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Computational approaches for the prediction of the selective 

uptake of magnetofluorescent nanoparticles into human cells 

E.Papa*,
a
J.P. Doucet

b
 and A. Doucet-Panaye

c 

The use of functionalized nanomaterials is of high importance in biomedical applications like the efficient targeting of 

cancer cells. This paper proposes a comparison of different statistical and mechanistic aspects of new QSAR models 

generated to predict the selective uptake of a library of surface modified nanoparticles tested in different human cell 

types. Additionally, a new approach based on the combination of multivariate factorial analysis and QSAR is proposed to 

generate a 2-dimensional map of the selective uptake of the surface modified nanoparticles into multiple cell types. This 

map offers an immediate view of the uptake of the nanoparticles, distinguishing among those with high or low uptake in 

one or more of the studied cells. Finally, QSAR models are generated to predict the coordinates of the studied 

nanoparticles in the 2D map from their molecular structure. This predictive map is useful to screen new and existing 

surface modified nanoparticles for diagnostic and biomedical uses.

Introduction 
The use of nanomaterials in biomedical applications is of high 

importance because of the ability of these materials to give 

specific properties, s10uch as efficient targeting. For instance, 

magnetofluorescent nanoparticles are among the materials 

recently studied for their possible application for diagnostic 

use such as the specific targeting of cancer cells.
1,2

 

In a recent study Weissleder and colleagues
1
 described the 

development of a library of 146 magnetofluorescent, surface 

modified nanoparticles characterized by the same nano-core 

(iron oxide) and different surface modifications, as the result 

of the conjugation of the nanoparticles with small organic 

molecules. The cellular uptake of 109 of these 

magnetofluoescent nanoparticles was tested on multiple 

human cell types in order to evaluate the specific cellular 

affinities, and to gain information useful for the generation of 

target-specific nanomaterials without a priori knowledge of 

the potential activity.
1
  

Several studies describe in silico computational approaches 

based on Quantitative Structure Activity Relationships (QSAR), 

applied to the uptake responses measured for this library of 

109 NPs.
3-11

  

QSAR approaches identify a quantitative relationship between 

a measured endpoint and the structural representation of the 

compounds of interest, which is mathematically encoded by 

structural descriptors.
12-15 

The chemical structure (X) and the 

measured response (Y) are linked by means of a mathematical 

function (f) so that: Y=f(X).  

QSAR approaches are powerful tools, which can be applied for 

the prediction of missing data for existing or new chemicals. 

They find application in medicinal chemistry, toxicology and 

ecotoxicology to predict missing data, to perform pre- or post-

synthesis screenings, drug design, hazard assessment, and for 

regulatory purposes as alternatives to animal testing. 
12-15 

QSAR-type approaches have recently found application in the 

field of nanotoxicology. 
3-11,16, 17

 In particular, different models 

have been proposed to predict the uptake in Pancreatic 

Human Adenocarcinoma epithelial cells (PaCa2)
3-11

 and in 

Human Umbilical Vein endothelial Cells (HUVEC)
4,10 

measured 

for the library of 109 NPs created by Weissleder and 

colleagues.
1 

All these models share similar predictive ability and different 

complexity since they are based on different linear, non linear 

and combinatorial approaches, and involve different 

combinations of molecular descriptors. However, with the 

exception of studies by Chau and Kar
6,8

, the other studies do 

not provide an in depth investigation of the anomalies 

associated with the models, such as the presence of outliers or 

other problematic chemicals among the surface modifiers. In 

their recent paper Chau and Yap
6
 suggested a further 

elaboration of the original data published by Weissleder
1
, and 

a classification model specific for the uptake into PaCa2 cells, 

based on a combinatorial approach. Interestingly this paper 

reported a detailed analysis of the outliers detected in the 

model and highlighted possible issues related to these 

misclassifications, such as the limitations in the domain of the 

model. Additionally 56 NPs with good/moderate cellular 

uptake selective for PaCa2 were highlighted. However, no 

effort was spent to evaluate the selectivity of the 109 surface 

modifiers taking into account the uptake in cells different from 

PaCa2.  
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Aim of this paper is to propose new externally validated QSAR 

models to predict the cellular uptake of 109 surface modified 

NPs into PaCa2 and HUVEC cells. The comparison of eight 

modelling methods based on different linear and non-linear 

functions by using different statistical approaches, the in depth 

analysis of response outliers and structural aberrations, as well 

as of the linkage between the chemical class of the surface 

modifiers and the uptake behaviour, represent some among 

the multiple innovations proposed in this study. In addition, 

multivariate analysis was combined with QSAR to generate an 

interactive 2D map of the uptake tendency of the 109 NPs into 

different human cell types. This map was applied to predict 

and screen the selective uptake of 28 new surface modifiers 

with unknown uptake in human cells. This last approach 

represents the main innovation proposed in this study, i.e. a 

QSAR-based screening tool of the potential uptake into 

multiple cells of new surface modifiers.  

Results and discussion  

Modelling the uptake into PaCa2 and HUVEC cells  

Multiple linear regression models based on ordinary least 

squares (MLR-OLS)
12,13

 were developed on log transformed 

data to predict the uptake of 109 surface-modified NPs into 

pancreatic adenocarcinoma (PaCa2) and human umbilical vein 

cells (HUVEC). The list of surface modifiers and the related 

uptake data are reported in Table S1. The best models among 

the best combinations of descriptors selected by genetic 

algorithm (GA) were chosen by maximizing the internal 

robustness and external predictive power, evaluated on 

multiple test sets and several validation metrics. 
18,19 

The 

statistical parameters calculated for the best MLR-OLS models 

developed for PaCa2 and HUVEC cells are reported in Table 1 

and in Table S2.  

 

<Table 1> 

 

The best combinations of modelling descriptors selected in 

MLR models were applied to generate QSARs based on several 

linear and non linear techniques.
12-32

 

Results obtained for the validation of the linear and the non-

linear models on five external test set are reported in Table 2 

and commented in the following paragraphs. 

 

<Table 2> 

 

Models for PaCa2 cells  

The best MLR model selected by the genetic algorithm was 

based on 8 molecular descriptors. Equations of the externally 

validated models (i.e. split models), with variables listed in 

order of importance according to standardized coefficients are 

reported in Table S3. Plots of experimental vs. calculated 

values are reported in Figure S1A-S1E.  

Table 1 and S2 show that the MLR model is robust and has 

good comparable internal and external predictivity on the 

basis of the values of the validation parameters calculated for 

the five splittings. Moreover, external predictions are better 

than predictions generated for the training set, if evaluated on 

the 95% of the NPs in the prediction sets.
 

Table 2 and Figure S2 show the comparison among 

performances of linear and non linear models calibrated using 

the 8 descriptors selected by the Genetic Algorithm.
18  

The analysis of the robustness of the models was conducted by 

calculation of the residuals and of statistical parameters 

informative for the dispersion of the error such as the Mean 

Absolute Error (MAE) and the Root Mean Squared Error 

(RMSE).
18,19

  

In particular MAE and RMSE values were calculated from 

predictions generated for the 109NPs only when used as 

external prediction set in the 5 splittings. Residuals calculated 

for these predictions are listed in Table S4. Results reported in 

Table 2 are similar to best results reported in literature for the 

same dataset, i.e. results obtained by Ensemble learning based 

nano-QSAR modelling (MAE prediction0.17 (DTB method) - 

0.19 (DTF method); RMSE prediction0.22 (DTB method) – 0.25 

(DTF Method)).
9
  

Moreover, linear and non linear models had similar 

performance and the quality of predictions was always 

classified as “good” by the software Xternal Validation Plus
19

. 

