This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Mechanically synthesized SiO$_2$–Fe metal matrix composite for effective dechlorination of aqueous 2-chlorophenol: the optimum of the preparation conditions

Yunfei Zhanga,b, Bo Yangb,*, Jinhong Fana,*, and Luming Maa

a National Engineering Research Center for Urban Pollution Control, State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, P. R. China

b Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, 518060 Shenzhen, P. R. China

* Corresponding author. Tel.: +86-755-2673 2904; fax: +86-755-2653 6141.

E-mail address: boyang@szu.edu.cn (B. Yang), jinhongfan@tongji.edu.cn (J.H. Fan)
Abstract: In this study, the synthesized abrasives–reinforced metal matrix composites (MMCs) with a microscale size by ball milling (BM) could achieve highly active and stable dechlorination efficiency for aqueous 2-chlorophenol (2-CP). The preparation process of this composite via BM was optimized to obtain high degradation efficiency, especially for the effect of the abrasives including B₄C, SiC, α-Al₂O₃, SiO₂, Fe₃O₄ and Na₂SO₄. The results showed that the hardness of the abrasives in the Fe–based MMCs was closely related with their dechlorination performance. Subsequently, the optimal abrasive, i.e. SiO₂ was further investigated for its proper milling conditions with zero-valent iron (ZVI) particles including SiO₂ size, SiO₂ loading, milling time, and the dosage of the process control agent (PCA). Additionally, the influence of other metal categories including Al and Si was also investigated for dechlorination; and their low reaction efficiencies were closely related with their passivating film. Finally, the longevity test suggested that the decreased reactivity of the SiO₂–Fe MMC during the storage in air could be recovered when consecutively used, mainly due to the promoting effects of inherent structure of SiO₂–Fe MMC with the Fe/C and Fe/SiO₂ interfaces, as well as the effective regeneration of the reactive sites by continuous iron dissolution.

Keywords: 2-chlorophenol; Abrasives; Ball milling; Dechlorination; Iron metal matrix composite; Process control agent.
1. Introduction

Recently, the zero-valent iron (Fe0—ZVI) has been widely used for the reductive dechlorination of chlorinated organic compounds (COCs) under both laboratory and field conditions $^{1-4}$. By using ZVI as electron donor, many chloralkanes and chlorinated alkenes can be rapidly reduced into non-toxic or low toxic chlorine-free hydrocarbons. Some environmental remediation fields in USA have utilized this reductive material to purify the water containing short-chain COCs. For example, when groundwater passed through the permeable reactive barriers constructed by zero-valent iron (FePRBs), the short-chain COCs in the water would be effectively degraded into hydrocarbons $^5, 6$. However, the dechlorination rate for chlorinated aromatics is rather slow due to their recalcitrant properties, with half-lives of days or longer calculated by pseudo-first-order kinetics 7.

Lessening the size of Fe0 particles to nanoscale is one approach to enhance the dechlorination activity of iron. The nano zero-valent iron (nZVI) has been found to present much higher reactivity than conventional iron particles because of its higher surface area and denser active sites from its nanostructure 7. However, its preparation method usually entails the expensive sodium borohydride to reduce ferrous or ferric ion $^1, 7$ into ZVI. Moreover, nZVI particles are thermodynamically unstable in solution and tend to aggregate into micro to millimeter scale’s particles 7. Doping a second metal into iron, like Pd, Pt, Ni, and Cu, to form bimetallic catalyst is another approach to enhance the reactivity of iron $^8-10$. This enhancement is due to the accelerated iron corrosion by bimetallic galvanic couple and the generation of highly active atomic H* with the doped metal as the catalyst. However, the preparation cost of bimetals and potential leaching of the second metal into groundwater restrict their widely application 11.

