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Abstract 

A DFT based characterization of tungsten oxide supported on amorphous hydroxylated silica is 

presented. The different molecular organizations are investigated on the surface topology and 

tungsten oxygen coordination. The presence of mono- and di-grafted species is discussed and 

rationalized, using an atomistic thermodynamic approach. The presence of W=O groups are 

preferred over W-OH groups and the grafting coordination is dominated by the degree of hydration 

of the silica surface. At room temperature di-oxo digrafted and mono-oxo-tetragrafted species are in 

competition regulated by the ambient degree of hydration which also affects the silanol density of 

the silica support. A comparison between Tungsten and the other group VI elements confirms a 

greater chemical difference with Cr than with Mo. 
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1. Introduction 

Supported transition metal oxides are among the most important catalytic systems used today1. The 

most common supports are silicate based materials (in particular silica and zeolites), alumina and 

titania, not only because of their specific physico-chemical properties but also due to their 

abundance and relative low price. In particular, a wide range of catalytically active transition metal 

oxides is supported on amorphous silica.2-3 

Tungsten oxide supported on silica is mainly used as an industrial catalyst for olefin metathesis. 4-5 

Originally, it was used to transform propene into ethene and butene in the triolefin Phillips process.6 

At present, since the world demand for propene is rapidly increasing7, tungsten oxide catalyzes a 

reverse reaction. Other uses include selective oxidation of, among others, methane 8-10, styrene11, 

propylene 12 and methanol13-14. It is also used for photocatalytic water splitting15. 

The structure and character of WOx/silica catalyst has been studied by a wide range of experimental 

techniques3,16-17. Also, models of isolated oxo-tungsten species were synthesized and 

characterized18. A combined DFT-NMR study found that the terminal W-OH groups are weakly 

acidic and very stable19. On high surface area catalysts, a well-dispersed and reduction-resistant 

layer of tungsten oxide covers the active sites of silica surface.8 

The catalytic activity is generally attributed to the well-dispersed surface forms of tungsten oxide 

rather than the crystalline WO3 phase. 11, 13, 15, 20-26 At low coverage, the surface sites are usually 

found to be isolated tungsten monomers, either mono-oxo3, 27 or di-oxo3, 27, or dimers28 and 

oligomers29, at least under dehydrated conditions. Discrimination between different types of 

monomers is not trivial, however. Vibrational spectrum obtained by in situ Raman spectroscopy 

shows dominant band in the range 975-991 cm-1 associated with W=O stretching vibration.3, 16, 27, 29-

31 

It was at first ascribed to the mono-oxo form due to lack of the asymmetric component, 

characteristic for the di-oxo form.16, 30 However, when a weak signal at 968 cm-1 was discovered, it 

was identified as originating from the asymmetric stretching vibration of the di-oxo monomer and 

the dominant band was re-interpreted as a proof that the tungsten oxide monomers on the silica 

surface are mainly di-oxo3, 27 Existence of the mono-oxo form was tied to another band at 1014-

1015 cm-1.3, 27, 29  

In one case the same band was interpreted as originating from polymeric WO5/WO6 forms.31 Co-

existence of mono-oxo and di-oxo forms on the surface was confirmed by 18O-16O isotope exchange 

experiments.3 Comparison of Raman peak intensities show that the mono-oxo / di-oxo ratio 

depends on temperature and at higher temperatures the di-oxo form dominates.27 

To the best of our knowledge, no theoretical ab initio studies on realistic tungsten oxide forms on 

amorphous silica support are available. To fill this gap, we have performed an extensive density 
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functional theory (DFT) study to find the most stable structures of isolated monomeric tungsten 

oxide species and to characterize them by vibrational analysis.  

 

2. Methodology 

Models and methods used in this study are consistent with our previous reports on vanadium32, 

niobium33, chromium34-35 and molybdenum36, allowing for direct comparison of the results. 

 

2.1.Computational details 

All calculations are performed using ab initio plane-wave pseudopotential approach as implemented 

in VASP. 37-38 The Perdew-Burke-Ernzerhof (PBE) functional39-40 has been chosen to perform the 

periodic DFT calculations. The valence electrons are treated explicitly and their interactions with 

the ionic cores are described by the Projector Augmented-Wave method (PAW),38, 41 which allows 

to use a low energy cut off equal to 400 eV for the plane-wave basis. The Gamma point is used in 

the Brillouin-zone integration. The positions of all the atoms in the super cell are relaxed until the 

total energy differences decrease below 10-4 eV (forces acting on atoms fall below 0.01 eV/Å). 