Linear SVM performed better than Radial SVM. K-NN, and 

GRegNN, which were the most complex approaches among 

those applied, had lower performances than RBFNN. In 

general, Radial SVM, K-NN and GRegNN were the least 

performant methods with the largest RMSE and MAE values. 

The variation of MAE and RMSE values calculated on the 95% 

of the prediction set NPs in the five splittings, compared to 

statistics calculated on the 100% (Table 2, Figure S2), show 

that the external performances are negatively influenced by a 

limited number of compounds (i.e. the 5%) with large 

residuals. 

Finally, the average of predictions calculated by the different 

linear and non-linear models (combinatorial approach), did not 

generate results which exceed the performance of the best 

model (i.e. the MLR model). These results clearly highlight that 

the MLR model can be applied without losing predictive 

power, instead of more complex non-linear methods. 

Three compounds were identified as problematic across the 

different models i.e. N-methylisatoic anhydride (n° 37), N,N'-

Bis(2-aminoethyl)-1,3-propanediamine (n°81) and 

Diethylenetriamine (n° 76). These chemicals presented always 

residuals larger than 0.5 log units (Figure S3A – S3E) and the 

predictions did not improve by applying the combinatorial 

approach. ID nos°37 and 81 were also detected as outliers with 

standardized residuals larger than 2.5 standard deviation units. 

Interestingly, nos° 76 and 37 were highlighted as outliers in the 

former work by Chau and Yap.
6 

 

The analysis of the applicability domain (AD) by the leverage–

based
12,13,18 

and the standardized descriptors-based
33

 

approaches, led to very similar results (Table S5).  

A few surface modifiers were identified outside the AD by the 

two approaches (Figure S3A – S3E: Palmitic anhydride (n°47), 

pentafluopropionic anhydride (n°3), 5-chloroisatoic anhydride 

(n°18), isatoic anhydride (n°36), and bicyclo [2,2,2] oct-7-ene-

2,3,5,6-tetracarboxylic anhydride (n°24)). ID nos° 3, 24 and 47 

were characterized by rather complex structures with long 

chains, multiple halogens and ring systems, which explained 

their influence on the model. Differently, chloroisatoic and 

isatoic anhydrides (i.e. nos 18 and 36) were detected as high 

leverage and have experimental uptake values (logPaCa2 = 

4.44 and 4.18, respectively) rather different from the response 

outlier N-methyl isatoic anhydride (n° 37; logPaCa2=3.36), 

which was always overestimated by the models. It is clear that 

nos°18 and 36 influenced the model, because of their 

molecular structure (heteroaromatic cyclic anhydrides with 
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two 6 membered fused rings), however the difference in the 

experimental uptake values across these three anhydrides was 

the reason for inaccurate prediction of n°37. In addition, n° 29 

(lauricanyhydride), n° 82(Pentaethylenehexamine) and n°95 (L-

Arg) were highlighted as outside the AD mainly by the Roy’s 

approach
33

, while n° 109 (diethylenetriaminepentaacetic 

dianhydride) only by the leverage approach (Table S5).  

 

Principal Component Analysis (PCA)
34

 was performed on the 

residuals in prediction (Table S4) in order to evaluate 

similarities across the methods, and to identify the most 

problematic compounds in the dataset, i.e. NPs predicted with 

large residuals independently of the method. Results from this 

PCA are reported in Figure S4-A and are consistent with results 

calculated by combinatorial approach, i.e. the three outliers 

(nos 37, 76 and 81) were on the extreme left and on the 

extreme right of PC1, which explained more than 80% of the 

total variance.  

The loading plot (Fig. S4-B) shows the general similarity of the 

results calculated by the different approaches (similar weights 

on PC1) already observed by analysing the performances of 

the models (Table S2); however PC2 distinctly grouped the 

best and the worst approaches into opposite clusters. 

Moreover, we analysed the distribution of the compounds and 

of the residuals within the main structural groups in the 

dataset (i.e. anhydrides, amines, and aminoacids). Figure S4-A 

shows that residuals were quite evenly distributed across the 

structural categories; however, the largest residuals mainly 

belonged to the amines class. 

 

Finally, we analysed the modelling descriptors in order to 

provide some interpretation of the structural features mainly 

involved in the uptake into PaCa2. 

Standardized coefficients calculated for the eight modelling 

descriptors selected in the logPaCa2 model gave the following 

order of importance (the signs of the contribution in the MLR 

equation is reported in brackets): 

nBase (-) >VE3_Dzs (+) > ATSC1v (-) > BIC2 (-) > D070 (-) > 

maxHxxNH (+) > MATS7s (-).  

Correlations among descriptors, response and additional 

descriptors used for the interpretation of the models are given 

in Table S6. 

These descriptors encode for information mainly related to the 

presence of basic groups (nBase), and in particular of basic 

nitrogen, the presence of heteroatoms, and the topological 

complexity. VE2_Dze, VE3_Dzs are based on the Barysz 

weighted distance matrix Dz and account simultaneously for 

the presence of heteroatoms and multiple bonds in the 

molecule.  The autocorrelation descriptors ATSC1v MATS7s are 

based on the topological distance matrix weighted on van der 

Waals volumes and on the electrotopological state, 

respectively. These five descriptors had negative sign in the 

equations of the models, with the only exception of VE3_Dzs. 

The other descriptors included in the models were Bonding 

information content index (BIC2), which takes into account the 

number and the typology of bonds, the final heat of formation 

(D070) and one electrotopological state descriptor related to 

secondary amines (maxHssNH).  

As a general observation, we want to highlight that the uptake 

of NPs into cells is a complex phenomenon governed by 

multiple mechanisms and influenced by several factors such as 

NPs size, shape, surface charge and presence of the protein 

corona. 
35-37

 Recent literature shows that experimental work is 

still necessary to clarify the cellular uptake phenomenon and 

the role of different aspects characterizing the structure of the 

NPs in different experimental conditions. 
36,37

 

Therefore, since specific information regarding these factors 

was not available for the studied NPs, the interpretation of 

molecular descriptors selected in the models is an a posteriori 

description of the structural features of the surface modifiers, 

possibly associated with one or more of the aforementioned 

mechanism/factors. In addition, it is necessary to bear in mind 

that since QSAR models are usually the result of the 

combination of two or more molecular descriptors, a 

straightforward depiction of the mechanistic function of each 

descriptor is in most of the cases challenging or impossible. 
12,13 

In the case of the response logPaCa2 the selection of 

descriptors in the model matched with the complexity and the 

heterogeneity of the dataset, which included amines and 

amino acid based NPs, differently enriched with basic groups, 

as well as anhydrides with different dimension, shape and 

presence of heteroatoms. These structural features can 

influence hydrogen bonding and lipophilicity of the studied 

NPs, which were highlighted in other studies
3-10, 35-37  

among 

the most relevant properties influencing the uptake into 

PaCa2. This is consistent with the correlation of nBase (i.e. the 

most important descriptor in the equation, and with negative 

sign) with the number of H bond donors
38 

(0.81), a descriptor 

that was not selected in the model but was helpful for the 

interpretation. This correlation suggests that an increase in the 

number of H bond donors (i.e. nHBDon in Table S6) would 

diminish the potential uptake into PaCa2 cells.  