3
Recently, particulate-reinforced metal matrix composites (p–MMCs) have attracted considerable attention in industries application \(^{12, 13}\). Those p–MMCs are synthesized by embedding a reinforcing material (such as Si\(_3\)N\(_4\), AlN, Al\(_2\)O\(_3\), quartz sand) into a monolithic metal matrix to improve the raw material properties \(^{14, 15}\). Compared with the nZVI and bimetals, the preparation of the Fe-based p–MMCs was usually much more convenient and cost-effective, as a result of availability of relatively inexpensive reinforcements, and the development of various processing routes \(^{16}\). For example, as a single step process, ball milling (BM) is a convenient and practical technique to homogeneously distribute reinforcement into metal matrix \(^{17}\). On the other hand, in the field of environmental technology, BM could be also used to produce highly active metallic materials by repeated welding, fracturing, and rewelding of the solid materials \(^{18}\). For example, Xu et al. \(^8\) recently utilized BM technique to prepare bimetallic Ni/Fe particles and used them to dechlorinate 4-chlorophenol in aqueous solution. As a result, Ni particles were dispersed homogeneously in Fe phase after BM and highly active and stable dechlorination efficiency was achieved by the ball-milled Ni/Fe particles. So, the use of BM to produce the Fe-based p–MMCs for the removal of environmental pollutants should be promising. However, to our knowledge, seldom such studies have been reported.

In this work, we attempted to directly prepare the ball-milled ZVI particles for dechlorination purpose only through mechanically adding abrasive without combining the second metal. This process actually provided a novel synthetic method of ZVI as the reductive material for the degradation of environmental pollutants. The performance of different reinforcement as abrasive was investigated by evaluating the dechlorination efficiency of the synthesized ZVI toward 2-chlorophenol. And the milling conditions were subsequently optimized. In addition, the dechlorination
performances of other zero-valent metals (including Al and Si particles) using the above ball-milling technique were also explored. Finally, the longevity performance of the SiO$_2$–Fe MMC was evaluated.

2. Materials and methods

2.1. Materials

Fe (>99%, 100 mesh), Al (>99%, 100 mesh), Si (>99%, 100 mesh) and iron(II) sulfate heptahydrate (FeSO$_4$·7H$_2$O) were purchased from Aladdin, Inc. Analytical-grade quartz sand (> 99%, 10–325 mesh), NaOH (98.0%), and HCl (36–38%) were obtained from Tianjing Tianli Chemical Reagent Co., Ltd., Tianjin Guangfu Technology Development Co., Ltd., and Dongguan Dongjiang Chemical Reagent Co., Ltd., respectively. Boron carbide (B$_4$C, >90%, 100 mesh), Silicon carbide (SiC, 98.5%, 100 mesh) and α-Alumina (α-Al$_2$O$_3$, 99.99%, 100 mesh) were supplied by Sinopharm Chemical Reagent Co., Ltd. 2-CP (99.9%) and phenol (99.9%) were procured from AccuStandard, Inc. HPLC-grade methanol and ethanol were acquired from TEDIA Co. All solutions were prepared using water with a resistance of 18.2 MΩ from a Millipore-Q system.

2.2. SiO$_2$–Fe MMC Prepared by Ball Milling

BM was carried out with a planetary ball mill (QM-3SP04, Nanjing University Instrument Corporation) at a rotation speed of 550 rpm without inert gas protection. Stainless vials (100 mL) as grinding container were fitted with two different sizes of stainless steel balls: 16 large balls (Φ10 mm) and 100 small balls (Φ6 mm). For each BM process, the materials added into the vial included 156 g of steel balls and 5 g of metal and reinforcement mixture. Unless otherwise stated, the weight ratio of metal powder to reinforcement was 9:1. Ethanol (6%, w/w) served as a control agent during BM. To prevent spontaneous combustion of the energetic powder, the container was
cooled down to room temperature before opening the container lid in air at the end of ball milling.

2.3. Characterization

The particle morphologies of the MMCs were characterized by scanning electron microscopy (SEM) (Hitachi S-3400N II). The BET surface areas (S_{BET}) of the samples were analyzed through nitrogen adsorption (NOVA 1200E). The size distribution of the SiO$_2$–Fe MMC was measured using a laser particle size analyzer (Mastersizer 3000, Malvern Instruments Ltd., UK).

2.4. Dechlorination of 2-CP and Analysis

Dechlorination was performed in a 100 mL three-neck flask attached with a pH meter (PHS-3C, Shanghai Precision & Scientific Instrument Co., Ltd.). A 50 mL aliquot of 2-CP solution with an initial pH=3.0 was added into the flask. Prior to reaction, 2 g of the milled powders was washed in 100 mL of H$_2$SO$_4$ solution (pH 1.0) for 10 min and rinsed three times with deionized water. Without drying, the washed SiO$_2$–Fe MMC particles were placed into the loosely capped flask, and the solution was continuously stirred at 220 rpm with a mechanical stirrer. All experiments were completed at room temperature (25 ± 2 °C) and ambient pressure. The concentrations of 2-CP and phenol as products were measured using an HPLC system14 (It is noted that no other further hydrogenation products such as cyclohexanone and cyclohexanol were found in GC-ECD analysis as reported in previous literature$^{19, 20}$). Data were plotted as mean of duplicates, and error bars indicate deviation from the mean.