Vibrational spectra have been calculated for selected surface species within the harmonic 

approximation. Only the tungsten center and its first and second neighbors (O-Si and OH groups) 

are considered in the Hessian matrix. This matrix is computed by the finite difference method 

followed by a diagonalization procedure. The eigenvalues of the resulting matrix lead to the 

frequency values. The assignment of the vibrational modes is done by inspection of the 

corresponding eigenvectors. A scaling factor of 0.9659 was used according to Halls et al.42 

 

2.2.Surface Model description 

A model of hydrated SiO2 slab was used, as described in the original paper43 and in our vanadium 

oxide/SiO2 32, niobium oxide/SiO2 33, chromium oxide/SiO2 35, molybdenum oxide/SiO2 36 and 

gold/SiO2 44-45 studies, and also in the studies hydrated SiO2 surfaces46-47. The silica model 

reproduces experimentally established ring size distribution, Si–O–Si and O–Si–O angles, overall 

density of silanol groups and their partition into several types (isolated, associated, geminate) (See 
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Figure 1).  

Figure 1. Side view of the unit cell of the amorphous silica surface model on which di-oxo, W(VI) 

oxide cluster is grafted (W atom in blue).  

 

The supercell dimensions are 12.77Å × 17.64Å × 25.17Å and it contains 27 silicon atoms. Without 

water, the formula can be written as pure silicon oxide - (SiO2)27. In the presence of water, the 

surface of silicon oxide becomes hydroxylated. Silanol OH groups are formed through hydrolysis of 

the siloxane Si-O-Si bridges according to the reaction: 

 

−(Si−O−Si)− + H2O → −Si−OH    HO−Si−    (1) 

 

Therefore the hydroxylated surface of amorphous silica can by represented by a formula 

(SiO2)x(H2O)y, where two surface silanol groups are formed for each H2O molecule. Specifically, 

the supercell of our model has an overall formula Si27O67H26 which can be written as 

(SiO2)27(H2O)13. 

 

2.3.Monomer grafting 

Synthesis of a grafted W(VI)-SiO2 catalyst is presented in the literature as a series of steps 3, 48-50:  

impregnation with the precursor (in aqueous or non-aqueous solution ) at room temperature, low-

temperature drying, overnight at 800 K, and high-temperature calcination, several hours at  800K. 

Thus, it is empirically shown that a high temperature and dehydration conditions are necessary to 

obtain the multi-grafted tungsten oxide species.  

The catalyst precursor is modeled by a WO2(OH)2 molecule. One such species is added to the silica 

unit cell resulting in a coverage of 0.44 monomers per nm2, a typical coverage found in working 

catalysts.51  

Grafting of WO2(OH)2 molecule can result in several different structures with different number of: 

(i) tungstenyl W=O oxygen atoms, (ii) -OH hydroxyl groups and (iii) W-O-Si bridges to the surface. 

Theoretically up to four silanols may be involved in the reaction yielding different modes of 
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grafting: mono, di, tri and tetra. Structures involving different silanol types: isolated (Si–OH), 

vicinal (HO–Si–O–Si–OH), geminate (HO–Si–OH) and non-vicinal (two Si–OH groups not directly 

connected) on the surface were considered. In every case, however, the oxidation state of tungsten 

remains +VI. Creation of the W-O-Si link can be represented by a following simplified reaction: 

 

−Si−OH     HO−Si− + W →  −Si−OH     W−O−Si−  +  H  (2) 

 

i.e., in place of two hydroxyl groups (equivalent to one adsorbed water molecule – see above), one 

W-O-Si link is created along with one hydroxyl group and a hydrogen atom.  Due to the flexibility 

of the silica surface, especially due to the Si-O-Si angle52, these species can be more or less easily 

accommodated. For example, in the structure represented by a formula (SiO2)27(H2O)11(OH)2-WO2 

the tungsten monomer has two tungstenyl oxygen atoms and is attached to the surface by two W-O-

Si- links (as evidenced by two hydroxyl groups and two missing water molecules). Two remaining 

hydrogen atoms were used, together with two hydroxyl groups from the grafted WO2(OH)2 

molecule, to construct two water molecules which were subsequently removed into the gas phase. 