Moreover, the descriptor BIC2 has large positive values for 

simple, small chemicals characterized by low hydrophobicity, 

and has a negative sign in the equation. Therefore, an increase 

in the hydrophobicity of the surface modifiers, i.e. a decrease 

in BIC2 values, may enhance the uptake into PaCa2 cells. This 

was confirmed by the negative correlation among BIC2 and the 

descriptor XlogP
38

 (-0.61, Table S6). 

 

Models for HUVEC  

The best MLR model developed for HUVEC was based on 8 

molecular descriptors and had satisfactory fitting and 

predictive power tested on multiple external prediction sets 

(Table 1, Table S2, Figure S5A-S5E). The averaged 

performances calculated for the five splittings and the 

performances calculated for the full model (i.e. model 

calibrated on uptake data for all the 109 NPs) were reported in 

Table 1. These performances were comparable to those of the 

literature model published by Epa
4
 (R

2
values: 0.63 and 0.74 for 

prediction and training sets respectively). However, the 

literature model had higher complexity being based on 11 

descriptors instead of the 8 selected in the new model. 

Statistics reported in Table S2 confirmed the comparable or 

better fitting of our MLR model (R
2
ranges: 0.56-0.80 and 0.72-

0.77 for the prediction and the training sets, respectively) than 

the literature model. It also demonstrated the robustness and 

the predictivity of the new HUVEC model evaluated by several 

parameters such as, cross validated Q
2
lmo (range: 0.63 – 0.70), 

CCCtr (range: 0.84 – 0.87), and multiple parameters calculated 

for the external validation, i.e different measures of Q
2
ext 

(range: 0.57 – 0.80) and CCCext (range: 0.74 – 0.89). As 

mentioned above, the model was fairly robust and predictive, 
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although the random composition of the prediction set 

influenced the predictivity of the models. In particular in split 

M3, the model was sensitive to the inclusion of 4-amino-1,8-

naphthalic anhydride (n°48) in the prediction set. This 

chemical induced the largest uptake in HUVEC, and fell outside 

the AD of the model (Figure S6A-S6E). This example showed 

that the structural and experimental information associated 

with NP n°48, which was always well fitted with the exception 

of M3, was important to stabilize the model and to enlarge the 

AD.  

The results obtained from the application of the selected 

descriptors to develop QSAR models based on additional linear 

and non linear techniques, and the related residuals in 

prediction were reported in Table 2 and Table S7, respectively, 

and in Figure S7. All the methods had very similar 

performances with exception of GRegNN and SVM-RAD, which 

had again the lowest performances and the largest RMSE and 

MAE values. The combination of the predictions calculated by 

the different linear and non linear approaches into averaged 

predictions slightly increased the performance of the models 

taken singularly. Also in this case all the predictions were 

judged as of “good quality” by the statistics calculated on the 

95% of the external prediction sets
19

 (Tables 1, 2 and S2). 

Moreover, we observed a reduction in the total number of NPs 

with residuals larger than 0.5 log units, from 14 in MLR and 

PPR (which were the best approaches) to 11 in the 

combinatorial model. Among these, Diglycolic anhydride (n° 

105), cis-aconitic anhydride (n°107), 1,3-dimethylbutylamine 

(n°58), 4-amino-1,8-naphthalic anhydride (n° 48) and 4-nitro-

1,8-naphthalic anhydride (n°27) had residuals between 0.5 and 

1, while 3-hydroxyphthalic anhydride (n°16) and N-

methylisatoic anhydride (n°37) had residuals larger than 1 log 

unit. Possible explanation for some of these errors was that 

similar structures had rather different uptake value. In the 

case of 1,3-dimethylbutylamine (n°58) the uptake into HUVEC 

was larger (logHUVEC: 4.14) than values measured for similar 

branched amines (i.e. nos 61-66, logHUVEC range: 2.97 -3.91). 

In the case of 3-hydroxyphthalic anhydride (n°16) the value of 

uptake (logHUVEC is 3.25) was lower than similar anhydrides 

(i.e. nos°30-33, logHUVEC range:  4.18 – 4.45); in the case of N-

methylisatoic anhydride (n°37) logHUVEC=2.15 was more than 

1 log unit lower than isatoic anhydride (n°36, logHUVEC: 3.59). 

Furthermore, the comparison of the AD calculated using the 

leverage-based and the standardized descriptors-based 

approaches led to comparable results (Table S8). In particular, 

1,4,5,8-naphtalenetertracarboxylic anhydride (n°13), 3-nitro-

1,8-naphthalic anhydride (n°15), 1,2,4-benzenetricarboxylic 

anhydride (n°30), 4-amino-1,8-naphthalic anhydride (n°48), 

and diethylenetriaminepenta-acetic dianhydride (n°109), fell 

outside the AD of the split and the full models. The fact that 

the four amino-and nitro-1,8 naphthalic anhydrides (i.e. 

nos°13, 15, 27 and 48) were detected as problematic 

compounds, because of large residuals, or falling outside of 

the AD of the model, may indicate that the model was lacking 

information necessary for the accurate prediction of their 

uptake into HUVEC. Moreover, nos° 16 and 37 were confirmed 

as outliers with standardized residuals larger than 2.5 standard 

deviation units. 

 

Finally, the PCA performed on the residuals (Table S7, Figure 

S8A,B) was consistent with results calculated for the logPaCa2 

response (Figure S4A,B), and with the combinatorial approach 

calculated on HUVEC predictions. The outliers with the largest 

residuals in individual models laid on the extreme left and on 

the extreme right of PC1, which explained the 90% of the total 

variance (Figure S8A). The loading plot (FigureS8B) showed the 

general similarity of the results calculated by the different 

approaches (similar weights on PC1) already observed by 

analysing the RMSE values; however, the best and the worst 

approaches were distinctly grouped along PC2. Single 

compounds isolated on the extreme opposite sides of PC2 (i.e. 

nos° 13 and 109) were due to large residuals in one or more of 

the variables with the heaviest weight on PC2. The distribution 

of the compounds within the main structural groups in the 

dataset (i.e. symbols in Figure S8A) showed that largest 

residuals belonged mainly to the anhydrides class. 

 

The eight molecular descriptors selected in the MLR model 

ranked according to their standardized coefficients, in the 

following order of importance (signs of the contribution in the 

MLR equation are reported in brackets):  D106 (+) 

>nF10Heteroring (-) >D346 (+) >VR3_Dt (+) >D094 (-) >MATS3s 

(-) >ATSC4i (-) >MATS8s (-). 

These descriptors encoded, on one hand, for structural 

information related to local reactivity and electrostatic 

properties, such as D106 (Minimum partial charge for a N 

atom), D346 ((1/2)X Beta Polarizability) and D094 (minimum 

nucleophilic reaction index for O atoms). On the other hand, 

they reflected molecular topological complexity, such as 

nF10HeteroRing (Number of 10-membered fused rings 

containing heteroatoms i.e. N, O, P, S, or halogens). ATSC4i 

(CenteredBroto-Moreau autocorrelation - lag 4 / weighted by 

first ionization potential), MATS3s, and MATS8s (Moran 

autocorrelation - lag 3 and 8 / weighted by I-state), or 

molecular size, such as VR3_Dt (Logarithmic Randic-like 

eigenvector-based index from detour matrix).  

We observed that the shift from more negative to more 

positive values of D106 increased the uptake into HUVEC, as 

well as polarizability (i.e. D346) contributed positively to the 

uptake. Additionally we observed that D106 was inversely 

correlated to the best modelling descriptor selected for 

logPaCa2 i.e. nBase (correlation =-0.70), and with the 

descriptor number of H bonds donor (correlation= -0.74). 