2.5. SiO$_2$–Fe MMC Stability and Reusability

In order to test the stability of the SiO$_2$–Fe MMC during storage, the SiO$_2$–Fe MMC was directly exposed to air at room temperature (25 ± 2 °C). Six consecutive dechlorination cycles using the same SiO$_2$–Fe MMC (with a dose of 40 g/L) was
tested for estimate its reactivity toward 50 ppm 2-CP at initial pH=3.0 after storage for 10 days. Each cycle was conducted in a 50 mL serum bottle equipped with fresh 2-CP solution, an open-top screw cap, and PTFE-lined septa. After each cycle, the bottle was centrifuged at 5000 rpm for 5 min to separate the SiO$_2$–Fe particles from the aqueous phase. Subsequently, the used particles were rinsed with 50 mL deionized water; after centrifuged, the supernatant was emptied out. For each cycle, the reaction efficiencies for 2-CP removal were monitored and evaluated.

3. Results and Discussion

3.1. Effect of Abrasives

Different reinforcement materials (B$_4$C, SiC, α-Al$_2$O$_3$ and SiO$_2$) were milled with iron to investigate their effect on dechlorination efficiency of 2-CP. The Na$_2$SO$_4$ salt and the Fe$_3$O$_4$ oxide were also used as abrasives as comparison. As illustrated in Fig. 1, significantly higher dechlorination efficiency was achieved when using the reinforcement materials as abrasives. 78.2% remove efficiency was observed when iron milled with SiO$_2$. Even higher degradation efficiency was presented when employing B$_4$C, SiC and α-Al$_2$O$_3$, which could remove 99.1%, 98.7% and 98.7% of 2-CP during 120-min reaction, respectively. However, when iron milling with Fe$_3$O$_4$, no enhancements for 2-CP removal efficiency were observed compared with that of the iron milled without abrasives (11.6% and 13.6%, respectively). And as for Na$_2$SO$_4$, the remove efficiency was slightly higher, increased to 27.6%. The S_{BET} of the milled powders were also analyzed. As illustrated in Table 1, the observed dechlorination efficiency by those reactive materials agreed well with the trend of their surface area, i.e., B$_4$C–Fe ≈ SiC–Fe ≈ α-Al$_2$O$_3$–Fe > SiO$_2$–Fe > Na$_2$SO$_4$/Fe ≈ Fe$_3$O$_4$/Fe. Thus, the smaller iron particles could provide more active sites on the iron
surface for 2-CP adsorption and reaction, thereby increasing the activity for 2-CP dechlorination.

Fig. 1

The above difference of S_{BET} should be attributed to the different cutting abilities of abrasives for iron particles, which was closely related with their hardness. Yılmaz suggested that the harder the abrasive was, the faster and deeper cutting action it would provide and more quickly the milled particles would be ground into small particles. Table 1 listed the hardness index of the concerned abrasives using Mohs’ scale, whose magnitudes were well corresponding to their surface area except Fe$_3$O$_4$. Within Mohs’ scale from 1 to 10, B$_4$C, SiC and α-Al$_2$O$_3$ possess relatively higher values i.e., 9.5, 9.3~9.5 and 9.0, respectively, so their S_{BET} were the relatively high as shown in Table 1. In addition, SiO$_2$ (with a hardness of 7.0) system presented lower surface area than those of B$_4$C, SiC and α-Al$_2$O$_3$, which was also consistent with the order of hardness values, and so as for Na$_2$SO$_4$, which is 2.8.