Thermodynamic analysis, described below, is used to explore the stability of various monomer 

surface forms under varying conditions. However, in order to probe and compare the grafting sites 

present on the amorphous silica surface, a complete and systematic series of tungsten monomer 

models are investigated (See Figure 2), in analogy to chromium and molybdenum. 34-36 
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Figure 2. Different geometries as a function of its hydration state for the supported W oxide grafted 

on amorphous silica. 

 

2.4. Thermodynamic analysis 

The surface of a heterogeneous catalyst is in direct contact with the gas phase. Therefore its surface 

structure can change dynamically with varying conditions – temperature and partial pressures of 

constituents of the gas phase. In our study we considered an isolated tungsten(VI) monomer with 

varying number of tungstenyl oxygen (=O) and hydroxyl (-OH) groups. Tungsten is at its highest 

oxidation state due to calcination procedure. It is convenient to describe monomers with varying 

number of =O and -OH groups in terms of the number of anchoring (grafting) linkages it creates 

with the surface in order to retain its formal oxidation state. 

In order to establish the stable tungsten surface monomer under different conditions an atomistic 

thermodynamic analysis has to be performed. Possible forms of mono- (A, B, C), di- (D, E, F), tri- 

(G, H) and tetra-grafted (I) W(VI) monomer on the surface are presented in Fig. 2. To take into 

account deviations in surface composition and the presence of gas phase, one introduces appropriate 

chemical potentials to calculate an approximation of the Gibbs free-surface energy. Assuming that 

the surface is in thermodynamic equilibrium with the gas phases, the chemical potentials are related 

to a given temperature T and pressure p. This procedure enables to extend the 0 K and zero pressure 
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DFT results to experimentally relevant environments, thereby bridging the gap between ultra-high 

vacuum like conditions, and temperatures and gas phase pressures that are applied in realistic 

catalytic conditions. The grafting process can be described as a reaction between the surface and the 

precursor, with consumption or liberation of water. Appropriate equations for each model is given 

below (eq. 3): 

 

A) (SiO2)27(H2O)13 + WO2(OH)2 → Si27O72H30.W - H2O 

B)  (SiO2)27(H2O)13 + WO2(OH)2 → Si27O71H28.W 

C)  (SiO2)27(H2O)13 + WO2(OH)2 → Si27O70H26.W + H2O 

D)  (SiO2)27(H2O)13 + WO2(OH)2 → Si27O71H28.W   (3) 

E)  (SiO2)27(H2O)13 + WO2(OH)2 → Si27O70H26.W + H2O 

F)  (SiO2)27(H2O)13 + WO2(OH)2 → Si27O69H24.W + 2H2O 

G)  (SiO2)27(H2O)13 + WO2(OH)2 → Si27O70H26.W + H2O 

H)  (SiO2)27(H2O)13 + WO2(OH)2 → Si27O69H24.W + 2H2O 

I)  (SiO2)27(H2O)13 + WO2(OH)2 → Si27O68H22.W + 3H2O 

 

The W(VI)/silica system is considered to be in contact with a gaseous water reservoir. Starting from 

a calculated electronic energy, the free energy of water/W(VI)/silica interface under known 

thermodynamic conditions may be estimated following the approximations used by Digne et al.53, 

as originating from Kaxiras et al.54 and Qian et al.55. Main assumptions are that there is no variation 

of the chemical potential of the surface upon adsorption and that the gas phase as a perfect gas. In 

the proposed scheme, the free energy of water (including the ZPE correction) in the gas phase is: 

 

  ∆G(H2O) = E(H2O) + ((∆HG –T∆SG(T)) + RT ln (p/p°))    (4) 

 

where E(H2O) is the electronic energy of water calculated at 0 K, ∆HG and ∆SG(T) are the enthalpy 

and entropy corrections of gaseous water, calculated with the Gaussian03 code7 as a function of the 

temperature, p is the partial pressure of water vapor and p° is the standard pressure (1 bar). 

Using the above mentioned formalism, the approximated free energy of the grafting reactions for 

the formation of the mono-, di-, tri and tetra-grafted W(VI) monomers at equilibrium conditions, 

can be expressed as (eq. 5): 

∆GA = E(model A) – E(surf) – E(WO2(OH)2) – ∆G(H2O) 

∆GB = E(model B) – E(surf) – E(WO2(OH)2) 

∆GC = E(model C) + ∆G(H2O) – E(surf) – E(WO2(OH)2) 
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∆GD = E(model D) – E(surf) – E(WO2(OH)2) 

∆GE = E(model E) + ∆G(H2O) – E(surf) – E(WO2(OH)2)    (5) 

∆GF = E(model F) + 2*∆G(H2O) – E(surf) – E(WO2(OH)2) 

∆GG = E(model G) + ∆G(H2O) – E(surf) – E(WO2(OH)2) 

∆GH = E(model H) + 2*∆G(H2O) – E(surf) – E(WO2(OH)2) 

∆GI = E(model I) + 3*∆G(H2O) – E(surf) – E(WO2(OH)2) 

 

where E(model X), X = A – I, is the DFT total energy of the monomer on the surface, E(surf) is the 

DFT total energy of the clean surface slab, E(WO2(OH)2) is the DFT total energy of the isolated 

precursor molecule and ∆G(H2O) is the free energy of water in the gas phase, defined by Eq. 4. 

Only the ∆G of water depends on T and p, therefore energies of models B and D will not depend on 

the temperature. In principle, increasing temperature will tend to remove water from the monomer 

and at high temperatures model I should be most stable. Note, however, that it requires four links to 

the surface, i.e. four hydroxyl groups in a specific arrangement. Such sites are much less common 

on the surface than the ones for mono- or bi-grafted monomers. Therefore, in the real system, the 

amount of tetra-grafted monomers will be less than predicted from thermodynamic analysis. 

In this approach, we consider that the energies of the different types of grafting transitions are 

independent of the degree of hydration of the silica surface. It is known experimentally that silanols 

are stable at silica surfaces until 673 K. Above this temperature, silanols begin to condensate into 

siloxane bridges65. Thus, our model with 5.8 OH/nm2
 corresponding to conditions of a hydroxylated 

surface, remains valid until the temperature of 673 K.  

 

3. Results 

 

3.1. Monomers at surface sites 

Similarly to Mo36, the W center is surrounded by four oxygen atoms in a slightly distorted 

tetrahedral symmetry, unless nearby surface OH groups are close enough to create a W—O bridge. 

If the structure is flexible enough, the monomer can attain a penta coordinated trigonal bi-pyramidal 

symmetry. Such structures will be discussed after the more common tetrahedron case. 

In Table 1 we present grafting energies for all possible grafting possibilities (germinal (g), vicinal 

(v), and non-vicinal (n) on the silica slab considered for Structure F – negative values indicate 

thermodynamically stable structures. The different grafting sites are shown in Fig. 3 in ref. 36. Even 

for thermodynamically unstable structures, the monomer stays at the surface, due to a kinetic 

barrier. When two water molecules are available, monomers can detach from the surface as 
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WO2(OH)2 and leave two silanol groups behind. When only one H2O is present, the monomer 

leaves as WO3. If we allow for the possibility of creating Si-O-Si siloxane bridges, then two more 

situations can be envisioned: (i) with one water present the monomer leaves as WO2(OH)2, (ii) with 

no water, the monomer leaves as WO3. 

 

Table 1. Grafting energies (reaction energies) of a di-oxo tungsten monomer (Structure F) on 

various sites on the surface of amorphous silica. Energies are calculated with respect to WO3 and 

WO2(OH)2 in the gas phase. Negative values (in eV) indicate stable species. 

 

Geminal  WO2(OH)2 WO3 
g1 1.79 -1.65 
g2 1.72 -1.72 
g3 1.50 -1.93 
g4 1.79 -1.63 
Vicinal   
v1 0.64 -2.81 
v2 0.41 -3.04 
v3 0.71 -2.73 
v4 -0.03 -3.50 
v5 0.38 -3.07 
v6 0.49 -2.97 
v7 0.22 -3.23 
v8 0.85 -2.61 
v9 0.31 -3.18 
v10 0.38 -3.07 
Non-vicinal   
n1 -0.25 -3.72 
n2 -0.11 -3.58 
n3 -0.12 -3.58 
n4 -0.05 -3.51 
n5 0.05 -3.41 
n6 0.26 -3.20 
n7 -0.02 -3.48 
n8 0.32 -3.13 
n9 0.00 -3.45 
n10 -0.14 -3.60 
n11 0.03 -3.44 
n12 0.09 -3.38 
n13 -0.20 -3.66 
 

For anchoring, geminate sites are energetically disfavored due to their high rigidity. In abundance of 

water, the monomers are barely stable at the surface. The adsorption energy is between 1.50 and 
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1.79 eV indicating an unstable structure. Vicinal sites are more flexible and can accommodate a W 

monomer with adsorption energies between -0.03 and 0.85 eV.  Monomers are more stable on the 

flexible non-vicinal sites – all adsorption energies are below 0.32 eV. Few structures show stable 

adsorption, although only barely stable as the best adsorption energy is only -0.25 eV. It seems that 

structures with more hydrogen bonds are more stable, but no clear correlation could be found.  

 As noted above, without large excess of water vapor available, anchored monomers can only 

detach from the grafting sites as WO3 species. This reaction still requires one water molecule to 

recreate two surface hydroxyl groups. The monomer stability with respect to gaseous WO3 in the 

presence of traces of water is very high – energies required to remove a monomer from the surface 

range from 1.63 to over 3.72 eV. Without water, WO3 can still be removed if the anchoring Si 

centers are close enough to create a siloxane bridge. However, this reaction pathway is expected to 

require even more energy. 

 The geometry of the monomer does not vary much between different grafting sites (See 

Table 2). The tungstenyl W=O bonds have lengths between 1.71 and 1.74 Å, depending on the 

number of hydrogen bonds between surface and the monomer. If no such hydrogen bonds are 

present, both W=O bonds are 1.74 Å. The formation of hydrogen bonds with one tungstenyl oxygen 

atom has a weaker effect on the bond length than the coordination of the W atom, which is in line 

with the idea that the W=O dipole moment is smaller than for the two other group VI elements. This 

decrease in iconicity was already observed for the group V elements.56-57 The angle between W=O 

bonds is usually 108 - 109o with some deviations induced by hydrogen bonds. 

 The lengths of W-OSi bonds anchoring the monomer to the surface range from 1.84 to 2.05 

Å, but for the di-oxo digrafted situation a W-OSi bond distance of 1.89 Å is calculated. The angle 

between those bonds vary between 128o and 137o (up to 155° in the B-structure). The W 

coordination is 4 in structures C and F (See OWO angles in Table 2), 5 in structures B, D, E and I, 

and 6 in structure A. 

 

Table 2. Calculated geometrical parameters in W oxide/silica system. Distances in Ǻ and angles in 

degrees. 

Model d(W-OH) d(W-OSi) d(W=O) A(OWO) 
A 1.914 1.921    
  1.928     
  1.928     
  1.937     
  1.99      
B 1.899 1.961 1.751  
  1.908     
  1.917      
C 1.907 1.882 1.734 108.23 
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      1.739  
D 1.889 1.934    
  1.903 1.942    
  1.961     
  1.965      
E 1.943 1.933 1.722  
  1.912 1.912    
F   1.890 1.737  
    1.893 1.738 108.19 
G 1.849 1.938    
  1.934 1.938    
  1.946 2.030    
H 1.915 1.890 1.733  
    1.904    
    2.052    
I   1.916 1.715  
    1.929    
    1.954    
    1.973    

 

3.2. Thermodynamic stability 

 Figure 2 shows mono- (structure: A, B, C), di- (structure: D, E, F), tri- (structure: G, H) and tetra-

grafted (structure: I) W-oxide species on silica support. Note that the tri- and tetra-grafted species 

need the presence of three and four neighboring silanol sites, respectively, in a specific arrangement 

which is not as common as mono- and di-grafting sites, and thus depends on the silanol density at 

the silica surface. Additionally, monomers are stabilized by creation of hydrogen bonds with surface 

silanols. 

Grafting of tungsten oxide species on amorphous silica surface has a relatively small effect 

on the silica framework, and is comparable with what has been found in our previous study on the 

grafting of oxides on silica32-36 

The hydrogen bond network, on the other hand is heavily affected by grafting. Depending 

on their local density, silanols on a clean surface interact with their neighbors forming an H-bond 

network. The grafting process perturbs the local H-bond network in two ways: (i) surface hydroxyl 

groups are removed upon grafting; (ii) the W oxide units might also form hydrogen bonds with the 

silica support. In the models studied, the W-OH groups bind to surface silanols stabilizing the 

structure while the W=O groups do not form hydrogen bonds. 

 

Considering the reaction energy ∆Ereact of Table 3 calculated according to the eq. 5 for the 

best grafting modes as a function of hydration rate. For W oxide values of -2.71, -2.46, -2.35, -1.49 

and -1.56 eV for  +1, 0, -1, -2, and -3 water molecules are obtained, corresponding to the models A, 

D, C,  F, and I, respectively. All reaction energies are exothermic for grafting WO2(OH)2, indicating 

that the adsorption of the MO2(OH)2  with M = Cr, Mo, or W, is favored for W compared with Mo 
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and Cr, with respect to the initial situation (hydroxylated silica and H2MO4 in the gas phase). 

Interesting to note is that following this reaction scheme the MO2(OH)2 transition metal precursor 

reacts more favorably when going down the column of the group VI elements (Cr to W) in the 

Periodic Table. 

 

Table 3. Reaction energy calculated using the electronic energies and equation (3) for the grafting 

of the different group VI metal oxide models investigated. (Values in eV). 

Model a
 ∆Ereact ∆Ereact

36
  ∆Ereact

43
 

Group VI metal W Mo Cr 

A: Surface + MO4H2 + 1H2O -2.71 -0.49 -0.26 

B: Surface + MO4H2  -2.18 -0.26 -0.89 

C: Surface + MO4H2 - 1H2O -2.35 -0.76 -2.09 

D: Surface + MO4H2   -2.46 -0.18 0.13 

E: Surface + MO4H2 + 1H2O -2.34 -0.39 -0.80 

F: Surface + MO4H2 – 2H2O -1.49 0.02 -1.33 

G: Surface + MO4H2 - 1H2O -1.26 1.04 1.72 

H: Surface + MO4H2 –2 H2O -0.85 1.06 0.34 

I: Surface +  MO4H2 – 3 H2O -1.56 0.38 0.42 
a see Figure 2 

 

Another point which is revealed by this reaction energy analysis, is that the most favorable 

models associated to the different degrees of hydration are different between Cr and Mo on one 

hand, and W on the other. For Cr and Mo model B is favored against model D for W, the other 

structures’ relative reaction energy differences do not change the overall stability trend between the 

models. This might be interpreted by the higher coordination chemistry for W compared with Mo 

and Cr (See Fig. 2). 

Nevertheless, it should be noted that the results in Table 3 report electronic energies only, 

which are identical to the free energy at 0 K. Under given temperature T and pressure p, the 

contributions of entropy and chemical potentials have to be taken into account in the free energies. 

Figure 3 shows the surface free energy Γ, defined as the free energy per surface area (the 

reaction free energy of grafting that was approximated divided by the surface of our slab, or 

multiplied by surface coverage of W), of the mono-, di-, tri- and tetra-grafted W(VI)-complexes on 

the silica surface as a function of temperature (T) for a water partial pressure (p) equivalent to the 

ambient air water partial pressure (pw = 1500 Pa)58. At these conditions, the mono-grafted model A 
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is the most stable until T = 100 K, followed by the mono-grafted models C in the temperature range 

of 100 - 220 K and finally at T > 215 K the tetra-grafted complex (model I) is found as the most 

stable configuration. It should be noted that the tetra grafted species (mono-oxo species), although 

observed experimentally between 473 K – 1073 K is statistically disfavored due to the low 

probability to have four silanols in one nest. Taking this constraint into account it is the F structure 

(di-grafted di-oxo species) that appears to dominate at T > 400 K. These results are fully consistent 

with the experimental procedure used in the synthesis of W(VI)-supported catalysts by grafting 

methods3, where samples are heated and annealed at high temperatures to obtain W di-oxo surface 

structures. Note that such species correspond to completely dehydrated conditions. In hydrated 

conditions (high water pressure or low temperature) mono-grafted model with W-OH group could 

be stabilized. Hydroxylated di-oxo species are predicted to be stable in the range of 100 K – 400 K 

depending on the silanol density at the surface. However, at ambient conditions on low silanol 

density silica surfaces the di-oxo W=O species are expected to dominate completely the W oxide 

supported geometries. 
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Figure 3. Phase diagram (surface energy vs. temperature) showing the stability ranges for the 

different grafted W oxide geometries. 

 

In summary, the three grafted W(VI) species may exist on a silica surface depending on the 

experimental conditions. They are supposed to reversibly interconvert in the presence of water, and 

they might coexist on the surface. 

 

3.3. Vibrational frequency analysis 

Lee and Wachs3, 27 concluded that under dehydrated conditions the W(VI) oxide forms on silica are 

predominantly present as isolated dioxo and isolated monooxo W(VI) species. Their relative 

concentration varies with temperature with the dioxo W(VI) oxide species dominant at elevated 

temperatures. Nevertheless, tungsten species might be also present as oligomeric oxide species,32 

crystalline WO3
17,27,32 and bulk-like amorphous WO3.29 Experimentally, this point seems to be still 

under debate3 29, 31 27, since monomers3,27 or oligomers32 are concluded to be dominant surface 

species both from Raman and UV-vis, while on the crystalline phase it rather depends on the 

preparation method and the W loading. 

Comparing the theoretical frequencies with the experimental ones 3, 27, we can conclude that the 

model containing the most similarities with the experiment are models F and I (di- and mono- oxo 

tungsten species, respectively). Interesting to note is that Chauvin et al.29 propose oligomers, which 

might correspond to model H monomers. 

This was concluded with the use of a scaling factor for the frequencies, independently from the type 

of bond and normalized on the well-known silanol vibration. This approach has been used with 

success in former studies32-33, 35-36 According to Lee et al.3, 27 the surface tungstene oxide species on 

the supported WO3/SiO2 catalyst are present as both dioxo (O=)2W(-O-Si)2 and monoxo O=W(-O-

Si)4 surface species, giving rise to Raman bands for νsym (W(=O)2) at 985 cm-1 and νsym (W=O) at 

1014 cm-1. The corresponding asymmetric νasym (W(=O)2) vibration appears as a shoulder at 968 

cm-1 and the bending δ(O-W-O) mode at 346 cm-1 3, 27, 59-60. 

The calculated vibrational frequencies are tabulated in Table 4. Vibrational analysis shows that the 

W=O bond vibrations are not as cleanly decoupled from others as was in the case for chromium35. 

Only the frequency of asymmetric W=O vibration can be easily given. The calculated values (not 

show in the table) range from 973 to 1001 cm-1 due to various hydrogen bonds arrangements, which 

in turn depend on the hydration level. In effect, a wide band cantered around 991 cm-1 should 

appear in the spectrum. From these results combined with the thermodynamic calculations, one can 

conclude that the vibrational frequencies calculated for model structures F and I confirm the 

experimental results presented in refs.3, 27, which supposes a competition between mono-oxo and di-
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oxo species, originating from the availability of the silanol groups on the silica surface. The grafting 

of these oxide species does not only depend on the concentration or coverage of silanol groups on 

the surface but also their distribution. In other words, in order to have mono-oxo-species one needs 

have 4 silanols grouped close together, whereas for the di-oxo species only two silanols close to 

each other is sufficient. The proportion of the mono/di-oxo species is thus not only dependent on the 

degree on hydration or the silanol coverage. 
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Table 4. Scaled (0.9659) and unscaled calculated vibrational frequencies for W=O group in mono- 

or di-oxo-configuration in the different models studied. (Frequencies in cm-1). 

 

 
W=O 

 
W=O 

(scaled 0.96) 
Exp.3, 27 

 
B 1008 968  
C(sym) 1037 995  
C(asym) 987 947  
E 1039 997  
F(sym) 1024 983 985 
F(asym) 981 942 968 
H 1033 991  
I 1055 1013 1014 
 

 

4. Conclusion 

W(VI)-oxide species supported on hydroxylated amorphous silica were modeled using periodic 

DFT. A systematic series of tungsten oxide monomer species were investigated as a function of their 

degree of hydration. The local geometry and energetics are discussed. From an atomistic 

thermodynamic approach the competition of the tungsten mono and di-oxo species is revealed, 

depending on the silanol density at the silica surface and thus the preparation method. Vibrational 

frequencies compared with experimental Raman data could confirm the presence of mono- and di- 

oxo species, with W=O vibrations at 985, 968 and 1014 cm-1. It was shown that W-OH groups are 

only present at high degrees of hydration and low temperatures (below 220 K), which can be 

excluded at catalyst working temperatures. The di-grafted di-oxo species (model F) is expected to 

dominate over the more stable tetra grafted mono-oxo species due to the low silanol density at the 

catalyst silica surface.  

As a general conclusion compiling the results from our former studies we have calculated that in 

comparison with the other two group VI elements (Mo and Cr), supported W oxide species shows 

similar geometrical properties with supported Mo oxide species, with both elements having di-oxo 

species being the dominant one above 100 K at ambient vapor pressure, whereas for Cr the di-oxo 

species become dominant only above 400 K. M-OH groups are predicted to be more common for W 

follow by Cr. Mo has the least affinity to have a M-OH groups. 
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