Therefore, taking into account the positive or negative signs of 

D106 and nBase descriptors in the respective equations, these 

results confirm that the presence of H bonds donors may have 

a negative effect also on the cellular uptake in HUVEC. 

Moreover, descriptors related to molecular topological 

complexity and presence of heteroaromatic rings had negative 

sign in the model. In particular, the presence of large 

heteroaromatic rings decreased the uptake into HUVEC 

(nFHeteroRings was negative in the equation). Finally, VR3_Dt, 

is an index that increases with the complexity of the molecule 

in terms of number of bonds. This descriptor has positive sign 

in the equation and is positively correlated to XlogP 

(correlation=0.54). This suggests that an increase in the 

number of bonds, which influences the size, the stability, and 

the hydrophobicity of the studied molecules, may increase the 

potential uptake into HUVEC.  

 

Concluding, MLR was here the best modelling option since no 

better result was generated with other methods to predict the 

uptake into PaCa2 or HUVEC cells. Linear (PLS) and non linear 

methods optimized by linear functions (SVM-Linear and PPR) 
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had comparable performances to MLR and represented a valid 

alternative to MLR. Neighbourhood based methods and SVM 

based on Radial functions had the lowest predictive ability and 

appeared to be less suitable to model the studied datasets. 

Few surface modifiers were predicted with residuals larger 

than 0.5 log units in multiple models and after application of 

the combinatorial approach. These compounds (i.e. nos°16, 

27, 37, 48, 58, 76, 81, 105 and 107) were problematic because 

induced large variability of the response associated with small 

variations in the structure of the surface modified NPs, or 

because the models lack of sufficient structural or 

experimental information (e.g. some surface modified NPs 

may be under-represented in comparison to other NPs). 

Finally, inaccurate predictions may be caused by inaccurate 

experimental values. A new experimental determination of the 

cellular uptake of NPs functionalized by nos°16, 27, 37, 48, 58, 

76, 81, 105, and 107 may help to confirm the nature of the 

associated error in prediction (e.g. possibly due to mechanistic 

or experimental causes). 

 

Map of the selective uptake of magnetofluorescent 

nanoparticles for multiple cell types 

We developed an approach based on multivariate Factorial 

Analysis
39

 in order to provide a map of the selective uptake of 

the studied NPs for multiple cell types. The final aim was to 

provide a tool to prioritize NPs on the basis of their multiple 

cell selectivity as function of the surface modifications, and to 

evaluate the efficiency of the different chemical classes used 

to functionalize the NPs. 
 

FA was used since results obtained by PCA generated loadings 

of each variable, which appeared to be orthogonal, but were 

placed in between PC1 and PC2 (Figure S9A-B). Therefore, we 

introduced FA in order to rotate the view and obtain a 

distribution of the variables more clearly differentiated along 

the new factors.  

We started from the raw data of uptake available for the 109 

functionalised NPs measured in five different cell types. The 

raw uptake data were log transformed, and the FA was 

performed by applying varimax rotation on the covariance 

matrix, in order to not overweight the information associated 

with the different macrophage cells, which we knew to be less 

responsive to surface modifications than PaCa2 and HUVEC 

from former studies.
1
  

Results from the factorial analysis were reported in Figure 1, 

Figure S10 and Table S9. 

 

<Figure1> 

 

Figure 1 is a simplified map obtained by plotting Factor 1 and 

Factor 2 extracted by Factorial analysis. Factor 1 (F1) explains 

the 60% of the total variance and Factor 2 (F2) the 27%. The 

109 surface modified NPs are ranked from right to left along F1 

according to decreasing potential uptake mainly into HUVEC, 

which is the variable with the largest loading value in F1 

(Figure S10); NPs are ranked from the top to the bottom along 

F2 according to decreasing uptake into PaCa2 cells (largest 

loading value in F2). The uptakes in macrophages are 

correlated to PaCa2, however they have small values of the 

loadings, and therefore low influence, in defining the 

projections of the 109 NP in the F1-F2 space.  

Summarizing, NPs placed on the right side of the plot enhance 

the uptake mainly in HUVEC, while those placed at the top of 

F2 enhance the uptake mainly in PaCa2 cells. The 

interpretation of Figure 1 can be simplified by dividing the map 

in four quadrants, numbered from 1 to 4 moving clockwise. 

Compounds falling in quadrant 1 (positive score values for F1 

and F2) enhance the uptake in all the cell types but 

GMCSF_Mph (which has negative loadings along F1 and F2). 

Compounds placed in quadrant 2 (positive and negative F1 and 

F2 scores, respectively) enhance the uptake in HUVEC but have 

negative influence on uptake into PaCa2 cells. Compounds 

placed in quadrant 3 decrease the uptake in all the cell types, 

while compounds placed in quadrant 4 and in particular those 

at the top of the map (positive F2 values) enhance the uptake 

mainly in PaCa2 cells.  

According to classes highlighted in Figure 1 it is easy to see 

that anhydrides are the surface modifiers associated with the 

largest uptake in all the cell types. In particular glutaric 

anhydride and its heteroaromatic derivatives (i.e. nos°15, 18, 

34, 36, 50) increase the uptake into PaCa2, but inhibit the 

uptake in HUVEC; large and long chained anhydrides enhance 

the uptake in HUVEC. The increase in the number of bonds 

increase the uptake in HUVEC (e.g uptake of succinic 

anhydride(n°102)<itaconic anhydride (n°104)< cis-aconitic 

anhydride (n°107)). Nitro substituents increased uptake in 

HUVEC if they were attached to a single aromatic ring; 

however, they increased the uptake in PaCa2 if they were 

attached to a multiple rings system (e.g. 4-nitrophtalic 

anhydride (n°11), 3-nitrophtalic anhydride (n°32), and 3-nitro-

1,8-naphtalic anhidride (n°15)). Linear Amines increased 

selectivity for PaCa2 and inhibited uptake in HUVEC, while 

aromatic amines as well as amino acids (quadrant 3 in Figure 

1) inhibited the uptake in all the cell types. Branched amines 

and diamines (quadrant 4, figure 1) had a negative effect on 

the uptake in HUVEC. 

 

Modelling and prediction of the selective uptake of NPs 

Two QSAR MLR-OLS models were generated using F1 and F2 

scores as responses, to predict the possible position of new 

NPs in Figure 1. These models allow for the prediction of the 

potential selective cellular uptake of NPs from the molecular 

structure of the surface modifiers. In order to provide external 

validation F1 and F2 values were split into training and 

prediction sets. Additionally, in order to show an example of 

application of the proposed approach, we included 28 NPs 

listed in the library developed by Weissleder
1 

but with 

unknown cellular uptake values. 

The equations for F1 and F2 QSAR models are reported below 

(descriptors are in order of importance according to 

standardized residuals). Plots of the experimental vs. predicted 

values and AD for model  F1 and F2 are reported in Figures 

S11A-B and S12A-B, respectively.  