Table 1

However, though Fe$_3$O$_4$ provided a higher hardness values as 6.0 than that of Na$_2$SO$_4$, it presented lower surface area and removal efficiency toward 2-CP. This was probably caused by the magnetic force between the Fe$_3$O$_4$ and iron particles. During the milling, the Fe$_3$O$_4$ and iron particles were prone to aggregate together and resulted in the formation of surface-passivating oxide layers (Fe$_3$O$_4$) on iron surface. So these oxide layers blocked the active sites on the iron surface and inhibited the dechlorination reaction. Additionally, previous studies demonstrated that the sulfate-containing system would also increase the sorption capacity of the COCs on iron surface, thus increasing the subsequent 2-CP removal efficiency. As a result,
using Na₂SO₄ as abrasives presented slightly higher removal efficiency than that of Fe₃O₄.

Based on above results, the reinforcement materials including B₄C, SiC, α-Al₂O₃ and SiO₂ are the appropriate abrasives to prepare highly efficient ZVI particles for the dechlorination of 2-CP. However, due to its low cost, SiO₂ was selected as the optimum abrasive in this system. Subsequently, the preparation conditions of the SiO₂–Fe MMC were further investigated in the following experiments.

3.2. Effect of SiO₂ Sizes and SiO₂ Loading

The reinforcement materials have important effects on the property of ball-milled material and the subsequent dechlorination efficiency, which provided a cutting action for iron in the milling process and also served as the interface for dechlorination reaction \(^{14}\). So, the effects of SiO₂ size and its loading on dechlorination efficiency were investigated. As illustrated in Fig. 2, the dechlorination efficiency increased with increasing the SiO₂ size. Generally, abrasives with relatively small size do not have a large cutting force, which is more suitable for grinding function to material polishing. So it was not favorable for effectively reducing the particle size of iron \(^{21, 28}\). Thus, lower removal efficiency for 2-CP appeared in the iron milled with smaller SiO₂ particles. Coronado et al. \(^{29}\) also reported that the wear rate of α-Al₂O₃ for Fe increased with increasing abrasives sizes until reaching a critical particle size (about 116 μm). Therefore, relatively large size of SiO₂ (10–20 mesh) as abrasive presented higher forming performance of ZVI particles and dechlorination efficiency.

Fig. 2

Fig. 3 shows the dechlorination efficiency of 2-CP using the SiO₂–Fe MMC prepared by different SiO₂ loading. It indicates that, even adding small fraction of
SiO$_2$ (5%), the remove efficiency of 2-CP was significantly increased (from 16.2% to 82.6%). And the highest remove efficiency was achieved for milling with 10% SiO$_2$ loading. However, further increase in SiO$_2$ content led to a reduction of 2-CP remove efficiency (especially from 20% to 40%). In fact, it can be inferred that the dechlorination reaction should be mainly occurred at the quartz sand/iron interfaces 14. In the reductive dechlorination reaction, the iron was the ultimate electron donor 30. The introducing of quartz sand in the iron matrix was not only favorable for the formation of discontinuous iron phase, thus promoting the iron dissolution and subsequent dechlorination reaction. The uniform distribution of the quartz sand could also retard the reactivity drop for the SiO$_2$–Fe MMC by separating the iron precipitates from formation of the dense oxide layers. As a result, the dechlorination efficiency of 2-CP increased due to the formation of more reactive sites with increasing the SiO$_2$ loading from 0% to 10%. However, too much SiO$_2$ loading would decrease the available electrons transferred from ZVI to 2-CP since the excessive SiO$_2$ in SiO$_2$–Fe MMC decreased the proportion of iron as electron donor during dechlorination 31. So, the 10% SiO$_2$ loading was the optimum adding ratio to prepare this MMC material for dechlorination. Therefore, the following studies adopted the 10% SiO$_2$ loading with a diameter of 10~20 mesh as ball-milling parameter.

