	A. P. Subramanian, S.K. Jaganathan and E. Supriyanto, Rsc Adv., 2015, 5,
915		72638-72652.
916	104.	K.M. Tsoi, Q. Dai, B.A. Alman and W.C.W. Chan, Accounts. Chem. Res.,
917		2013, 46 , 662-671.
918	105.	N.T. Thanh and L.A. Green, Nano Today, 2010, 5, 213-230.
919	106.	Q. Wang, Y. Kuo, Y. Wang, G. Shin, C. Ruengruglikit and Q. Huang, J. Phys.
920		Chem. B, 2006, 110 , 16860-16866.
921	107.	B.A. Kairdolf, M.C. Mancini, A.M. Smith and S. Nie, Anal. Chem., 2008, 80,
922		3029-3034.
923	108.	D. Bera, L. Qian, T.K. Tseng and P.H. Holloway, Materials, 2010, 3,
924		2260-2345.
925	109.	N.I. Hammer, T. Emrick and M.D. Barnes, Nanoscale Res. Lett., 2007, 2,
926		282-290.
927	110.	B.C. Mei, K. Susumu, I.L. Medintz, J.B. Delehanty, T. Mountziaris and H.
928		Mattoussi, J. Mater. Chem., 2008, 18, 4949-4958.
929	111.	C. Olsson, 2009.
930	112.	Y. Zhang and A. Clapp, Sensors, 2011, 11, 11036-11055.
931	113.	M.T. Fernández-Argüelles, A. Yakovlev, R.A. Sperling, C. Luccardini, S.
932		Gaillard, A. Sanz Medel, J.M. Mallet, J.C. Brochon, A. Feltz and M. Oheim,
933		Nano Lett., 2007, 7, 2613-2617.
934	114.	Y. Yan, S. Wang, Z. Liu, H. Wang and D. Huang, Anal. Chem., 2010, 82,
935		9775-9781.
936	115.	T. Pellegrino, L. Manna, S. Kudera, T. Liedl, D. Koktysh, A.L. Rogach, S.
937		Keller, J. Rädler, G. Natile and W.J. Parak, Nano Lett., 2004, 4, 703-707.

938	116.	R.A. Sperling and W.J. Parak, <i>Philosophical Transactions of the Royal Society</i>
939		of London A: Mathematical, Physical and Engineering Sciences, 2010, 368,
940		1333-1383.
941	117.	K. Susumu, H.T. Uyeda, I.L. Medintz, T. Pons, J.B. Delehanty and H.
942		Mattoussi, J. Am. Chem. Soc., 2007, 129, 13987-13996.
943	118.	D.A. Hines and P.V. Kamat, J. Phys. Chem. C, 2013, 117, 14418-14426.
944	119.	S. Huang, Q. Xiao, Z.K. He, Y. Liu, P. Tinnefeld, X.R. Su and X.N. Peng,
945		Chem. Commun., 2008, 5990-5992.
946	120.	D. Yu, Z. Wang, Y. Liu, L. Jin, Y. Cheng, J. Zhou and S. Cao, Enzym. Microb.
947		Technol., 2007, 41 , 127-132.
948	121.	H.D. Duong and J.I. Rhee, Talanta, 2007, 73, 899-905.
949	122.	A. Samanta, Z. Deng, Y. Liu and H. Yan, Nano Res., 2013, 6, 853-870.
950	123.	S. Kim, Y.T. Lim, E.G. Soltesz, A.M. De Grand, J. Lee, A. Nakayama, J.A.
951		Parker, T. Mihaljevic, R.G. Laurence, D.M. Dor, L.H. Cohn, M.G. Bawendi
952		and J.V. Frangioni, Nat. Biotech., 2004, 22, 93-97.
953	124.	H. Kobayashi, Y. Hama, Y. Koyama, T. Barrett, C.A. Regino, Y. Urano and P.
954		L. Choyke, Nano Lett., 2007, 7, 1711-1716.
955	125.	J. Ma, J.Y. Chen, Y. Zhang, P.N. Wang, J. Guo, W.L. Yang and C.C. Wang, J.
956		Phys. Chem. B, 2007, 111, 12012-12016.
957	126.	B. Daglar, E. Ozgur, M.E. Corman, L. Uzun and G.B. Demirel, Rsc Adv., 2014,
958		4 , 48639-48659.
959	127.	Y. Su and Y. Lv, <i>Rsc Adv.</i> , 2014, 4 , 29324-29339.
960	128.	Y. Song, S. Zhu and B. Yang, Rsc Adv., 2014, 4, 27184-27200.
961	129.	K. Pechstedt, T. Whittle, J. Baumberg and T. Melvin, J. Phys. Chem. C, 2010,
962		114 , 12069-12077.
963	130.	Y. Zhang, L. Mi, P.N. Wang, J. Ma and J.Y. Chen, J. Lumin., 2008, 128,
964		1948-1951.
965	131.	H. Chen, L. Lin, H. Li and J.M. Lin, Coordin. Chem. Rev., 2014, 263-264,
966		86-100.
967	132.	S.K. Singh, Rsc Adv., 2014, 4, 58674-58698.

