

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

5
4
Ě
\geq
7
ð
Ť
0
Q
N.
S
Ð
0
σ
2
9
4
65
X

1	Synthesis, characterization of 2', 3'-epoxy propyl - N-methyl-2- oxopyrrolidinium
2	salicylate ionic liquid and study of its interaction with water or methanol
3	
4	
5	A. Vasanthakumar ^a , I. Bahadur ^{b, c*} , G. Redhi ^{a,*} , R. M. Gengan ^a ,
6	
7	
8 9	^a Department of Chemistry, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa
10	^b Department of Chemistry, School of Mathematical and Physical Sciences, Faculty of
11	Agriculture, Science and Technology, North-West University (Mafikeng Campus), Private Bag
12	X2046, Mmabatho 2735, South Africa
13	^c Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of
14	Agriculture, Science and Technology, North-West University (Mafikeng Campus), Private Bag
15	X2046, Mmabatho 2735, South Africa
16	
17	
18	
19	
20	* Corresponding author:
21	E-mail: redhigg@dut.ac.za; bahadur.indra@nwu.ac.za/ bahadur.indra@gmail.com, Tel.: +27
22	(31) 373 2936; Fax: +27 0866741159
23	
24	

25 Abstract

Important physico-chemical properties of ionic liquids (ILs) can be manipulated by adjusting the 26 nature of the cation or anion. These properties are exploited in applications such as organic 27 synthesis, catalysis and electrochemical process to mention a few. In this work, the novel 28 pyrrolidone ionic liquid N- (2', 3'-epoxypropyl)-N-methyl-2-oxopyrrolidinium salicylate 29 [EPMpyr]⁺[SAL]⁻ was synthesized using two step and characterized. The temperature dependent 30 31 density and speed of sound for ionic liquid, methanol, water, and their corresponding binary mixtures of $\{IL (1) + methanol or water (2)\}\$ were measured over the entire range of mole 32 fractions at temperatures from T = (293.15 to 313.15) K in steps of 5 K, under atmospheric 33 pressure. The calculated thermodynamic properties such as excess molar volume V_m^E , isentropic 34 compressibility k_s , intermolecular free length L_f , and deviation in isentropic compressibility Δk_s , 35 were derived from the investigated density and speed of sound data. The resulting experimental 36 data for excess molar volumes V_m^E , intermolecular free length L_f , and deviation in isentropic 37 compressibility Δk_s , were well fitted to the Redlich-Kister polynomial equation. The effect of 38 temperature and concentration on thermophysical properties were also provided. 39

40

41

- 42
- 43
- 44

Keywords: Density, Speed of sound, N- (2', 3'-epoxypropyl)-N-methyl-2-oxopyrrolidinium
salicylate, Water, Methanol, Redlich–Kister equation.

48 **1. Introduction**

Ionic liquids (ILs) are low melting salts which are a combination of cations and anions; cations are usually found in the organic part of the molecule whilst the anion may be inorganic or organic in nature. These ILs have been developed in the last two decades. Nowadays ILs are an important research area of study, with many researchers focusing on fundamental physical and chemical properties, such as density, ρ , viscosity, η sound velocity, u, low vacuum pressure, Pa, low melting point, high conductivity, S, and solubility.¹ The density, viscosity, and sound velocities are essential for developing industrial process and design.¹⁻⁴

Industrial chemicals are being manufactured by using environment-friendly green solvents ILs, 56 instead of toxic organic volatile solvents.⁵⁻⁷ In the last decade, concerted attention by the 57 scientific community has significantly improved the nature and potential applications of ILs, in 58 particular, because of their exclusive physico-chemical properties.⁸⁻¹¹ Most of the industrial 59 technological applications of ILs are occurring in mixtures, whilst the number of research groups 60 has increased worldwide.¹²⁻¹⁶ Properties such as vapor-liquid equilibrium, liquid-liquid 61 equilibrium and importantly the physico-chemical properties of mixtures are studied. ILs have 62 interesting properties such as negligible vapor pressure.¹⁷ high ionic conductivity.¹⁸ high thermal 63 stability,¹⁹ chemical and electrochemical stability, non-flammability²⁰ and low or negligible 64 toxicity; these are the potential variables to completely substitute or replace the conventional 65 organic solvents as electrolyte solutions or as co-solvents or additives to improve productivity 66 and performance in industrial applications. The more important physico-chemical properties of 67 ILs such as density, ρ , speed of sound, u, refractive index, n, conductivity, s, polarity and 68 dielectric permittivity's can be adjusted by exchanging cations or anions. These significant 69 properties have been exploited in a several successful applications such as organic synthesis, 70

catalysis, separation technology, extraction and electrochemical processes.¹⁻⁴ In the modern
world ILs are used as environment-friendly green and clean solvents for an excessive diversity of
materials:- pharmaceuticals,²¹ biomass feedstocks²²⁻²⁴ and greenhouse gases.²⁵

Ionic liquids have materialized as a successful alternative to substitute for traditional toxic 74 volatile organic solvents for separation of aromatic hydrocarbons from liquid mixtures,²⁶ due to 75 their exclusive properties such as non-flammability, reusable capability, negligible volatilities, 76 high thermal stabilities, non-corrosiveness, to be co-ordinate to a specific application by the 77 combination of altered cation and anion with aliphatic hydrocarbons.^{27, 28} Currently ILs have 78 been applicable more in pharmaceutical industries, solvent and anti-solvent for active 79 pharmaceutical ingredient (API),^{29,30} thereby improving water solubility of API³¹ used to extract 80 biological components from active materials,³² and as a medium to synthesize pharmaceutically 81 active materials.³³ Ionic liquids are often used for those applications to reduce cost as well as the 82 viscosity of the materials. 83

Pyrrolidinium based ILs are potentially applicable as an electrolyte in batteries due to its attractive properties, some of the research done using pyrrolidinium based ILs in lithium batteries such as 1-(2-methoxyethyl)-1-methylpyrrolidinium bis-(trifluoro methylsulfonyl) imide are used as a potential alternate for electrolyte components to substitute volatile toxic organic solvents in supercapacitors and lithium batteries.^{34,35} Pyrrolidinium dicyanamide ILs are successful candidates for application as electrolytes in electrochemical double layer capacitors (EDLCs).⁴⁻⁷

In recent years, the usage of ILs have been increased as potential solvents to extract aromatic
 hydrocarbons from aliphatic hydrocarbons.^{26, 36-40} The thermo-physical properties of N-butyl-N methyl-2-oxopyrrolidinium bromide was measured and reported at several temperatures from

94 (293.15-343.15) K.⁴¹ The present work discloses, the synthesis, characterization and 95 determination of thermo-physical properties of novel N-2',3'-epoxy propyl-N-methyl-2-oxo 96 pyrrolidinium salicylate and its binary mixtures of water or methanol to understand the 97 molecular interactions which occurs in this solutions. The present work is a part of our 98 investigations on physicochemical properties of ILs with solvents at different temperatures.⁴¹⁻⁵³

99

100 2. Experimental Section

101 *2.1. Materials*

N-methyl-2- pyrrolidone, epichlorohydrin, sodium salicylate, acetonitrile, methanol, acetone, and hexane were purchased from Fluka Chemicals with purity of \ge 99%. The purity and density of the pure compounds in comparison with literature⁵⁴⁻⁵⁹ values are presented in Table 1. Ultra-pure deionized water was used in all experiments. The water content using a Metrohm Karl Fishcher coulometer (model KF Titrando) was found to be 0.05% in N-2', 3'-epoxy propyl-N-methyl-2oxo pyrrolidinium salicylate [EPMpyr]⁺[SAL]⁻.