Fig. 3

3.3. Effect of Milling Time and Amount of PCA

The BM is a solid-state powder processing involving repeated welding, fracturing, and rewelding of powder particles 18. Process variables in this method especially milling time, PCA amount have great influences on the final structure and morphology of the powders 26,32, so their influence on 2-CP dechlorination efficiency
was investigated. As illustrated in Table 2, the dechlorination efficiency increased with increasing the milling time from 0 h to 4 h. In the early stages of milling, the ductile iron particles tended to be deformed, whereas the brittle SiO₂ particles fractured into small particles; at this stage fracturing was dominant, the size of the milled powder became smaller. When longer time was applied, these flattened particles began to get cold welded together and form the aggregated particles. After a certain time of milling, the rate of welding is dynamically balanced with that of fracturing and the average particle size of the powders remains relatively unchanged \(^{33}\). On the other hand, previous studies have suggested the organic PCA tended to be decomposed into carbon with the proceeding of the milling and the addition of the quartz sand would accelerate the carbonization rate \(^{34}\). So, when iron and carbon particles are in contact, massive microscopic galvanic cells will be formed spontaneously between the iron (anode) and carbon (cathode), thus accelerating the iron dissolution and subsequent dechlorination reaction. Therefore, longer milling time benefited the carbonization of the PCA and the formation of smaller particle size \(^{32}\), so the 2-CP dechlorination efficiency was improved due to the formation of more Fe–C galvanic cell and more active sites in SiO₂–Fe system \(^{7,14,35}\). In consideration of activity and cost, 3 h was used to prepare the SiO₂–Fe MMC particles.

Table 2

In addition, the effect of PCA dosage on the degradation of 2-CP were also investigated. As illustrated in Table 2, increasing the PCA dosage from 0% to 6% significantly increased the dechlorination efficiency; however, the dechlorination efficiency was decreased when further increasing its dosage from 6% to 10%. This phenomenon could be explained by the dual effect of the PCA served during the
mechanical milling, i.e., (i) the carbon source and (ii) the lubricant. At the same milling time, higher PCA dosage was favorable for the formation of more Fe–C galvanic cells and promoted the following dechlorination reaction. However, when the dosage of PCA was larger than >6%, the dechlorination efficiency was decreased, probably because the milling time was not long enough to carbonize all PCA present. So, the remaining trapped PCA (ethanol) in the inherent structure of the MMC hindered the 2-CP adsorption and the subsequent dechlorination reaction. On the other hand, the balance between cold welding and fracturing requires a certain amount of PCA. When the ethanol was less than 6 wt.%, such as 1, 2 or 4 wt.%, its amount was not sufficient enough to cover the surfaces of the powder particles. As a result, the powders tend to cold-weld into large particles in the milling process, which would decrease the dechlorination efficiency due to the decreased active sites. However, an excess amount of PCA would decrease the effectiveness of ball-powder collisions. Because the lubricating effect of the PCA could make powder particles slide laterally easily during collision. Therefore, the optimized milling conditions for synthesizing the SiO$_2$–Fe MMC were determined by milling for 3 h with a 6% PCA addition. The formed powder was microscale-sized with a diameter of 20.4 μm (D50, median diameter) in the above milling condition (Fig. 4).

Fig. 4

3.4. Effect of Zero Valent–Metal Categories

As the common zero–valent metal, Al and Si were also used as reduction material to remove environmental pollutants. So the effect of these metals on 2-CP degradation efficiency was subsequently investigated. As illustrated in Table 3, SiO$_2$–Si and SiO$_2$–Al could not effectively degrade 2-CP in the 120-min of test
period. But for SiO$_2$–Fe, 91.8% of 50 ppm 2-CP could be removed within 120-min reaction. The surface morphologies of the different MMCs were also characterized as shown in Fig. 5. The SiO$_2$–Al particles had an obviously smooth surface and clearly chopped sharp edges. It also indicated that the SiO$_2$–Si processed much smaller sizes compared with those of SiO$_2$–Al and SiO$_2$–Fe. While, most of SiO$_2$–Fe particles were intertwinned into kinks-like structure.

Table 3

Fig. 5

The possible explanation for above dechlorination performance could be attributed to the nature difference of the passivating film on the surface of MMCs. For SiO$_2$–Al and SiO$_2$–Si, the corrosion dissolution of Al0 and Si0 was inhibited by their dense passivating film on the surface and, concomitantly, hindering the subsequent dechlorination reaction $^{40, 41}$. This could be proved by the fact that no obvious H$_2$ bubble was observed in the reaction for both SiO$_2$–Al and SiO$_2$–Si system and a relatively constant pH value (~5.8 and ~ 6.0 for SiO$_2$–Al and SiO$_2$–Si system, respectively) appeared after 5-min reaction. As for Al, the native alumina film reformed easily by the reversible hydrolysis and condensation reactions even pretreated before by acid 41. And given that the solution stable at ~5.8, the surface aluminum oxide layers are extremely stable at this condition based on our previous studies $^{42, 43}$. Similar as that of Al, the Si surface was also covered by the fairly stable hydrogen-terminated silicon (H-Si) and silicon oxide, which was hardly dissolved in acid conditions 40. However, the Fe could maintain continuous dissolution even at weak acidity or even neutral surroundings, which was attributed to the relatively weak interaction between hydroxides/oxides and Fe surface as well as the intertwined
structure of the SiO$_2$−Fe (Fig. 5) $^{42, 44, 45}$. Johnson et.al 46 and Farrel et.al 47 reported
that the continuous remove of contaminants could still be achieved even at initial pH
5.8 and 6.2, respectively. So, 2-CP could be effectively removed by SiO$_2$−Fe in this
system.