 

F1=-3.60+2.51PubchemFP614 + 1.76 PubchemFP393 - 0.94 

ATSC1p-1.27n6HeteroRing+2.90MATS2s+ 

0.82PubchemFP430+1.14GATS2m-0.36minsCH3+0.65VP-

7+1.77AATSC7p 

(1) 

N°tr.=88; N°test=21; R
2
=0.75; Q

2
loo=0.70; Q

2
lmo15%=0.69; 

CCCCV=0.83 R
2

EXT=0.78; Q
2

EXTAverage=0.78; CCCEXT=0.87; 

RMSEtraining=0.50; RMSEext100%=0.45; RMSEext95%=0.37 

MAEext100%=0.36; MAEext95%=0.30 
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F2=1.55 -0.74MLFER_E–4.77MATS1v+0.02VE3_Dzs-

1.60GATS2c+4.57VE1_Dze+0.67PubchemFP637+0.63n6Hetero

Ring-0.15minHBint3+0.40ATSC8p+0.16GATS6m 

  (2) 

N°tr.=88; N°test=21; R
2
=0.73; Q

2
loo=0.65; Q

2
lmo15%=0.65; 

CCCCV=0.80; R
2

EXT=0.79; Q
2

EXTAverage=0.84; CCCEXT=0.87; 

RMSEtraining=0.54; RMSEext100%=0.39; RMSEext95%=0.31 

MAEext100%=0.31; MAEext95%=0.26 

 

As demonstrated by the values calculated to quantify the 

internal and external predictivity, considering statistics 

calculated using 100% or 95% of the external prediction set, 

the models are robust and predictive, also when they were 

tested on NPs never included in the model development (i.e. 

prediction set). The variables that were selected in the two 

models were similar to those previously selected for individual 

models in PaCa2, and HUVEC cells. Features like topological 

complexity, presence of heteroatoms and rings and hydrogen 

bonding were still present in the new models, and were 

encoded by several ATS-, MATS-, and GATS-type descriptors 

(i.e. autocorrelation descriptors), VE3_Dzs and VE1_Dze, 

n6Heteroring (number of 6 membered heteroaromatic rings), 

VP7(topological path cluster of order 7) and two 

electrotopological indices (i.e. minHBint3 and minsCH3). The 

relevance of these features was furthermore confirmed by 

some newly selected descriptors such as the excess molar 

refraction (MLFER_E), which encoded for interactions 

associated with the polarizability of pi- and n- electrons (E = 0 

for saturated alkanes). 
40

 

Some fingerprints were selected, which encoded for specific 

substructures in the molecules. FP 393 is a simple atom 

nearest neighbours counter for the fragment N (∼C) (∼H). FP 

430 is a detailed atom neighbourhoods counter for the pattern 

C(-C)(-C)(=C). FP 614 is a SMART pattern that describes the 

presence of the sequence C-C-O-C-C regardless of the count, 

and was a fundamental descriptor to distinguish between 

anhydrides and other substituents. FP 637 is also a SMART 

pattern encoding for the presence of the sequence O-C-C-C-C 

regardless of the count. 

The analysis of the applicability domain (Figure S11B-C; S12B-

C) showed that the performances of the models were 

influenced by a few outliers (i.e. nos° 16 and 42 in F1 and n° 81 

in F2), and high leverage compounds (i.e D-Glucosamine 

(n°59), 4-amino-1,8-naphthalic anhydride (n°48), 5-

chloroisatoic anhydride (n°18), N-methylisatoic anhydride 

(n°37) and 2-sulfobenzoic acid cyclic anhydride (n°19) in F1; 

pentafluopropionic anhydride (n°3), Palmitic anhydride (n°47), 

diethylenetriaminepentaacetic dianhydride (n°109) in F2.  

Not surprisingly, most of these problematic compounds were 

identified before as outliers or high leverage in models 

developed for uptake into PaCa2 and HUVEC cells. 

Finally, the two models were applied to predict the F1 and F2 

coordinates of 28 new molecules which could be used as 

surface modifiers, and therefore to screen their selectivity 

before testing. 

The new F1-F2 plot including predictions generated for the 

new molecules was reported in Figure 2 and S13.  

 

<Figure 2> 

 

The analysis of the applicability domain of the two models 

(Figures S14 and S15 A,B,C) showed that three compounds out 

of the 28 tested fell outside the AD of F1 model (i.e. 3,4,9,10-

perylenetetracarboxylic dianhydride (n°124), N-Ethyl-N-(2-

hydroxyethyl)-4-(4-nitrophenylazo)aniline (n°136) and 3-

Mercapto-2-methylpropionyl-L-proline (n°137)). However six 

compounds fell outside the AD of F2 model (i.e. 

Hexafluoroglutaric anhydride (n°122); heptafluorobutyric 

anhydride (n°116); 3,4,9,10-perylenetetracarboxylic 

dianhydride (n°124); N-2,4-DNP-L-arginine (n°132), Isobutyric 

anhydride (n° 121) and trymethylacetic anhydride (n°112)). 

Among these chemicals nos°132, 121 and 112 had large 

leverage values, and estimated values above and below the 

experimental range of the training set compounds. This means 

that these predictions are unreliable and should be discarded.  

It was interesting to note that the new molecules were 

correctly placed in the areas occupied by anhydrides, amine 

and aminoacids, according to their chemical identity. Figure 2 

and S13 showed clearly that aminoacids and amines surface 

modifiers do not enhance the uptake into the different cell 

types, while anhydrides are the group that may induce the 

highest uptake, according to QSAR predictions. ID nos° 112, 

121 and 122 among the new surface modifiers are those with 

the highest selectivity for PaCa2 cells. Unfortunately, we have 

already explained that these three predictions fall outside the 

AD of the model, and should be either discarded (i.e. nos° 112 

and 121 are largely outside the structural and response 

domain), or taken carefully (i.e. 122 falls just outside the 

structural AD of the model (Figure S15)). 

Conclusions 

In this paper we presented new models useful for the 

prediction of the uptake of heterogeneous 

magnetofluorescent NPs with the same core, into different 

human cell types. The new QSAR models developed for the 

uptake into PaCa2 and HUVEC cells were consistent with 

mechanistic findings presented in current literature.
3-11 

Several 

structural features related to electrostatic properties, 

topological complexity and hydrophobicity were associated 

with the uptake of the studied NPs into PaCa2 and HUVEC 

cells. Among the main observed effects, the increasing number 

of hydrogen bond donors reduces the uptake into PaCa2 and 

HUVEC cells. In addition, features related to hydrophobicity 

played an important role and were associated with an increase 

in the cellular uptake. 

Additionally, we showed how the parallel use of different 

modelling techniques is helpful to identify problematic 

compounds. Nanoparticles with surface modifiers as nos° 16, 

27, 37, 48, 58, 76, 81, 105 and 107 should be newly tested in 

order to clarify the nature of the error associated with their 

predictions. An important result would be to confirm large 

differences in the uptake of very similar structures. This issue, 

named “activity cliff”, which was originally highlighted by 

Maggiora
53

, can be the cause of errors in prediction across 

similar structures and should be taken into account in read 

across procedures. Results reported in this study show that 

read across would be unsuitable for NPs such as nos°16, 37 

and 58, and similar structures. Additionally we have 

demonstrated that multivariate analysis is a powerful tool to 

simplify the interpretation of the behaviour of NPs described 

by multiple variables (i.e. uptake into different cell types) into 

a 2D map. An important result was to provide by a simple 2D 

scatterplot a clear representation of the uptake behaviour of 
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the different NPs, and to show that anhydrides in general 

tended to enhance the uptake into all the here studied cells, 

while amino acids inhibited the cellular uptake. Finally, we 

provided a predictive map of the potential uptake of NPs 

according to the known uptake into different cell types and we 

demonstrated that this tool could be easily applied to generate 

predictions for new surface modifiers. The prediction of the 

three new surface modifiers with the highest selectivity for 

PaCa2 cells (i.e.trimethylacetic anhydride (n°112), isobutyric 

anhydride (n°121), and hexafluoroglutaric anhydride (n° 122)) 

outside the domain of F2 model, impose to consider these 

predictions as less reliable. However, this observation 

highlighted two important points: i) the applicability domain 

should always be identified and quantified, to avoid unreliable 

extrapolations; ii) the domain of the F2 QSAR model can be 

improved if new data will become available. This draws 

attention to the need for new data, which are necessary to 

build robust and predictive models with the largest possible 

applicability domain.  

Concluding, we think that the proposed approaches can serve 

as examples of how models can be developed and combined 

to extract as much information as possible from the analysis of 

predictions, residuals and domains, and that our results will be 

useful for the future development of new nanoparticles with 

different cell-selectivity for use in more efficient biomedical 

applications. 

 

 

Experimental 
 

Experimental data set  
A library of supermagnetic fluorescent nanoparticles sharing 

an iron oxide core, a dextran coating and surface modified 

with 146 different small molecules, was generated by 

Weissleder and colleagues.
1
 The full list of 146 surface 

modifiers was reported by Fourches et al.
3
 

The cellular uptake was tested in different human cell types 

(i.e. primary resting human Macrophages (RestMph), 

granulocyte macrophage colony stimulating factor-stimulated 

human macrophages (GMCSF_Mph), U937 human 

macrophage-like cell line (U937), human pancreatic 

adenocarcinoma epithelial cells (PaCa2), and human umbilical 

vein endothelial cells (HUVEC)). Experimental data measured 

for 109 surface modifications
1
 are available online at 

https://csb.mgh.harvard.edu/information/links, in the section 

“NP screening data” from the list of topics (i.e. Data from 

"Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L. Nat 

Biotechnol. 2005 Nov;23(11):1418-23.")).  

Uptake was quantified by well fluorescein isothiocyanate 

(FITC) concentrations. Data expressed as picomoles/Liter (pM) 

were modelled by QSAR and log-transformed (log10) prior to 

modelling. The 109 surface modifiers tested on the different 

cell types, were listed in Table S1. Twenty-eight additional 

surface modifiers were also listed in TableS1 for a total of 137 

chemicals. These 28 chemicals were extracted after exclusion 

of salts from the 37 surface modifiers with unknown uptake 

reported in the list published by Fourches
3
, in addition to the 

109 with measured response.
1
 

 

Calculation of the molecular descriptors 

Molecular descriptors were calculated for the 137 molecules 

used to modify the surface of the iron oxide NPs.  

3D structures were designed and energetically optimized, 

using both the Semi-empirical method AM1 and the Allinger 

molecular mechanical method (MM+), in the HYPERCHEM 

program.
41 

The software PaDEL Descriptors (v2.18)
38 

and 

CODESSA
42

were used to compute mono and bi-dimensional 

molecular descriptors starting from the optimized structures. 

Constant, near constant and highly correlated descriptors 

(R>95%) were excluded, by using QSARINS
18

, to reduce 

redundant and non-useful information. At the end of this 

procedure, a final set of 612 descriptors was used as input for 

the modelling. 

 

Explorative analysis 

Principal component analysis (PCA)
34 

was performed on 

residuals in prediction calculated by the different models 

proposed in this study. The 109 NPs were labelled according to 

the different chemical classes they belonged to i.e. amines, 

anhydrides and amino acids. PCA was performed on 

autoscaled data in the software SCAN.
43

 

 

QSAR Modelling and validation  

The QSAR approach applied in this study was based on the 

regression of the structural properties of 109 chemicals, used 

as surface modifiers, against the cellular uptake measured for 

109 NPs generated after conjugation of the surface modifiers 

with the same supermagnetic nano-core. The basic assumption 

was that the core shared by all the nanoparticles was a 

constant element, and as such, it was excluded from the 

structure-activity analysis to focus on the structural differences 

responsible for the measured cellular uptake. The approach 

used here offers the possibility to calculate a large variety of 

different molecular descriptors and was successfully applied in 

former studies.
3-10

 Moreover, as was explained by Weissleder
1
, 

only PaCa2 and HUVEC were characterized by sufficient 

variability in the response depending on surface modification 

suitable for the development of QSAR models. Therefore, we 

developed specific regression QSAR models for these two cell 

types by using different linear and non-linear methods.  

Due to the large amount of structural descriptors available as 

input for QSAR generation, the best combinations of 

descriptors were identified by using variables subset selection 

methods available for the development of Multiple Linear 

Regression based on Ordinary Least Squares (MLR-OLS) in the 

software QSARINS.
18

 

The selected descriptors were used as input for the 

development of other linear and non linear models. 
 

 

Multiple Linear regression Models for PaCa2 and HUVEC 

responses 

Multiple Linear Regression technique
 12-15 

attempts to find a 

linear relationship between a dependent variable (y) and more 

than one independent variables (xj). This relationship can be 

reported as:  

�� = �� + ���� + �	�	 +⋯+ ����  

Where �� is the calculated response (dependent variable), bj 

are the coefficients of the models, and xj are the predictors 

(independent variables). 

The b elements of the vector of the coefficients are estimated, 

using the ordinary least squares method (OLS), from the X 

matrix of the independent variables according to the following 

formula: 

b=(X
T 

X)
-1

X
T
 y 
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The best modelling variables to generate MLR-OLS models 

were selected from the initial pool of over 600 molecular 

descriptors calculated for chemicals in the training set. The 

selection was performed in two steps starting with an 

exhaustive search, i.e. by exploration of the statistical quality 

of MLR-OLS models generated by all the possible combinations 

of up to two of the available experimental descriptors, 

followed by Genetic Algorithm
18

. The output of the GA was a 

population of models including up to eight descriptors. Models 

were intentionally kept as simple as possible, as recommended 

by the parsimony principle (Ockham’s Razor) and the inclusion 

of a new variable in the models was stopped when the 

increase in the models complexity did not increase the models 

performance. The best models were chosen by using Q
2
 leave-

one-out (Q
2
loo) as optimization value. Furthermore, the 

correlation between the modelling descriptors and the 

modelled response was checked by the QUIK rule
44

, to exclude 

models with co-linearity and exclude chance correlation. 

Additionally, Y-scrambling was applied to verify that the 

models were not based on a chance correlation of descriptors 

with the response. Low R
2
 values of the models, which were 

calculated on scrambled responses (i.e. R
2
SY), confirmed the 

absence of chance correlation in the original model (results 

reported in Table S2). Moreover, the robustness of the models 

was evaluated by applying the leave many out (15-30%) 

procedure Q
2
lmo (2000 iterations). Standardized residuals 

were calculated to identify outliers for the response (chemicals 

with standardized residuals greater than 2.5 standard 

deviation units).  

The external predictivity of models was evaluated on multiple 

random prediction sets (5 for each training set) manually 

generated by unbiased random splitting (without taking into 

consideration response or descriptors distributions), leaving 

out about 20% of the original data sets.  

Different populations of models selected by the genetic 

algorithm were generated independently for each training set, 

and were tested on the respective prediction set. The external 

predictivity of the models was quantified by analysis of 

different external parameters calculated by QSARINS
18

 for 

each model in the independent populations i.e. three 

differently calculated External Q
2
 and the Concordance 

Correlation Coefficient.
45,46  

In addition, the Mean Absolute Error (MAE) and Root Mean 

Square Error (RMSE), were used to evaluate the prediction 

accuracy
18,19

. In particular, the validation criteria proposed by 

Roy et al.
19

 based on MAE and RMSE statistics calculated for 

the 100% and the 95% of the prediction sets, were used to 

further confirm the predictivity of the models. These 

parameters were calculated by the software Xternal Validation 

Plus (http://teqip.jdvu.ac.in/QSAR_Tools/).
19  

The best models were chosen as best options taking into 

consideration internal and external predictivity, number of 

outliers and applicability domain. Once identified the best MLR 

models for the two responses of uptake, only the external 

predictions (generated by these models for the five 

independent prediction sets set used to perform the external 

validation) were combined in order to have only externally 

predicted values for all the 109 nanoparticles. These 

predictions were used to compare the external predictivity of 

linear and non linear models.
 

 

PLS and Non-Linear Regression Models for PaCa2 and HUVEC 

responses 

Different linear and non linear approaches were explored in 

addition to MLR-OLS, i.e. Partial Least Squares (PLS) 

regression
20

, Projection Pursuit Regression (PPR)
21

, support 

vector machines (SVM)
22-25

, K-NearesNeighbours (K-NN)
26

, 

Radial Basis function neural networks (RBFNN)
27-29

 and general 

regression neural networks (GRegNN).
30-32

 

Since so different methods may overemphasize some 

structural characteristics and ignore or underestimate others, 

is therefore not a priori obvious that they will lead to similar 

results.
47

 The performances and the sensitivity of the different 

methods were compared in the same modelling conditions. 

The multiple predictions provided the basis for the application 

of combinatorial approach to analyse residuals and reduce the 

prediction errors.
16,17,48

 

As mentioned above all the modelling techniques tested in 

addition to MLR, were non linear machine learning 

approaches, with the only exception of PLS. Non linear 

methods do not provide any explicit, directly usable, formula 

for property evaluation, and therefore they appear as more 

directed toward activity prediction or data mining than 

mechanistic interpretations. However, despite these 

drawbacks, they have the advantage of easy settings, rapid 

training, and guarantee to find the global minimum on the 

error surface. Owing to these beneficial aspects, it is not 

surprising that a large amount of QSPR/QSARs now rely on 

non-linear approaches, with successful applications also in the 

field of nanotoxicology. 
3-11, 16, 17

 

Calculations for the additional methods were generated by 

using the Caret package 
49

 of the Cran-R software
50

, and 

Matlab routines
 
for RBFNN

51
 and GRegNN

52
. The quality of the 

models was evaluated by quantification of internal fitting (R
2
) 

and predictivity (Q
2
loo).  

 

The external predictivity of the models was evaluated on the 

same external prediction sets used for MLR models described 

before, and quantified by R
2
. RMSE and MAE criteria

18,19 
were  

used to measure and compare prediction accuracy in the 

training and in the prediction sets. All these parameters, 

obtained in comparable conditions, were used for comparing 

the quality of the predictions using linear or non-linear models. 

A brief description of the basic principles of approaches 

different from MLR is given as follows. More information can 

be found in specific literature.
20-32  

Tuneable parameters were adjusted through optimization of 

cross-validated RMSE or Q
2
loo, while the other parameters 

were fixed, as far as possible, at their default value. Specific 

settings used for the setup of the models generated for the full 

data sets are given in Table S10. 

We used a common methodology relying on a grid-type search 

to optimize the parameters for the methods implemented in 

the package caret
49

 i.e. PLS, PPR, KNN, SVM. The tuneable 

parameters for these methods concern the number of 

components (PLS), the number of successive projections (PPR) 

or the number of neighbours (KNN). In particular, for a series 

of possible values (typically from 5 (PLS) to 10 (SVM)), 

proposed by the program or user-defined, we performed a 5-

fold cross-validation repeated 3 times. The best mean RMSE 

value for these runs determined the choice of the best 

parameters. The reproducibility of the results was ensured by 
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the use of a seed-value (here seed=2), which was used to 

select subsamples in cross validation. 

 

Partial Least Squares (PLS)
20

 generates by linear combination 

of the original variables a limited set of orthogonal 

components (latent vectors). Unlike the aforementioned 

Principal Component approach, which is an explorative 

technique, the set of latent vectors in PLS, is determined as 

representing at best the variability in both the descriptor (X) 

and also in the property (Y) space. 

 

Projection Pursuit Regression (PPR) is a nonparametric method 

developed by Friedman and Stueltzle
21

 and may be considered 

as a (empirically determined) sum of nonlinear local smooth 

(univariate) functions iteratively determined. Given a trial 

direction vector a, the descriptor matrix X is projected as: 

Z=a
T
 X 

The model operates in the space of the Z projections, which 

are linear combinations of the initial variables. PPR 

approximates the regression function (relying the property y to 

associated predictors X) by a finite sum of smooth ridge 

functions of the new predictor variables Z. The software, after 

setting the smoothing function, automatically defines the 

number of projections, by optimizing cross-validation results 

(i.e. RMSEcv). In this study, the first projection was sufficient to 

generate a satisfactory QSARs.  

 

Support Vector Machine (SVM)
22-25

 approach privileges 

robustness of the model over the search for an optimal recall 

of the data in order to get more generalization ability. A kernel 

function is used to project data in a higher dimensional space, 

where it may be expected that a linear representation would 

work better than in the original descriptor space. The choice of 

the kernel function (and the related hyper-parameters) is of 

crucial importance for the optimization of the SVM’s 

performance. In this work, we used Linear and Gaussian 

kernels that are the most commonly employed in QSAR 

studies.  

The application of SVM with a Linear kernel requires to adjust 

the regularization parameter C, which balances between the 

complexity of the model and its precision. In addition, the 

diameter of the “epsilon insensitive tube” (where the errors 

are neglected during the model development) was left at 

default value, i.e. 0.1.  

In Radial SVM the Gaussian kernel additionally requires the 

definition of the “inverse radius” gamma (γ) of the Gaussian, 

which is computed as exp(-γ(xj-xi)
2
), xi and xj being independent 

feature vectors. The software caret defines γ value by the 

kernlab program starting from the input variables (here the 

molecular descriptors). 

A supplementary user-driven optimisation of γ  slightly 

improved the results and was not systematically carried out. 

The best settings for Linear and Gaussian kernels, were 

defined through optimization of RMSEcv values. 

 

Neighbourhood based method such as k-Nearest-Neighbours 

(k-NN), Radial Basis Function Neural Networks (RBFNN) and 

General Regression Neural Network (GRegNN) directly rely (at 

different levels) to neighborhood relationships between 

samples. 
26-32

 

In k-NN
26 

the property (class membership or activity value) is 

not calculated by fitting a model, but evaluating a weighted 

average value over the kth most similar compounds. Here, the 

best k value was k=1. 

 

In RBFNN and GRegNN 
16,17,27-32

 the investigated property for a 

compound is evaluated as a weighted average of its values on 

selected neighbouring compounds.  

For RBFNN the Orr’s algorithm
28,51

 automatically determines 

the number and location of the hidden units (that are chosen 

among the data points). The radius (s) of the Gaussian function 

defines the activation of hidden units. The Gaussian function is 

then calculated as exp(-(x-ci)/s)
2 

where x and ci represent the 

predictors of the investigated pattern and hidden center ci, 

(note that a unique radius is chosen for all hidden unit). 

A series of user-defined values of “s” were tested to optimize 

the RMSE calculated in leave-one-out for the training sets.  

 

The same approach was used for GRegNN. Here, the whole 

dataset is involved in evaluating neighbourhood relationship. 

However, a unique tuneable parameter i.e. the radius (r), is 

needed to adjust the Gaussian weighting function (i.e. exp[-(x-

xj)
T
(x-xi)/2r

2
)) intervening in Parzen’s

 
estimator

32
, which 

balances the influence of “neighbouring” compounds. 

Note that the selected neighbours (i.e. the whole data set 

(GRegNN) or only some data points (RBFNN) are fixed for a 

given data set whereas in k-Nearest Neighbour method (k-NN) 

they vary for each submitted pattern. 

 

Factorial analysis and 2D map of the selective uptake of 137 

surface modified Nanoparticles. 

Factorial Analysis (FA)
39

 was applied to generate a 2D map the 

selective uptake of the 109 surface modified NPs with known 

uptake into different human cell types. FA was performed on 

log transformed values starting from covariance matrix, in 

order not to overweight uptake into less sensitive cells (i.e. 

macrophages).
1
 The principal components method to extract 

the factors and the varimax rotation were performed in the 

software SCAN.
43

 

MLR-OLS QSAR models were subsequently generated using as 

response the coordinates (i.e. score values) of the 109 NPs in 

the space of the first two rotated factors. Values calculated for 

the F1 and F2 scores are reported in Table S9. Models 

development and validation was performed as described in the 

MLR section. In order to perform the external validation 

compounds were split according to the scheme “four trainings 

and 1 prediction”, after being ordered according to the 

respective response value (i.e. Factor 1 (F1) Scores and Factor 

2 (F2) scores). 

The best split models, were newly calibrated using the 

empirical information available for the 109 NPs and applied as 

“full models” to predict the F1 and F2 scores for additional 28 

NPs with unknown behaviour in the studied cells. 

 

Applicability Domain  

The structural Applicability Domain (AD) of MLR models was 

quantified by the leverage approach
12,13,18 

in order to verify the 

presence of influential objects (i.e. NPs) in the training set, and 

to verify the reliability of predictions for objects not included 

in the training set (i.e. reliable predictions should fall within 

the AD of a model).  

The leverage matrix H, which includes n training set samples 

and p modelling descriptors, is calculated from the X matrix as 

follows:  
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H=(X(X
T
X)

-1
X

T
) 

Diagonal elements (hi/i) of the H matrix quantify the influence 

of each object on the regression results, i.e. the leverage of 

each object (hi/i) in the space of the model. The value h*, 

which is calculated as 3(p+1)/n (p= number of variables in the 

model, n=number of compounds in the training set) is the cut-

off value for the domain. Compounds which “influence” the 

mathematical structure of the model have leverage values 

greater than h* and fall outside structural AD of the model. 

Predictions calculated for high leverage chemicals in the 

prediction set should be considered as less reliable (i.e. 

extrapolated values).
13

 

The Applicability domain of MLR models was further inspected 

by graphic approach. The Williams graph
18,43 

is the plot of hat 

diagonal values vs. standardized residuals and gives an 

immediate view of NPs falling within the structural AD of the 

models (i.e. hi/i<h*), and of response outliers which are 

characterized by standardized residuals larger than 2.5 

standard deviation units.  

Furthermore, the method proposed by Roy et al.
33

 which is 

independent of the MLR statistics, was used to verify the AD 

for models different than MLR. This approach relies on the 

range covered by standardized descriptor values. Details 

regarding this method, which can be applied by the software 

Applicability Domain (using standardization approach), 

available online at                                  

http://teqip.jdvu.ac.in/QSAR_Tools/, are reported in the 

related literature.
33
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Rotated score plot of Factor 1 (F1) and Factor 2 (F2) generated by Factorial Analysis on log-transformed 
data of uptake in different human cell types measured for 109 nanoparticles. Nanoparticles are labelled 
according to chemical classes of the surface modifiers (i.e. 1=anhydrides, 2=amines, 3=aminoacids).  

Figure 1  
135x90mm (300 x 300 DPI)  
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Plot of empirical (i.e. calculated by Factorial Analysis), and predicted (i.e. by QSAR) F1 and F2 values for 
109 nanoparticles (NPs) with known cellular uptake, and 28 NPs functionalized by new surface modifications. 
The 109 NPs are labelled as empty circles; the 28 new NPs are labelled according to chemical classes (i.e. 

1=anhydrides, 2=amines, 3=aminoacids).  
Figure 2  

68x45mm (300 x 300 DPI)  

 

 

Page 13 of 15 RSC Advances



Table 1. Performances of split (averages on 5 external prediction sets) and full MLR-OLS models.  

PaCa2 R2 Q2 Qlmo CCCtr R2YS 
RMSE 

Tr 

MAE 

Training 
R2ext 

Average 

Q
2
ext 

CCC 

ext 

RMSE ext 

(100% 

data) 

MAE ext 

(100% 

data) 

RMSE 

ext (95% 

data) 

MAE ext 

(95% 

data) 

MAE+3*SD 

ext (95% 

data) 

Av. Split 0.74 0.67 0.64 0.85 0.09 0.21 0.17 0.74 0.72 0.84 0.22 0.17 0.18 0.14 0.46 

Full Model 0.74 0.69 0.66 0.85 0.07 0.21 0.1656  -  -  -  -  -  -  -  - 

HUVEC R
2
 Q

2
 Qlmo CCCtr R

2
YS 

RMSE 

Tr 

MAE 

Training 
R
2
ext 

Average 

Q
2
ext 

CCC 

ext 

RMSE ext 

(100% 

data) 

MAE ext 

(100% 

data) 

RMSE 

ext (95% 

data) 

MAE ext 

(95% 

data) 

MAE+3*SD 

ext (95% 

data) 

Av. Split 0.75 0.69 0.67 0.86 0.09 0.30 0.23 0.69 0.69 0.82 0.33 0.27 0.27 0.22 0.67 

Full Model 0.75 0.7 0.68 0.86 0.07 0.3 0.2372  -  -  -  -  -  -  -  - 

 

Table 2. Comparison of the predictive performances of linear and non-linear approaches evaluated for the 109 NPs in five external validation sets on the basis of 

Mean Absolute Errors (MAE) and Root Mean Squared Errors (RMSE) values calculated with the software Xternal Validation Plus (available online at 

http://dtclab.webs.com/software-tools) . Combined=calculated on averaged predictions.  

PaCa2 MLR 
SVM-

LIN 

SVM-

RAD 
PPR PLS KNN GRegNN RBFNN Combined 

Prediction 

Quality 
 

RMSEext(100% data) 0.22 0.23 0.28 0.22 0.22 0.26 0.26 0.22 0.22 GOOD 

RMSEext(95% data) 0.19 0.20 0.23 0.19 0.19 0.22 0.20 0.19 0.18 GOOD 

MAEext(100% data) 0.17 0.18 0.21 0.18 0.17 0.20 0.19 0.17 0.17 GOOD 

MAEext(95% data) 0.15 0.16 0.18 0.16 0.15 0.18 0.17 0.15 0.15 GOOD 

MAEext+3*SD 

(95% data) 
0.49 0.49 0.61 0.47 0.49 0.56 0.51 0.48 0.46 GOOD 

HUVEC MLR 
SVM-

LIN 

SVM-

RAD 
PPR PLS KNN GRegNN RBFNN Combined 

Prediction 

Quality  

RMSEext(100% data) 0.34 0.34 0.42 0.34 0.34 0.35 0.39 0.35 0.33 GOOD 

RMSEext(95% data) 0.28 0.29 0.36 0.28 0.29 0.29 0.32 0.29 0.27 GOOD 

MAEext(100% data) 0.27 0.27 0.34 0.26 0.27 0.28 0.30 0.27 0.26 GOOD 

MAEext(95% data) 0.23 0.24 0.30 0.23 0.24 0.24 0.26 0.24 0.23 GOOD 

MAEext+3*SD  

(95% data) 
0.71 0.72 0.87 0.72 0.71 0.75 0.81 0.72 0.68 GOOD 
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