108

109 2.2. Step 1:- synthesis of N-(2', 3'-epoxypropyl)-N-methyl-2-oxo pyrrolidinium chloride

The reaction system was set up as follows: A 500 mL three-necked round bottomed flask with a 110 thermometer inlet over cold water flowing condenser was used. Nitrogen gas was flushed into 111 the round bottomed flask 1.0 mol of freshly distilled N-methyl-2-pyrrolidone was mixed with 112 100 mL of acetonitrile, followed by 1.10 mol of epichlorohydrin. The mixture was now brought 113 114 to a moderate reflux (90-100) °C, then heated under reflux for 48 hours with constant stirring and 115 finally cooled to room temperature. The volatile materials were removed under reduced pressure to give a yellow coloured ionic liquid, N-(2', 3'-epoxypropyl) -N-methyl -2- oxopyrrolidinium 116 chloride. The structure was confirmed by FTIR, ¹HNMR, ¹³CNMR and Elemental Analysis. 117

118 2.3. Characterization of N-(2', 3'-epoxypropyl)-N-methyl- pyrrolidonium chloride

- The [EPMpyr]⁺[Cl]⁻ was characterized by the following technique: NMR (¹H and¹³C), elemental analysis and FTIR. FTIR ($\nu = cm^{-1}$): 3442, 2995, 1621, 1501, 1403, 1332, 1256, 1113, 967, 856, 756, 679, 561, 479. [EPMpyr]⁺[Cl]⁻ 1H NMR (400 MHz, DMSO): δ 3.48 - 3.51 (m, 1H), 3.30 - 3.32 (t, 2H), 2.76 - 3.29 (s, 1H), 2.61 - 2.62 (s, 3H). 2.26-2.30 (d, 1H) 1.96 - 1.98 (t, 2H) 1.90 - 1.94 (m, 2H) ¹³C NMR (100 MHz, DMSO): δ 175.03, 51.22, 49.38, 45.72, 45.00, 30.62, 29.50, and 17.59. Elemental Analysis (in %): Theoretical calculation for: C₈H1₄NO₂: C, 50.14; H, 7.36; N, 7.31; The values found (in %) are C, 50.45; H, 7.10; N, 7.17.
- 126

127 2.4. Step 2:- synthesis of N-(2', 3'-epoxypropyl)-N-methyl-2-oxo pyrrolidinium salicylate

The N-(2', 3', epoxypropyl)-N-methyl-2-oxopyrrolidinium salicylate was synthesized by 128 dissolving the desire quantity 1.12 mole of sodium salicylate separately in methanol to make a 129 clear solution in round bottomed flask. Then, the above synthesized intermediate IL N-(2',3'-130 epoxypropyl)-N-methyl-2-oxopyrrolidium chloride was added to exchange the salicylate anion. 131 The product was purified by a solvent wash with acetone, petroleum ether and hexane to remove 132 unwanted starting materials and sodium chloride, then distilled again at 80 °C for 48 hrs to get 133 134 pure moisture free ILs. The product identity was established with FTIR, NMR (proton and carbon) and elemental analysis. Scheme for synthesis of 2', 3'-epoxy propyl - N-methyl-2-135 136 oxopyrrolidinium salicylate given below:

Scheme for synthesis of 2', 3'-epoxy propyl - N-methyl-2- oxopyrrolidinium salicylate
 2.5. Characterization of N-(2', 3'-epoxypropyl)-N-methyl- pyrrolidonium salicylate

The [EPPY]⁺[SAL]⁻ was characterized by the following methods: NMR (¹H and¹³C), elemental 141 analysis and FTIR. The structure of [EPMpyr] $^+$ [SAL] $^-$ is as shown in Figure 1. FTIR ($\nu =$ 142 cm⁻¹): 3442, 2995, 1621, 1501, 1403, 1332, 1256, 1113, 967, 856, 756, 679, 561, 143 479.[EPPYR]⁺[SAL]⁻ 1H NMR (400 MHz, DMSO): δ1.9 - 2.0(M, 2H), 2.15 - 2.3(t, 2H), 2.7 -144 2.8(s, 3H), 3.3 - 3.4(m, 3H), 3.5 - 3.65(d, 2H), 3.66 - 3.90(m, 1), 4.0 - 4.2(m, 1), 6.75 - 6.85(t, 2H), 3.66 - 3.90(m, 1), 4.0 - 4.2(m, 1), 6.75 - 6.85(t, 2H), 3.66 - 3.90(m, 1), 4.0 - 4.2(m, 1), 6.75 - 6.85(t, 2H), 3.66 - 3.90(m, 1), 4.0 - 4.2(m, 1), 6.75 - 6.85(t, 2H), 3.66 - 3.90(m, 1), 4.0 - 4.2(m, 1), 6.75 - 6.85(t, 2H), 3.66 - 3.90(m, 1), 4.0 - 4.2(m, 1), 6.75 - 6.85(t, 2H), 3.66 - 3.90(m, 1), 4.0 - 4.2(m, 1), 6.75 - 6.85(t, 2H), 3.66 - 3.90(m, 1), 4.0 - 4.2(m, 1), 6.75 - 6.85(t, 2H), 3.66 - 3.90(m, 1), 4.0 - 4.2(m, 1), 6.75 - 6.85(t, 2H), 3.66 - 3.90(m, 1), 4.0 - 4.2(m, 1), 6.75 - 6.85(t, 2H), 3.66 - 3.90(m, 1), 4.0 - 4.2(m, 1), 6.75 - 6.85(t, 2H), 3.66 - 3.90(m, 1), 4.0 - 4.2(m, 1), 6.75 - 6.85(t, 2H), 3.66 - 3.90(m, 1), 4.0 - 4.2(m, 1), 6.75 - 6.85(t, 2H), 3.66 - 3.90(m, 1), 4.0 - 4.2(m, 1), 6.75 - 6.85(t, 2H), 3.66 - 3.90(m, 1), 4.0 - 4.2(m, 1), 6.75 - 6.85(t, 2H), 5.0(t, 2H), 5.0145 1H), 6.86 - 7.00(m, 1H), 7.10 - 7.30(t, 1H), 7.40 - 7.60(m, 1H), 7.65 - 7.95(d-d, 1H), 13C NMR 146 (100 MHz, DMSO): δ 18, 30, 33, 51, 65, 72, 75, 115, 120, 122, 132, 134, 138, 163 and 178. 147 Elemental Analysis (in %) Theoretical calculation for: C₁₅H₂₁NO₄: C, 64.50; H, 7.58; N, 5.01; O, 148 22.91; the values found (in %) are C, 64.95; H, 7.10; N, 5.28; O, 23.36. 149