3.5 Stability and Reusability of the SiO$_2$−Fe MMC

The stability of the SiO$_2$−Fe MMC prepared at the above optimized conditions
was evaluated to study whether its high activity would sustain during storage, which
is essential to practical application. Although the dechlorination efficiency for those
particles stored in air for 10 days was decreased from 91.8% to 72.4% in the first run,
its reactivity could be recovered when consecutively used. For example, both the 2-
CP removal percent were still more than 95% from the second to the third cycle. And
the dechlorination efficiency at the sixth run could still achieve 71.0% and 60.5% for
the fresh prepared and after stored particles, respectively. The relatively stable
performance of SiO$_2$−Fe MMC for dechlorination in the above tests should be
attributed to its inherent structure. Unlike the core–shell structure of the common
bimetal materials $^{48-50}$, The SiO$_2$−Fe MMC was constituted by numerous iron-carbon
interface and quartz sand/iron interface in its relative uniform system. Those disperse
interfaces could provide the driving force for sustained iron corrosion in water. Thus,
the reactivity could be effectively remained due to the continuously regeneration of
the active sites. Therefore, the SiO$_2$−Fe MMC could provide better longevity and
practicability than the core–shell bimetals.

4. Conclusion

In this work, the preparation conditions of the reinforcement/metal MMCs were
optimized by evaluating their reactivity to dechlorinate 2-CP in aqueous solution. The
effect of the abrasives on dechlorination efficiency was investigated including B$_4$C,
SiC, α-Al$_2$O$_3$, SiO$_2$, Fe$_3$O$_4$ and Na$_2$SO$_4$. It was found that the B$_4$C−Fe, SiC−Fe, α-Al$_2$O$_3$−Fe and SiO$_2$−Fe MMC could effectively degrade 2-CP, which possessed relative high hardness for the abrasive used. However, SiO$_2$ was selected as the optimal abrasive due to its low cost. Subsequently, it was further optimized for the preparation conditions of SiO$_2$−Fe MMC, which finally included 10~20 mesh SiO$_2$, 10% of SiO$_2$ loading, milling for 3 h and 6% PCA addition. Under the optimized preparation condition, the synthetic SiO$_2$−Fe MMC achieved a degradation efficiency of 91.8% 2-CP (0.389 mM) in 3 h using a dosage of 40g/L at initial pH=3.0. The influence of other metal categories including Al and Si was also investigated for dechlorination; and their low reaction efficiencies were closely related with their passivating film. Additionally, the micorsized SiO$_2$−Fe MMC could recover its reactivity after storage in air, which could avoid the deactivation the bimetallic system with core-shell structure or the aggregation of nZVI particles. Therefore, it would benefit the potential application of SiO$_2$−Fe MMC in the permeable reactive barrier technologies for the treatment of COC-contaminated groundwater.

Acknowledgments

We thank the National High-Tech Research and Development Program of China (863 Program, 2013AA062705), the National Natural Science Foundation of China (21547011, 21177089, 51108330), and the Shenzhen Science and Technology Project for Fundamental Research (JCYJ20150324141711622, JCYJ20150529164656097).
References

4. X. S. Zha, L. Ma and Y. Liu, RSC Advances, 2016, 6, 16323-16330.

Fig. 1. The effect of different abrasives (100 mesh) on the removal of 50 ppm 2-CP in aqueous solution at initial pH=3.0 using the dosage of 40 g/L. (milling conditions: 10% abrasive, 6% PCA, milling time = 3h)