968	133.	A. Mandal and N. Tamai, J. Phys. Chem. C, 2008, 112, 8244-8250.
969	134.	Y. Yang, H. Zhu, V.L. Colvin and P.J. Alvarez, Environ. Sci. Technol., 2011,
970		45 , 4988-4994.
971	135.	K.M. Metz, A.N. Mangham, M.J. Bierman, S. Jin, R.J. Hamers and J.A.
972		Pedersen, Environ. Sci. Technol., 2009, 43, 1598-1604.
973	136.	W. Guo, J.J. Li, Y.A. Wang and X. Peng, J. Am. Chem. Soc., 2003, 125,
974		3901-3909.
975	137.	G. Li, Y. Wang and L. Mao, Rsc Adv., 2014, 4, 53649-53661.
976	138.	E.S. Shibu, M. Hamada, S. Nakanishi, S.I. Wakida and V. Biju, Coordin.
977		Chem. Rev., 2014, 263–264, 2-12.
978	139.	N.F. Crawford and R.M. Leblanc, Coordin. Chem. Rev., 2014, 263-264,
979		13-24.
980	140.	A.R. Petosa, D.P. Jaisi, I.R. Quevedo, M. Elimelech and N. Tufenkji, Environ.
981		Sci. Technol., 2010, 44, 6532-6549.
982	141.	J.H. Priester, P.K. Stoimenov, R.E. Mielke, S.M. Webb, C. Ehrhardt, J.P.
983		Zhang, G.D. Stucky and P.A. Holden, Environ. Sci. Technol., 2009, 43,
984		2589-2594.
985	142.	R.F. Domingos, M.A. Baalousha, Y. Ju-Nam, M.M. Reid, N. Tufenkji, J.R.
986		Lead, G.G. Leppard and K.J. Wilkinson, Environ. Sci. Technol., 2009, 43,
987		7277-7284.
988	143.	Z. Zhelev, R. Bakalova, H. Ohba, R. Jose, Y. Imai and Y. Baba, Anal. Chem.,
989		2006, 78 , 321-330.
990	144.	J. Pichaandi and F.C.J.M. van Veggel, Coordin. Chem. Rev., 2014, 263-264,
991		138-150.
992	145.	I.R. Quevedo and N. Tufenkji, Environ. Sci. Technol., 2009, 43, 3176-3182.
993	146.	I.R. Quevedo and N. Tufenkji, Environ. Sci. Technol., 2012, 46, 4449-4457.
994	147.	K.L. Chen, S.E. Mylon and M. Elimelech, Environ. Sci. Technol., 2006, 40,
995		1516-1523.
996	148.	S. Torkzaban, S.A. Bradford, J. Wan, T. Tokunaga and A. Masoudih, Environ.
997		<i>Sci. Technol.</i> , 2013, 47 , 11528-11536. 46

998	149.	I.R. Quevedo, A.L.J. Olsson and N. Tufenkji, Environ. Sci. Technol., 2013, 47,
999		2212-2220.
1000	150.	K.A. Dunphy Guzmán, M.R. Taylor and J.F. Banfield, Environ. Sci. Technol.,
1001		2006, 40 , 1401-1407.
1002	151.	H.F. Lecoanet and M.R. Wiesner, Environ. Sci. Technol., 2004, 38, 4377-4382.
1003	152.	Q. Li, B. Xie, Y.S. Hwang and Y. Xu, Environ. Sci. Technol., 2009, 43,
1004		3574-3579.
1005	153.	W.W. Tang, G.M. Zeng, J.L. Gong, J. Liang, P. Xu, C. Zhang and B.B. Huang,
1006		Sci. Total Environ., 2014, 468–469, 1014-1027.
1007	154.	A. Quigg, W.C. Chin, C.S. Chen, S. Zhang, Y. Jiang, A.J. Miao, K.A. Schwehr,
1008		C. Xu and P. H. Santschi, ACS Sustain. Chem. Eng., 2013, 1, 686-702.
1009	155.	J. Chang and E.R. Waclawik, Rsc Adv., 2014, 4, 23505-23527.
1010	156.	M.D. Celiz, L.A. Colón, D.F. Watson and D.S. Aga, Environ. Sci. Technol.,
1011		2011, 45 , 2917-2924.
1012	157.	D.A. Navarro, S. Banerjee, D.F. Watson and D.S. Aga, Environ. Sci. Technol.,
1013		2011, 45 , 6343-6349.
1014	158.	D.A.G. Navarro, D.F. Watson, D.S. Aga and S. Banerjee, Environ. Sci.
1015		<i>Technol.</i> , 2009, 43 , 677-682.
1016	159.	A.A. Keller, H. Wang, D. Zhou, H.S. Lenihan, G. Cherr, B.J. Cardinale, R.
1017		Miller and Z. Ji, Environ. Sci. Technol., 2010, 44, 1962-1967.
1018	160.	P.H. Santschi, E. Balnois, K.J. Wilkinson, J. Zhang and J. Buffle, Limnol.
1019		Oceanogr., 1998, 43, 896-908.
1020	161.	J. Buffle, K.J. Wilkinson, S. Stoll, M. Filella and J. Zhang, Environ. Sci.
1021		Technol., 1998, 32 , 2887-2899.
1022	162.	A. Feswick, R.J. Griffitt, K. Siebein and D.S. Barber, Aquat. Toxicol., 2013,
1023		130–131 , 210-218.
1024	163.	J.B. Blanco-Canosa, M. Wu, K. Susumu, E. Petryayeva, T.L. Jennings, P.E.
1025		Dawson, W.R. Algar and I.L. Medintz, Coordin. Chem. Rev., 2014, 263-264,
1026		101-137.
1027	164.	A.S. Gong, C.A. Lanzl, D.M. Cwiertny and S.L. Walker, <i>Environ. Sci.</i> 47

1028		Technol., 2012, 46 , 241-249.
1029	165.	T.C. King-Heiden, P.N. Wiecinski, A.N. Mangham, K.M. Metz, D. Nesbit,
1030		J.A. Pedersen, R.J. Hamers, W. Heideman and R.E. Peterson, Environ. Sci.
1031		Technol., 2009, 43 , 1605-1611.
1032	166.	M. Horie, H. Kato, K. Fujita, S. Endoh and H. Iwahashi, Chem. Res. Toxicol.,
1033		2012, 25 , 605-619.
1034	167.	X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G.
1035		Sundaresan, A.M. Wu, S.S. Gambhir and S. Weiss, Science, 2005, 307,
1036		538-544.
1037	168.	P.G. Luo, F. Yang, S.T. Yang, S.K. Sonkar, L. Yang, J.J. Broglie, Y. Liu and
1038		Y.P. Sun, Rsc Adv., 2014, 4, 10791-10807.
1039	169.	M. Yu and J. Zheng, Acs Nano, 2015, 9, 6655-6674.
1040	170.	F.M. Winnik and D. Maysinger, Account. Chem. Res., 2013, 46, 672-680.
1041	171.	F. Wang, L. Shu, J. Wang, X. Pan, R. Huang, Y. Lin and X. Cai, Curr. Drug
1042		Metab., 2013, 14, 847-856.
1043	172.	B.A. Rzigalinski, K. Meehan, R.M. Davis, Y. Xu, W.C. Miles and C.A. Cohen,
1044		Nanomedicine, 2006, 1, 399-412.
1045	173.	V. Srivastava, D. Gusain and Y.C. Sharma, Ind. Eng. Chem. Res., 2015, 54,
1046		6209-6233.
1047	174.	J.L. Pelley, A.S. Daar and M.A. Saner, <i>Toxicol. Sci.</i> , 2009, 112 , 276-296.
1048	175.	J. Lovrić, H. Bazzi, Y. Cuie, G.A. Fortin, F. Winnik and D. Maysinger, J. Mol.
1049		Med., 2005, 83 , 377-385.
1050	176.	G.Q. Chen, Z.J. Zou, G.M. Zeng, M. Yan, J.Q. Fan, A.W. Chen, F. Yang, W.J.
1051		Zhang and L. Wang, Chemosphere, 2011, 83, 1201-1207.
1052	177.	G. Chen, B. Yi, G. Zeng, Q. Niu, M. Yan, A. Chen, J. Du, J. Huang and Q.
1053		Zhang, Colloid. Surf. B: Biointerfaces, 2014, 117, 199-205.
1054	178.	Y. Wang, A.J. Miao, J. Luo, Z.B. Wei, J.J. Zhu and L.Y. Yang, Environ. Sci.
1055		Technol., 2013, 47 , 10601-10610.
1056	179.	M. Zhu, G. Nie, H. Meng, T. Xia, A. Nel and Y. Zhao, Account. Chem. Res.,
1057		2012, 46 , 622-631. 48

Page 49 of 51

1058	180.	T.G. Iversen, T. Skotland and K. Sandvig, Nano Today, 2011, 6, 176-185.
1059	181.	S. Mayor and R.E. Pagano, Nat. Rev. Mol. Cell Biol., 2007, 8, 603-612.
1060	182.	X. Zhao, Y. Wu, D. Gallego-Perez, K.J. Kwak, C. Gupta, X. Ouyang and L.J.
1061		Lee, Anal. Chem., 2015, 87, 3208-3215.
1062	183.	Y. Su, M. Hu, C. Fan, Y. He, Q. Li, W. Li, L.H. Wang, P. Shen and Q. Huang,
1063		<i>Biomaterials</i> , 2010, 31 , 4829-4834.
1064	184.	D. Soni, P.K. Naoghare, S. Saravanadevi and R.A. Pandey, in Reviews of
1065		environmental contamination and toxicology, Springer, 2015, pp. 1-47.
1066	185.	K. Peynshaert, B.B. Manshian, F. Joris, K. Braeckmans, S.C. De Smedt, J.
1067		Demeester and S.J. Soenen, Chem. Rev., 2014, 114, 7581-7609.
1068	186.	A.C.S. Samia, X. Chen and C. Burda, J. Am. Chem. Soc., 2003, 125,
1069		15736-15737.
1070	187.	M. Tarantola, D. Schneider, E. Sunnick, H. Adam, S. Pierrat, C. Rosman, V.
1071		Breus, C. Sönnichsen, T. Basché, J. Wegener and A. Janshoff, ACS Nano,
1072		2009, 3 , 213-222.
1073	188.	C. Ma, J.C. White, O.P. Dhankher and B. Xing, Environ. Sci. Technol., 2015,
1074		49 , 7109-7122.
1075	189.	R. Bilan, F. Fleury, I. Nabiev and A. Sukhanova, Bioconjugate Chem., 2015,
1076		26 , 609-624.
1077	190.	S.J. Cho, D. Maysinger, M. Jain, B. Röder, S. Hackbarth and F.M. Winnik,
1078		Langmuir, 2007, 23, 1974-1980.
1079	191.	A. Choi, S.J. Cho, J. Desbarats, J. Lovric and D. Maysinger, J. Nanobiotech.,
1080		2007, 5, 1.
1081	192.	G.M. Zeng, A.W. Chen, G.Q. Chen, X.J. Hu, S. Guan, C. Shang, L.H. Lu and
1082		Z.J. Zou, Environ. Sci. Technol., 2012, 46, 7818-7825.
1083	193.	M. Marmiroli, L. Pagano, M.L. Savo Sardaro, M. Villani and N. Marmiroli,
1084		Environ. Sci. Technol., 2014, 48, 5902-5909.
1085	194.	M. Tang, T. Xing, J. Zeng, H. Wang, C. Li, S. Yin, D. Yan, H. Deng, J. Liu, M.
1086		Wang, J. Chen and D.Y. Ruan, Environ. Health Persp., 2008, 116, 915-922.
1087	195.	Y. Yang, J.M. Mathieu, S. Chattopadhyay, J.T. Miller, T. Wu, T. Shibata, W. 49

1088		Guo and P.J.J. Alvarez, ACS Nano, 2012, 6, 6091-6098.
1089	196.	M.J. Clift and V. Stone, Theranostics, 2012, 2, 668.
1090	197.	A. Hoshino, K. Fujioka, T. Oku, M. Suga, Y.F. Sasaki, T. Ohta, M. Yasuhara,
1091		K. Suzuki and K. Yamamoto, Nano Lett., 2004, 4, 2163-2169.
1092	198.	J. Lee, S. Mahendra and P.J.J. Alvarez, ACS Nano, 2010, 4, 3580-3590.
1093	199.	K.B. Male, B. Lachance, S. Hrapovic, G. Sunahara and J.H.T. Luong, Anal.
1094		Chem., 2008, 80 , 5487-5493.
1095	200.	T. Zhang, J.L. Stilwell, D. Gerion, L. Ding, O. Elboudwarej, P.A. Cooke, J.W.
1096		Gray, A.P. Alivisatos and F.F. Chen, Nano Lett., 2006, 6, 800-808.
1097	201.	Y. Zhang, J. He, P.N. Wang, J.Y. Chen, Z.J. Lu, D.R. Lu, J. Guo, C.C. Wang
1098		and W.L. Yang, J. Am. Chem. Soc., 2006, 128, 13396-13401.
1099	202.	J. Aldana, Y.A. Wang and X. Peng, J. Am. Chem. Soc., 2001, 123, 8844-8850.
1100	203.	J.A. Kloepfer, R.E. Mielke, M.S. Wong, K.H. Nealson, G. Stucky and J.L.
1101		Nadeau, Appl. Environ. Microb., 2003, 69, 4205-4213.
1102	204.	X. Gao, Y. Cui, R. Levenson, L. Chung and S. Nie, Nat. Biotechnol., 2004, 22,
1103		969-976.
1104	205.	A. Hoshino, K.I. Hanaki, K. Suzuki and K. Yamamoto, Biochem. Biophys.
1105		Res. Commun., 2004, 314 , 46-53.
1106	206.	J.K. Jaiswal, H. Mattoussi, J.M. Mauro and S.M. Simon, Nat. Biotech., 2003,
1107		21 , 47-51.
1108	207.	E.B. Voura, J.K. Jaiswal, H. Mattoussi and S.M. Simon, Nat. Med., 2004, 10,
1109		993-998.
1110	208.	J. Liu, F. Erogbogbo, K.T. Yong, L. Ye, J. Liu, R. Hu, H. Chen, Y. Hu, Y. Yang,
1111		J. Yang, I. Roy, N.A. Karker, M.T. Swihart and P.N. Prasad, ACS Nano, 2013,
1112		7, 7303-7310.
1113		

The fanaticism for metal-based QDs is somewhat diluted by the fact that it causes

risks in aquatic environment.