150

151 2.6. Apparatus and procedure

Anton Parr DSA 5000 M vibrating tube digital densitometer and speed of sound analyzer were 152 153 used to determine the density and speed of sound of IL and their binary mixtures simultaneously. Temperature and pressure are important parameters to affecting physical properties, and were 154 controlled to \pm 0.01 K and 101 kPa respectively. Doubly distilled ultra-pure water was used to 155 calibrate the instrument according to the method of Lagourette et al.⁶⁰ The $\{IL(1) + methanol or$ 156 water (2)} binary mixture samples were prepared by weighing on a Mettler Toledo AG245, 157 which has a precision of 0.0001 g. The estimated uncertainty in density and speed of sound was 158 less than $\pm 2 \times 10^{-4}$ g·cm⁻³ and ± 0.09 m·s⁻¹, respectively. 159

160

161 **3. Result and Discussion**

163 The density ρ , and speed of sound *u*, are interesting volumetric properties which are important 164 for industrial processes and development. Figures 2 to 5, show the investigated values of density 165 and speed of sound data, the volumetric properties of pure ionic liquid (IL) [EPMpyr]⁺[SAL]⁻ 166 and their binary mixtures with methanol or water, were measured under atmospheric pressure 167 from *T* = (293.15 - 313.15) K.

168

169 Tables 2 and 3, show the experimental values of density, ρ , speed of sound u, excess 170 molar volume V_m^E , isentropic compressibility k_s , deviation in isentropic compressibility Δk_s and 171 intermolecular free length L_f corresponding to several mole fractions of IL systems.

Those systems are formed by ionic liquids and it's binary mixtures of methanol or water, viz.
{[EPMpyr]⁺[SAL]⁻ (1) + methanol (2)}; {[EPMpyr]⁺[SAL]⁻ (1) + water (2)} at (293.15, 298.15, 303.15, 308.15 and 313.15) K, respectively. All combinations were mixed well to give a homogeneous solution across the entire mole fraction range.

176

The measured data of ρ and u of pure [EPMpyr]⁺[SAL]⁻, methanol, water, and their binary mixtures are display in Tables 2 and 3 as a function of IL mole fraction (x_1) for entire composition range at temperature from (293.15 to 313.15) K in steps of 5 K under atmospheric pressure. The Figures 6 to 8 were plotted based on the investigated values and these are V_m^E , Δk_s , and L_f as a function of the IL mole fraction at different temperatures of binary mixtures.

183

Here see the Figures, in water with IL binary mixtures graphs, look like waves, that mean its accelerating due to initially, at the time of mixing pyrrolidonium salicylate IL interact with water to forms slight white precipitates, after shaking it becomes homogeneous liquids in every mole

fraction of combinations. These are because of anionic effect, here salicylate anion plays a majorrole in that interaction.

In addition, the curves obtained with the parameters listed in Tables 2 and 3, have also been included. Normally, ILs is completely miscible with solvents, which have more dielectric constants otherwise ILs are not completely miscible.⁶¹⁻⁶³ The Figures 2 and 3 shows the temperature dependent density values. From the measured data, the density of pure IL was greater then it's starting organic compound. Additionally, the densities of the binary mixture or pure ILs decreases with increase the temperature.

195

196 The excess molar volume, V_m^E was calculated from the investigated density data list by using the 197 following equation (1):

198

199
$$V_m^E = \sum_{i=1}^2 x_i M_i (\rho^{-1} - \rho_i^{-1})$$
(1)

200

201 According to Figures 6 (a) and 6 (b), the excess molar volume values are negative for all 202 temperatures over entire composition range, so the volume of the solution was contracted due to the interaction between the IL and their binary mixture of water or methanol and are significant. 203 204 Furthermore, the Figures 6 (a) and 6 (b) indicates, the greater negative values of excess molar volume occurs when the temperatures increases. Higher temperature has been helpful to reduce 205 the distance between unlike molecules, so the molecules are interacted more strongly. Moreover, 206 207 Figures 6 (a) and (b) indicates the excess molar volume, minima occurs with water and methanol at $x_1 = 0.3026$ and at $x_1 = 0.2034$, respectively. The quasi-clathrates perhaps occurred in the 208 mixture of an IL with organic components are reported in Wang et al.,^{64,65} In this case, it may 209

RSC Advances Accepted Manuscript

happen in our binary mixtures such as [EPMpyr]⁺[SAL]⁻ with methanol in the nearby [EPMpyr]⁺[SAL]⁻ at $x_1 = 0.2034$. Similar results were also investigated for binary mixtures of [EPMpyr]⁺[SAL]⁻ with water at $x_1 = 0.3026$. Figures 6 (a) and (b), the excess molar volume graph indicates that 0.2000 and 0.3000 mole fraction of IL has low values and all binary mixture have negative excess molar values. In addition, the value of V_m^E is fully based on the effect of the hydrogen bond, polarity and interstitial accommodation in entire compositions. The packing/filling effect of methanol or water molecules in the interstices of IL, ion-dipole interactions between water and methanol with the pyrrolidonium ring of IL, all contributes to the negative values of V_m^E . The excess molar volume V_m^E , decreases with increasing temperature for both binary systems. The Tables 2 and 3 show that the result of excess molar volume data summaries for binary mixtures of IL with methanol or water. The results suggest the presence of the competing effect. These competing effect could be used to better understand the partial molar volumes of corresponding mixtures at infinite dilution.

Tables 2 and 3, shows that the increasing concentration of IL results in decreases the intermolecular free length, L_f of binary mixture. The Figures 7 (a) and (b), and Tables 2 and 3 indicates that as the speed of sound increases as corresponding decrease in intermolecular free length and the intermolecular free length also increases with increasing temperature. Moreover intermolecular free length explains the greater distances between the surfaces of the two molecules, and this behavior leads to a corresponding decrease in the speed of sound.

230 Intermolecular free length (L_f) has been calculated from the Eq. (2)

231

210

211

212

213

214

215

216

217

218

219

220

221

222

232
$$L_f = k_i (k_s)^{1/2}$$
 (2)

RSC Advances

where k_i is the Jacobson's constant and is a temperature dependent constant. Its value is (93.875

234	$+0.375T$) 10^{-8}	
235	Isentropic compressibility (k_s) defined as Eq. (3)	
236		
237	$k_s = \rho^{-1} u^{-2}$	(3)
238		
239	The deviation in isentropic compressibility (Δk_s) can be defined from the isentropic	
240	compressibility as illustrated in Eq. (4)	
241		
242	$\Delta k_s = K_s - \sum_i^2 x_i k_{s,i}$	(4)
243		
244	This property is related to density and speed of sound by the Newton-Laplace equation:	
245	Generally, the speed of sound increases with an increase in mole fraction of the mixtu	re but
246	decreases with temperature. The molar fractions increase linearly with temperatures and c	lecays

247 the isentropic compressibility exponentially. This performance elucidated due to the isentropic compressibility has been well defined as the inverse of the product of the density and square of 248 the speed of sound. The free space was decreased due to the interaction between the molecules in 249 binary mixtures, and in this way contributing to the negative deviation in isentropic 250 251 compressibility. Figures 8 (a) and (b) display, the negative value of deviation in isentropic compressibility occurs over the entire composition of $\{[EPMpyr]^+[SAL]^- + methanol or water\}$ 252 at all temperatures. The minimum value of deviation in isentropic compressibility of the binary 253 mixtures was - 40.11 x 10⁸Pa⁻¹ and -13.16 x 10⁸Pa⁻¹ with methanol and water are occurring at 254

RSC Advances Accepted Manuscript

 $x_1 = 0.2034$ and 0.1031, respectively. The ideal mixtures are more compressible then these 255 mixtures due to the performance of deviation in isentropic compressibility. In this case, the 256 unlike molecules approach closely and a stronger interaction between methanol or water with 257 [EPMpyr]⁺[SAL]⁻ mixtures that lead to a decrease in compressibility. Normally, the deviation in 258 isentropic compressibility values decreases with an increasing temperature for both binary 259 systems at a several composition of [EPMpyr]⁺[SAL]⁻ as shown in Figures 8 (a) and (b). The 260 compressibility decreases because of the unlike molecules are contiguity, due to the mixture of 261 components have strongly interacted. 262

263

4. Correlation of derived properties

The derived properties have been correlated by Redlich-Kister equation⁶⁶ as below in Eq. (5): 266

$$X = x_1 x_2 \sum_{i=1}^{k} A_i (1 - 2x_1)^{i-1}$$
(5)

268

where X is excess molar volumes (V_m^E) , deviation in isentropic compressibility (Δk_s) and intermolecular free length, L_f . The least-square method has been used to determine the fitting parameters A_i values. Table 4 shows that the summarized results.

- 272
- 273

274 Composed with the corresponding standard deviations, σ , For the correlation as investigated 275 using Eq. (6).

277
$$\sigma(X) = \sum_{i=1}^{n} \left[\frac{X_{expt} - X_{calc}}{(N-K)} \right]^{1/2}$$
(6)

278

where *N*the number of is experimental points and *k* is the number of coefficients used in the Redlich–Kister equation. The values of V_m^E and Δk_s , as well as the plots of the Redlich–Kister model. Both binary systems of the standard deviations indicate very low values for both excess molar volumes and deviations in isentropic compressibility at all inspected temperatures.

283

284 **5.** Conclusions

In this study, the synthesis, characterization and investigation of important physical parameters 285 of novel pure ionic liquid and their binary mixtures with water or methanol at (293.15 to 313.15) 286 K in steps of 5 K under atmospheric pressure are presented. The physical parameters such as 287 288 density and speed of sound for pure ionic liquid and their binary mixtures of {[EPMpyr]⁺[SAL]⁻ with methanol or water} were measured. The excess molar volume, V_m^E isentropic 289 compressibility, k_s , deviation in isentropic compressibility, Δk_s and intermolecular free length, 290 L_f were calculated and discussed. The above calculated parameters of excess molar volume, V_m^E 291 and deviation in isentropic compressibility's, Δk_s shows negative values. These indicate strong 292 intermolecular interactions occurring between unlike molecules; the compacting effect is a major 293 role in these binary mixtures because of the strong interaction between pyrrolidonium cation and 294 295 salicylate anion. The binary combination of IL mixtures has strong attractive interaction, readjustments in structure and packing effect due to the great negative values of Δk_s . The 296 methanol with [EPMpyr]⁺[SAL]⁻ has more effective packing arrangement than water due to their 297 more negative values in Δk_s and V_m^E as well as ion-dipole interactions between methanol and 298 [EPMpyr]⁺[SAL]⁻. The salicylate anion has carboxylate as well as hydroxyl groups so it can 299

RSC Advances Accepted Manuscript

300	form hydrogen bonds easily. Acceptable correlations for the excess thermodynamic parameters				
301	occurre	d by fitting with the Redlich-Kister polynomial equation.			
302					
303	Acknow	vledgments			
304	Mr. Va	santha Kumar Arumugam is grateful to the Durban University of Technology and the			
305	Nationa	l Research Foundation (NRF) South Africa for the Innovation Doctoral Grant (Grant			
306	UID: 10	01117).			
307					
308	Referen	ices			
309	1	N. A. Smirnova and E. A. Safonova, Colloid Journal, 2012, 74, 273-285.			
310	2	N. V. Plechkova and K. R. Seddon, Chem. Soc. Rev., 2008, 37, 123-150.			
311	3	P. Wasserscheid and T. Welton, Wiley, Germany, 2003, doi:10.1002/3527600701.ch.			
312	4	H. Zhao, S. Xia and P. Ma, J. Chem. Technol. Biotechnol, 2005, 80, 1089-1096.			
313	5	J. Dupont, R. F. de Souza and P. A. Suarez, Chem. Rev., 2002, 102, 3667-3692.			
314	6	T. Welton, Chem. Rev., 1999, 99, 2071-2084.			
315	7	P. Wasserscheid and W. Keim, Angew. Chem., Int. Ed., 2000, 39, 3772-3789.			
316	8	M. R. Curras, M. F. C. Gomes, P. Husson, A. A. H. Padua and J. Garcia, J. Chem. Eng.			
317		Data, 2010, 55 , 5504-5512.			
318	9	P. K. Chhotaray, J. Shankar and R. L. Gardas, J. Chem. Thermodyn., 2014, 74, 255-262.			
319	10	V. K. Sharma, S. Solanki and S. Bhagour, J. Therm. Anal. Calorim., 2015, 1191, 293-			
320		1302.			
321	11	A. Stoppa, O. Zech, W. Kunz and R. Buchner, J. Chem. Eng. Data, 2010, 55, 1768-			
322		1773.			
323	12	A. Heintz, J. Chem. Thermodyn., 2005, 37, 525-535.			

324	13	J. G. Huddleston, H. D. Willauer, R. P. Swatloski, A. E. Visser and R. D. Rogers,
325		Chem. Commun., 1998, 1765-1766.
326	14	M. S. Selvan, M. D. McKinley, R. H. Dubois and J. L. Atwood, J. Chem. Eng. Data,
327		2000, 45 , 841-845.
328	15	E. Vercher, P. J. Miguel, F. J. Llopis, A. V. Orchilles and A. Martinez- Andreu, J.
329		Chem. Eng. Data, 2012, 57, 1953-1963.
330	16	B. Gonzalez, N. Calvar, I. Dominguez and A. Dominguez, J. Chem. Eng. Data, 2009,
331		54 , 1353-1358.
332	17	J. D. Holbrey, R. D. Rogers, R. A. Mantz, P. C. Trulove, V. A. Cocalia, A. E. Visser, J.
333		L. Anderson, J. L. Anthony, J. F. Brennecke, E. J. Maginn, T. Welton and R. A. Mantz,
334		Wiley-VCH Verlag GmbH and Co., KGaA, Weinheim. 2008, 57.
335	18	P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram and M. Gratzel, Inorg.
336		Chem., 1996, 35 , 1168-1178.
337	19	M. Pucheault and M. Vaultier, Curr. Chem., 2010, 290, 83-126.
338	20	M. Smiglak, W. M. Reichert, J. D. Holbrey, J. S. Wilkes, L. Sun, J. S. Thrasher, K.
339		Kirichenko, S. Singh, A. R. Katritzky and R. D. Rogers, Chem. Commun., 2006, 2554-
340		2556.
341	21	M. Moniruzzaman and M. Goto, J. Chem. Eng. Jpn., 2011, 44, 370-381.
342	22	M. E. Zakrzewska, E. Bogel-Lukasik and R. Bogel-Lukasik, Energy Fuels, 2010, 24
343		735-737.
344	23	L. J. A. Conceicao, E. Bogel-Lukasik and R. A. Bogel-Lukasik, RCS Adv., 2013, 21,
345		846-1855.

346	24	Q. Xin, K. Pfeiffer, J. Prausnitz, D. Clark and H. Blanch, Biotechnol. Bioeng., 2012,
347		109, 346-352.
348	25	Z. Lei and C. B. Dai, Chen, Chem. Rev., 2014, 114, 1289-1326.
349	26	G. W. Meindersma, A. R. Hansmeier and A. B. de Haan, Ind. Eng. Chem. Res., 2010,
350		49 , 7530-7540.
351	27	M. J. Earle and K. R. Seddon, Pure Appl. Chem., 2000, 72, 1391-1398.
352	28	M. J. Earle, J. M. Esperanca, S. S. Gilea, M. A. Canongia, J. N. Lopes, L. P. N. Rebelo,
353		J. W. Magee, K. R. Seddon and A. J. Widegren, Nature, 2006, 439, 831-834.
354	29	J. H. An and W. S. Kim, Cryst. Growth Des., 2013, 13, 31-39.
355	30	J. H. An, J. M. Kim, S. M. Chang and W. S. Kim, Cryst. Growth Des., 2010, 10, 44-
356		3050.
357	31	P. D. McCrary, P. A. Beasley, G. Gurau, A. Narita, P. S. Barber, O. A. Cojocaru and R.
358		D. Rogers, New J. Chem., 2013, 37, 2196-2202.
359	32	B. D. Ribeiro, M. A. Z. Coelho, L. P. N. Rebelo and I. M. Marrucho, Ind. Eng. Chem.
360		<i>Res.</i> , 2013, 52 , 12146-12153.
361	33	N. Grinberg, F. Albu, K. Fandrick, E. Iorgulescu and A. Medvedovici, J. Pharm.
362		Biomed. Anal., 2013, 75, 1-6.
363	34	S. Ferrari, E. Quartarone, P. Mustarelli, A. Magistris, S. Protti, S. Lazzaroni, M.
364		Fagnoni and A. Albini, J. Power Sources, 2009, 194, 45-50.
365	35	G. B. Appetecchi, M. Montanino, M. Carewska, M. Moreno, F. Alessandrini and S.
366		Passerini, Electrochim. Acta, 2011, 56, 1300-1307.
367	36	A. R. Ferreira, M. G. Freire, J. C. Ribeiro, F. M. Lopes, J. G. Crespo and J. A. P.
368		Coutinho, Ind. Eng. Chem. Res., 2012, 51(8), 3483-3507.

369	37	A. Kamankesh, M. Vossoughi, A. Shamloo, S. A. Mirkhani and J. Akbari, Fluid Phase
370		<i>Equilib.</i> , 2012, 332 , 48-57.
371	38	M. T. G. Jongmans, B. Schuur and A. B. de Haan, J. Chem. Thermodyn., 2012, 47, 229-
372		234.
373	39	J. Garcia, S. Garcia, J. S. Torrecilla and F. Rodriguez, Fluid Phase Equilib., 2011, 301,
374		62-67.
375	40	B. Mokhtarani, J. Musavi and M. Parvini, Phase Equilib., 2014, 363, 41-49.
376	41	I. Bahadur, S. Erlin, S. Singh, E. E. Ebenso and G. G. Redhi, ACS Sustainable Chem.
377		Eng., Just Accepted Manuscript, 2015, DOI: 10.1021.
378	42	N. Deenadayalu, I. Bahadur and T. Hofman, J. Chem. Thermodyn., 2010, 42, 726-733.
379	43	N. Deenadayalu, I. Bahadur and T. Hofman, J. Chem. Eng. Data, 2010, 55, 2636-2642.
380	44	N. Deenadayalu, I. Bahadur and T. Hofman, J. Chem. Eng. Data, 2011, 56, 1682-1686.
381	45	I. Bahadur and N. Deenadayalu, J. Solution Chem., 2011, 40, 1528-1543.
382	46	I. Bahadur, N. Deenadayalu, Z. Tywabi, S. Sen and T. Hofman, J. Chem. Thermodyn.,
383		2012, 49 , 24-38.
384	47	I. Bahadur and N. Deenadayalu, Thermochim. Acta, 2013, 566, 77-83.
385	48	I. Bahadur and N. Deenadayalu, S. Afr. J. Chem., 2013, 66, 200-206.
386	49	V. Govinda, P. M. Reddy, I. Bahadur, P. Attri, P. Venkatesu and P. Venkateswarlu,
387		<i>Thermochim. Acta</i> , 2013, 556 , 75-88.
388	50	I. Bahadur, T. M. Letcher, S. Singh, G. G. Redhi, P. Venkatesu and D. Ramjugernath, J.
389		Chem. Thermodyn., 2015, 82, 34-46.
390	51	S. Singh, I. Bahadur, G. G. Redhi, D. Ramjugernath and E. E. Ebenso, J. Mol. Liq., 2014,
391		200 , 160-167.

392	52	S. Singh, I. Bahadur, G. G. Redhi, E. E. Ebenso and D. Ramjugernath, J. Chem.
393		<i>Thermodyn.</i> , 2015, 89 , 104-111.
394	53	S. Singh, I. Bahadur, G. G. Redhi, E. E. Ebenso and D. Ramjugernath, J. Mol. Liq., 2014,
395		199 , 518-523.
396	54	M. Singh and S. Kumar, J. Appl. Poly. Sci., 2003, 87, 1001-1015.
397	55	C. Yang, H. Lai, Z. Liu and P. Ma, J. Chem. Eng. Data, 2006, 51, 584-589.
398	56	F. Comelli and R. Francesconi, J. Chem. Eng. Data, 1997, 42, 705-709.
399	57	W. Fan, Q. Zhou and S. Zhang, R. Yan, J. Chem. Eng. Data, 2008, 53, 1836-1840.
400	58	H. Djojoputro and S. Ismadji, J. Chem. Eng. Data, 2005, 50, 1343-1347.
401	59	A. C. Gomez Marigliano and H. N. Solimo, J. Chem. Eng. Data, 2002, 47, 796-800.
402	60	B. Lagourette, C. Boned, H. Saint-Guirons, P. Xans and H. Zhou, Meas. Sci. Technol.,
403		1992, 3 , 699-701.
404	61	M. Freemantle, RSC Publishing. Cambridge, UK, 2010.
405	62	P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram and M. Gratzel, Inorg.
406		<i>Chem.</i> , 1996, 35 , 1168-1178.
407	63	P. Wassercheid and W. Keim, Angew. Chem. Int. Ed., 2000, 39, 3772-3789.
408	64	J. Wang, A. Zhu, Y. Zhao and K. Zhuo, J. Solution Chem., 2005, 34, 585-596.
409	65	Y. Zhong, H. Wang and K. Diao, J. Chem. Thermodyn., 2007, 39, 291-296.
410	66	O. Redlich and A.T. Kister, Ind. Eng. Chem., 1948, 40, 345-348.
411		
412		
413		
414		

416

417 **Table 1**

Component	Supplier	% Mass purity	<i>T</i> /K	$ ho/{ m g.c}$	m ⁻³
				Exp.	Lit.
Water			293.15	0.9982	0.9998 ₅₄ 0.9996
			298.15	0.9971	
			303.15	0.9957	0.9974^{-54}
			308.15	0.9941	0.9940 ⁵⁴
			313.15	0.9922	
Methanol			29315	0.7914	$\begin{array}{rrrr} 0.7915 & {}^{55} \\ 0.7912 & {}^{56} \\ 0.7910 & {}^{58} \\ 0.7912 & {}^{57} \end{array}$
			298.15	0.7867	$\begin{array}{rrrr} 0.7868 & {}^{55} \\ 0.7866 & {}^{56} \\ 0.7865 & {}^{57} \\ 0.7866 & {}^{59} \end{array}$
	Fluka	≥ 99.0	303.15	0.7820	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
			308.15	0.7772	$\begin{array}{rrr} 0.7770 & {}^{57}\\ 0.7772 & {}^{59}\end{array}$
			313.15	0.7724	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
[EPMPYR] ⁺ [SAL] ⁻			293.15	1.0685	-
			298.15	1.0637	-
			303.15	1.0590	-

313.15	1.0495	-	
212.15	1.0342	-	
308 15	1.0542		

419 **Table 2**

418

Density,(ρ) speed of sound,(u) excess molar volume,(V_m^E) isentropic compressibility (K_s), intermolecular free length,(L_f) and deviation in isentropic compressibility, (Δk_s) with mole fraction of N-(2',3'-epoxypropyl)-N-methyl-2-oxopyrrolidinium salicylate in the binary mixture of {[EPMpyr]⁺[SAL]⁻ (1) + methanol (2)} at (293.15 to 313.15) K and at pressure P =0.1 MPa.

<i>x</i> ₁	$\rho/g.cm^{-3}$	u/ms^{-1}	V_m^E /cm ³ mol ⁻¹	k _s /10 ⁸ Pa ⁻¹	$L_{f}/10^{7}m$	Δk_s /10 ⁸ Pa ⁻¹
			<i>T</i> = 293.15 K			
0.0000	0.7914	1119.30	0.000	100.86	2.047	0.00
0.0360	0.8769	1210.33	-0.488	77.84	1.798	-20.50
0.0724	0.9377	1278.51	-0.768	65.24	1.646	-30.56
0.1023	0.9756	1320.95	-0.910	58.74	1.562	-34.96
0.2034	1.0587	1424.91	-1.106	46.52	1.390	-40.11
0.3189	1.1115	1493.34	-1.103	40.34	1.294	-38.21
0.4018	1.1360	1525.85	-1.023	37.81	1.253	-34.95
0.5117	1.1592	1556.94	-0.861	35.59	1.216	-29.48
0.5978	1.1726	1575.19	-0.692	34.37	1.195	-24.67
0.7189	1.1874	1596.43	-0.510	33.04	1.171	-17.53
0.8099	1.1962	1609.51	-0.370	32.27	1.158	-11.94
0.9201	1.2046	1624.27	-0.151	31.47	1.143	-5.04
1.0000	1.2098	1635.20	0.000	30.91	1.133	0.00
			<i>T</i> = 298.15 K			
0.0000	0.7867	1103.13	0.000	104.46	2.102	0.00
0.0360	0.8723	1194.56	-0.502	80.34	1.844	-21.51
0.0724	0.9332	1262.85	-0.791	67.19	1.686	-32.02
0.1023	0.9711	1305.29	-0.936	60.44	1.599	-36.60
0.2034	1.0543	1409.15	-1.137	47.77	1.422	-41.93
0.3189	1.1071	1477.40	-1.134	41.38	1.323	-39.93
0.4018	1.1317	1509.76	-1.051	38.77	1.281	-36.53
0.5117	1.1549	1540.54	-0.885	36.48	1.242	-30.83
0.5978	1.1682	1558.46	-0.712	35.24	1.221	-25.82
0.7189	1.1831	1579.01	-0.530	33.90	1.198	-18.37
0.8099	1.1919	1590.91	-0.391	33.14	1.184	-12.53
0.9201	1.2003	1604.17	-0.160	32.37	1.170	-5.30

1.0000	1.2055	1613.45	0.000	31.87	1.161	0.00
			<i>T</i> = 303.15 K			
0.0000	0.7820	1086.78	0.000	108.27	2.160	0.00
0.0360	0.8676	1178.57	-0.515	82.97	1.891	-22.58
0.0724	0.9286	1247.02	-0.811	69.25	1.727	-33.56
0.1023	0.9666	1289.44	-0.959	62.22	1.637	-38.33
0.2034	1.0499	1393.18	-1.164	49.07	1.454	-43.84
0.3189	1.1027	1461.27	-1.158	42.47	1.353	-41.72
0.4018	1.1273	1493.52	-1.072	39.77	1.309	-38.16
0.5117	1.1506	1524.09	-0.900	37.42	1.270	-32.22
0.5978	1.1639	1541.79	-0.721	36.14	1.248	-26.99
0.7189	1.1789	1561.88	-0.534	34.77	1.224	-19.21
0.8099	1.1877	1573.56	-0.395	34.00	1.210	-13.11
0.9201	1.1961	1585.61	-0.162	33.25	1.197	-5.54
1.0000	1.2013	1593.94	0.000	32.76	1.188	0.00
			T = 308.15 K			
0.0000	0.7772	1070.51	0.000	112.28	2.292	0.00
0.0360	0.8630	1162.62	-0.533	85.73	1.939	-23.72
0.0724	0.9240	1231.23	-0.837	71.39	1.770	-35.20
0.1023	0.9620	1273.61	-0.987	64.08	1.731	-40.15
0.2034	1.0454	1377.25	-1.194	50.43	1.536	-45.85
0.3189	1.0984	1445.22	-1.186	43.59	1.428	-43.61
0.4018	1.1230	1477.38	-1.097	40.80	1.382	-39.88
0.5117	1.1463	1507.82	-0.919	38.37	1.340	-33.66
0.5978	1.1596	1525.37	-0.734	37.06	1.317	-28.19
0.7189	1.1746	1545.16	-0.539	35.66	1.292	-20.07
0.8099	1.1834	1556.54	-0.397	34.88	1.277	-13.70
0.9201	1.1919	1568.38	-0.162	34.11	1.263	-5.80
1.0000	1.1971	1576.18	0.000	33.62	1.254	0.00
			<i>T</i> = 313.15 K			
0.0000	0.7724	1054.36	0.000	116.46	2.301	0.00
0.0360	0.8583	1146.78	-0.550	88.59	2.036	-24.95
0.0724	0.9194	1215.52	-0.861	73.61	1.856	-36.99
0.1023	0.9575	1257.88	-1.015	66.01	1.732	-42.17
0.2034	1.0410	1361.41	-1.225	51.83	1.535	-48.16
0.3189	1.0940	1429.29	-1.214	44.74	1.426	-45.90
0.4018	1.1186	1461.37	-1.122	41.86	1.379	-42.07
0.5117	1.1419	1491.75	-0.938	39.35	1.337	-35.67
0.5978	1.1553	1509.20	-0.749	38.00	1.314	-30.05
0.7189	1.1703	1528.79	-0.546	36.56	1.289	-21.69
0.8099	1.1792	1539.98	-0.399	35.58	1.272	-15.30
0.9201	1.1877	1551.55	-0.160	34.98	1.261	-6.99
1.0000	1.1929	1559.03	0.000	35.49	1.270	0.00

427

Table 3 428

Density,(ρ) speed of sound,(u) excess molar volume,(V_m^E) isentropic compressibility (k_s), 429

intermolecular free length, (L_f) and deviation in isentropic compressibility (Δk_s) of N-(2',3'-430

433

intermolecular free length, (L_f) and deviation in isentropic compressibility (ΔR_s) of N-(2,3 -									
31 epoxypropyl)-N-methyl-2-oxopyrrolidinium salicylate in the binary liquid mixture of									
$(\text{FPM}_{\text{pyr}})^{+}$ [SAL] ⁻ (1) + water (2)) from at (202.15 to 212.15) and at pressure $P = 0.1$ MPa									
$\int \sum_{i=1}^{\infty} i ^{1/2} i ^{1/2} $									
33									
<i>x</i> ₁	$\rho/g.cm^{-3}$	u/ms^{-1}	V_m^E /cm ³ mol ⁻¹	k _s /10 ⁸ XPa ⁻¹	$L_{f}/10^{7}m$	Δk_s /10 ⁸ XPa ⁻¹	S		
			<i>T</i> = 293.15 K				σ		
0.0000	0.9982	1482.63	0.000	45.57	1.376	0.00	0		
0.0332	1.0633	1620.29	0.034	35.82	1.220	-9.27	5		
0.0630	1.1115	1662.43	-0.384	32.55	1.163	-12.10			
0.1031	1.1432	1682.43	-0.616	30.90	1.133	-13.16	0		
0.2067	1.1772	1680.87	-0.828	30.07	1.118	-12.49	0		
0.3026	1.1897	1668.20	-0.849	30.20	1.120	-10.96			
0.4170	1.1970	1657.88	-0.747	30.39	1.123	-9.10			
0.5059	1.2014	1650.02	-0.756	30.57	1.127	-7.63	S		
0.6171	1.2040	1645.98	-0.582	30.66	1.128	-5.92	Q		
0.7118	1.2060	1639.62	-0.493	30.84	1.132	-4.36	g		
0.8123	1.2070	1635.67	-0.291	30.97	1.134	-2.77			
0.9029	1.2073	1635.80	-0.039	30.95	1.134	-1.46	2		
1.0000	1.2089	1633.54	0.000	31.00	1.135	0.00	5		
			<i>T</i> = 298.15 K				A		
0.0000	0.9971	1496.81	0.000	44.76	1.376	0.00			
0.0332	1.0607	1620.01	0.047	35.92	1.233	-8.42	O		
0.0630	1.1082	1656.29	-0.365	32.89	1.180	-11.06	S		
0.1031	1.1394	1671.86	-0.589	31.40	1.153	-12.04	M		
0.2067	1.1730	1666.47	-0.797	30.70	1.140	-11.41			
0.3026	1.1855	1652.74	-0.819	30.88	1.143	-10.00			
0.4170	1.1927	1641.78	-0.720	31.11	1.147	-8.31			
0.5059	1.1972	1633.35	-0.736	31.31	1.151	-6.97			
0.6171	1.1997	1628.78	-0.570	31.42	1.153	-5.43			
0.7118	1.2017	1621.52	-0.490	31.65	1.157	-3.99			
0.8123	1.2027	1616.27	-0.291	31.83	1.160	-2.52			
0.9029	1.2031	1616.32	-0.042	31.82	1.160	-1.37			

1.0000	1.2046	1612.10	0.000	31.94	1.162	0.00
		7	T = 303.15 K			
0.0000	0.9957	1509.18	0.000	44.10	1.378	0.00
0.0332	1.0581	1620.83	0.060	35.97	1.245	-7.75
0.0630	1.1048	1649.66	-0.344	33.26	1.197	-10.13
0.1031	1.1355	1660.90	-0.562	31.92	1.173	-11.02
0.2067	1.1688	1651.82	-0.763	31.36	1.162	-10.42
0.3026	1.1812	1637.14	-0.785	31.59	1.167	-9.11
0.4170	1.1884	1625.65	-0.687	31.84	1.171	-7.57
0.5059	1.1929	1616.81	-0.706	32.07	1.175	-6.34
0.6171	1.1954	1611.80	-0.544	32.20	1.178	-4.95
0.7118	1.1975	1604.08	-0.472	32.45	1.182	-3.63
0.8123	1.1985	1598.17	-0.279	32.67	1.186	-2.29
0.9029	1.1989	1598.15	-0.031	32.66	1.186	-1.28
1.0000	1.2003	1592.76	0.000	32.84	1.189	0.00
		7	T = 308.15 K			
0.0000	0.9941	1519.86	0.000	43.55	1.427	0.00
0.0332	1.0553	1619.78	0.068	36.12	1.259	-7.11
0.0630	1.1014	1642.56	-0.326	33.65	1.215	-9.28
0.1031	1.1316	1649.65	-0.536	32.76	1.238	-9.77
0.2067	1.1645	1637.15	-0.730	32.04	1.224	-9.48
0.3026	1.1769	1621.61	-0.752	32.31	1.229	-8.26
0.4170	1.1841	1609.66	-0.655	32.59	1.235	-6.85
0.5059	1.1885	1600.53	-0.677	32.85	1.240	-5.73
0.6171	1.1911	1595.26	-0.518	32.99	1.242	-4.49
0.7118	1.1932	1587.27	-0.451	33.26	1.247	-3.28
0.8123	1.1943	1580.93	-0.263	33.50	1.252	-2.06
0.9029	1.1946	1580.83	-0.019	33.50	1.252	-1.17
1.0000	1.1961	1574.75	0.000	33.71	1.256	0.00
		7	T = 313.15 K			
0.0000	0.9922	1528.91	0.000	43.115	1.400	0.00
0.0332	1.0525	1617.85	0.077	36.299	1.303	-6.53
0.0630	1.0979	1634.94	-0.308	34.074	1.263	-8.50
0.1031	1.1277	1638.19	-0.511	33.042	1.225	-9.19
0.2067	1.1603	1622.49	-0.699	32.739	1.220	-8.61
0.3026	1.1726	1606.13	-0.720	33.058	1.226	-7.48
0.4170	1.1797	1593.86	-0.625	33.367	1.231	-6.19
0.5059	1.1842	1584.48	-0.649	33.635	1.236	-5.16
0.6171	1.1868	1578.98	-0.493	33.796	1.239	-4.05
0.7118	1.1889	1570.82	-0.429	34.088	1.245	-2.95
0.8123	1.1900	1564.25	-0.246	34.343	1.249	-1.84
0.9029	1.1903	1564.09	-0.003	34.341	1.249	-1.07
1.0000	1.1919	1557.61	0.000	34.581	1.254	0.00

436

437

438 Table 4

439 Coefficients A_{i} , and standard deviations, σ , obtained for the binary systems {[EPMPYR]⁺[SAL]⁻

440 (1) + water or methanol (2)} at different temperatures for the Redlich-Kister equation.

	<i>T</i> /K	A_0	A_1	A_2	A_3	A_4	σ	
$\{[EPMpyr]^+[SAL]^-(1) + methanol(2)\}$								
$_{V_{m}^{E}}/(\mathrm{cm}^{3}.\mathrm{mol}^{-1})$	293.15	-3.513	-2.855	-1.889	-3.213	-3.655	0.02	
	298.15	-3.608	-2.903	-2.060	-3.284	-3.688	0.03	
	303.15	-3.669	-3.013	-2.098	-3.335	-3.386	0.03	
	308.15	-3.749	-3.118	-2.056	-3.479	-4.109	0.03	
	313.15	-3.831	-3.207	-2.067	-3.662	-4.260	0.03	
L_f	293.15	5.331	-0.980	-6.602	7.909	39.533	0.9	
	298.15	5.449	-1.008	-6.782	8.116	40.536	0.9	
	303.15	5.571	-1.039	-6.976	8.344	41.567	0.9	
	308.15	5.855	-0.963	-6.772	8.302	42.519	0.9	
	313.15	5.886	-1.175	-7.752	9.912	44.780	0.9	
$\Delta \kappa_{\rm s} / (10^8 \times {\rm Pa}^{-1})$	293.15	-121.99	-88.49	-47.92	-175.78	-201.65	1.0	
	298.15	-127.59	-91.93	-49.65	-184.93	-212.81	1.0	
	303.15	-133.35	-95.64	-51.45	-194.88	-224.49	1.1	
	308.15	-139.35	-99.81	-53.13	-204.97	-237.44	1.2	
	313.15	-147.59	-102.88	-56.59	-207.97	-258.37	1.3	
${[EPMpyr]^{+}[SAL]^{-}(1) + water (2)}$								
$V_{\rm m}^{\rm E} / ({\rm cm}3.{\rm mol}^{-1})$	293.15	-2.770	-1.762	-4.611	-2.374	6.514	0.08	

RSC Advances

		200 15	2695	1 6 2 5	4 620	2 202	6671	0.00
		298.13	-2.083	-1.023	-4.039	-2.285	0.0/4	0.09
		303.15	-2.561	-1.544	-4.665	-2.226	6.917	0.09
		308.15	-2.444	-1.478	-4.586	-2.192	6.991	0.09
		313.15	-2.330	-1.416	-4.521	-2.193	7.139	0.09
	L_f	293.15	4.823	-1.054	-4.048	3.691	28.909	0.60
		298.15	4.922	-1.060	-4.029	3.638	29.277	0.70
		303.15	5.022	-1.062	-4.007	3.591	29.632	0.70
		308.15	5.272	-1.011	-3.669	3.332	29.957	0.70
		313.15	5.283	-1.124	-4.230	3.728	31.158	0.70
	$\Delta \kappa_{\rm s} / (10^8 \times {\rm Pa}^{-1})$	293.15	-32.53	-19.15	9.05	-102.12	-151.96	0.80
		298.15	-29.73	-17.46	8.36	-93.11	-139.15	0.70
		303.15	-27.09	-15.87	8.22	-85.31	-128.94	0.70
		308.15	-24.57	-14.48	8.12	-76.83	-117.74	0.70
		313.15	-22.17	-12.81	7.86	-72.15	-110.40	0.60
441								
442								
443								
444								
445								
446								
0								
447								

RSC Advances Accepted Manuscript

453

454

456

Figure 1. Structure of the ionic liquid [EPMpyr]⁺[SAL]⁻.

457

458

459 Figure 2. Density, ρ , of [EPMpyr]⁺[SAL]⁻ at temperatures from (293.15 to 313.15) K. The

460 solid line represents the smoothness of these data.

461

Figure 3. Density, ρ , for the mixture of (a) { $[EPMpyr]^+[SAL]^-(1) + water (2)$ } and (b) { $[EPMpyr]^+[SAL]^-(1) + methanol (2)$ } as function of the composition expressed in the mole fraction of { $[EPMpyr]^+[SAL]^-$ at T = 293.15 K (•), T = 298.15 K (•), T = 303.15 K (•), T = 308.15 K (•) and T = 313.15 K (•). The solid line represents the smoothness of these data.

475 Figure 4. Speed of sound velocity of {[EPMpyr]⁺[SAL]⁻ at temperatures from (293.15 to

313.15) K. The solid line represents the smoothness of these data.

Figure 5. Speed of sound, *u*, for the mixture of (a) { $[EPMpyr]^+[SAL]^-(1) + water (2)$ } and (b) { $[EPMpyr]^+[SAL]^-(1) + methanol (2)$ } as function of the composition expressed in the mole fraction of { $[EPMpyr]^+[Cl]^-$ at T = 293.15 K (•), T = 298.15 K (•), T = 303.15 K (•), T = 308.15 K (•) and T = 313.15 K (•).The solid line represents the smoothness of these data.

490

RSC Advances Accepted Manuscript

492

Figure 6. Excess molar volumes, V_m^E , for the mixture of (a) {[EPMpyr]⁺[SAL]⁻ (1) + water (2)} and (b) {[EPMpyr]⁺[SAL]⁻ (1) + methanol (2)} as function of the composition expressed in the mole fraction of {[EPMpyr]⁺[SAL]⁻ at T = 293.15 K (•), T = 298.15 K (•), T = 303.15 K (•), T = 308.15 K (•) and T = 313.15 K (•).The solid lines were generated using Redlich-Kister curve-fitting.

500

501

504

505

Figure 7. Intermolecular free length, L_f , for the mixture of (a) {[EPMpyr]⁺[SAL]⁻ (1) + water (2)} and (b) {[EPMpyr]⁺[SAL]⁻ (1) + methanol (2)} as function of the composition expressed in the mole fraction of {[EPMpyr]⁺[SAL]⁻ at T = 293.15 K (•), T = 298.15 K (•), T = 303.15 K (•), T = 308.15 K (•) and T = 313.15 K (•).The solid lines were generated using Redlich-Kister curve-fitting.

Figure 8. Deviation of isentropic compressibility, $\Delta \kappa_s$, for the mixture of (a) {[EPMpyr]⁺[SAL]⁻ (1) + water (2)} and (b) {[EPMpyr]⁺[SAL]⁻ (1) + methanol (2)} as function of the composition expressed in the mole fraction of {[EPMpyr]⁺[SAL]⁻at T = 293.15 K (•), T = 298.15 K (•), T = 303.15 K (•), T = 308.15 K (•) and T = 313.15 K (•). The solid lines were generated using Redlich-Kister curve-fitting.

Synthesis, characterization of 2', 3'-epoxy propyl - N-methyl-2- oxopyrrolidinium salicylate ionic liquid and study of its interaction with water or methanol

A. Vasanthakumar^a, I. Bahadur^{b, c*}, G. Redhi^{a,*}, R. M. Gengan^a,

^aDepartment of Chemistry, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa

^bDepartment of Chemistry, School of Mathematical and Physical Sciences, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa

^cMaterial Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa

Graphical Abstract

* Corresponding author:

E-mail: <u>redhigg@dut.ac.za; bahadur.indra@nwu.ac.za/ bahadur.indra@gmail.com</u>, Tel.: +27 (31) 373 2936; Fax: +27 0866741159