Fig. 2. The effect of SiO₂ size on the removal of 50 ppm 2-CP in aqueous solution at initial pH=3.0 using 40 g/L SiO₂–Fe MMC. (milling conditions: 10% SiO₂, 6% PCA, milling time = 3h)
Fig. 3. The effect of SiO$_2$ dosage (10–20 mesh) on the removal of 50 ppm 2-CP in aqueous solution at initial pH=3.0 using 40 g/L SiO$_2$–Fe MMC. (milling conditions: 6% PCA, milling time = 3h)

Fig. 4. The particle size distribution of the SiO$_2$–Fe MMC before and after ball milling for 3 h. (milling conditions: 10% SiO$_2$(10–20 mesh), 6% PCA, milling time = 3h)
Fig. 5. SEM morphologies of the powders after milling for 3 h (a) the Fe alone, (b) SiO₂ and Fe, (c) SiO₂ and Al, (d) SiO₂ and Si. (milling conditions: 10% SiO₂ (10–20 mesh), 6% PCA, milling time = 3h)

Table 1. The hardness of the different abrasives and the surface area of the milled abrasives–Fe MMCs. a

<table>
<thead>
<tr>
<th>Name</th>
<th>Formula</th>
<th>(S_{\text{BET}}) (m²/g)</th>
<th>Mohs scale hardness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boron carbide</td>
<td>B₄C ²</td>
<td>20.34</td>
<td>9.5</td>
</tr>
<tr>
<td>Silicon carbide</td>
<td>SiC ¹</td>
<td>20.21</td>
<td>9.3–9.5</td>
</tr>
<tr>
<td>Alpha-Alumina</td>
<td>(\alpha)-Al₂O₃ ²</td>
<td>19.94</td>
<td>9.0</td>
</tr>
<tr>
<td>Quartz sand</td>
<td>SiO₂ ²</td>
<td>13.11</td>
<td>7.0</td>
</tr>
<tr>
<td>Magnetite</td>
<td>Fe₃O₄ ²</td>
<td>3.18</td>
<td>6.0</td>
</tr>
<tr>
<td>Iron</td>
<td>Fe</td>
<td>2.81</td>
<td>4.0</td>
</tr>
<tr>
<td>Sodium</td>
<td>Na₂SO₄ ²</td>
<td>2.90</td>
<td>2.8</td>
</tr>
</tbody>
</table>
sulfate

\[\text{milling conditions: } 10\% \text{ abrasives (100 mesh), milling for } 3 \text{ h, milling speed}=550 \text{ rpm}. \]

\[\text{b} \text{ the size of abrasives used was 100 mesh.} \]

Table 2. The effect milling time and PCA dosage on the dechlorination of 2-CP in aqueous solution using SiO$_2$–Fe MMC. ab

<table>
<thead>
<tr>
<th>milling time (h)</th>
<th>PCA dosage (% w/w)</th>
<th>Removal percent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12.3</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td>37.1</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>65.3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>82.8</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>91.8</td>
</tr>
<tr>
<td>4</td>
<td>90.5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>20.3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>45.5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>63.4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>86.5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>91.8</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>65.3</td>
</tr>
<tr>
<td>10</td>
<td>57.8</td>
<td></td>
</tr>
</tbody>
</table>

a Reaction conditions: SiO$_2$–Fe MMC dose = 40 g/L, initial pH=3.0, 2-CP concentration = 50 mg/L).

b milling conditions: 10% SiO$_2$ (100 mesh), milling for 3 h.

Table 3. The effect of metal categories on the dechlorination of 2-CP in aqueous solution using SiO$_2$–metal particles. a

<table>
<thead>
<tr>
<th>Metal categories</th>
<th>t = 5min</th>
<th>t = 120 min</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pHb</td>
<td>2-CP concentration (mM)</td>
</tr>
<tr>
<td>Al</td>
<td>5.35</td>
<td>0.342</td>
</tr>
<tr>
<td>Si</td>
<td>5.89</td>
<td>0.298</td>
</tr>
<tr>
<td>Fe</td>
<td>6.05</td>
<td>0.315</td>
</tr>
</tbody>
</table>

a Reaction conditions: SiO$_2$–metal MMC dose = 40 g/L, initial pH=3.0, 2-CP concentration = 50 mg/L).

b The pH meter (PHS-3C) was calibrated using buffers in aqueous solution.

Buffer with pH values of 4.00 and 6.86 in water gave values of 4.01 and 6.83, respectively.
Graphical Abstract: