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In this study, we analyze the capillary filling dynamics of a viscoelastic fluid through a 

concentric annulus, which has far reaching consequences in practical applications and offers a 

distinct disparity in the dynamical characteristics as compared to the classical cylindrical 

capillary based paradigm. Such non-trivial characteristics are primarily attributed to a complex 

and intricate interplay between the intrinsic fluid rheology and the annular flow geometry, as is 

effectively manifested through distinctive features of the underlying oscillatory dynamics. We 

also estimate a criterion for the onset of oscillations, as a function of the Bond number. Our 

results predict remarkably attenuated oscillatory behavior and a higher capillary rise due to the 

presence of an annular geometry, as compared to a cylindrical one. We further relate the primary 

peak overshoot response with the Bond number that enables us to draw further physical insights 

into the oscillatory regime dynamics. 
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Nomenclature 

δ  Capillary Gap 

1r  Inner Radius 

2r  Outer Radius 

θ  Equilibrium Contact Angle 

x  Axial Coordinate in direction of Capillary Rise 

x  Non-dimensional axial coordinate with respect to δ  

x&  Non-dimensional axial coordinate with respect to δ  variation with respect to time. 

x%  Non-dimensional axial coordinate with respect to 2r  

J  Jurin height 

J  Non-dimensional Jurin height with respect to δ  

r  Radial Coordinate 

t  Dimensional time 

ot  Reference time-scale 

t  Non-dimensional time with respect to 
3

2ot
ρδ
σ

=  

t%  Non-dimensional time with respect to 
3

2

2o

r
t

ρ
σ

=%  

τ  Deviatoric Stress 

D  Deformation Rate Tensor 

λ  Relaxation Time 

µ  Viscosity Coefficient 

τ ∇  Gordon- Schowalter derivative 

ε  Elongation Behavior 

κ  Radius Ratio 
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γ&  Shear Rate 

*r  Radial distance of cylindrical surface of zero-shear 

rxT  Non-dimensional Shear stress 

cU  Characteristic Velocity scale 

U  Average velocity of capillary fluid 

* and y y  
Non-dimensional Radial coordinates 

y  Equals to 2
*y  

cDe  Deborah Number 

De  Scaled Deborah Number 

Bo  Bond Number 

Bo  Critical Bond Number 

aBo  Actual Critical Bond Number 

Ca  Capillary Number 

Ca  Critical Capillary Number 

G  Non-dimensional Pressure gradient 

 

1. Introduction 

Flow actuation and transport phenomena due to capillary action find their use in various fields of 

science and engineering, namely droplet dynamics,1–8 groundwater movement, heat pipes, lab-

on-a-chip micro-devices, micro-total analysis systems, candle wicks, marker pens, to name a 

few.1,9–12 Capillary action is the phenomenon in which fluid motion is driven by surface tension 

effects through narrow confinements.1,12 Analysis of capillary dynamics, thus, demands a 

comprehensive understanding of the basic physical concepts arising within it, in an effort to 

optimize various flow conditions and increase the volume throughput.  
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A careful observation of the reported studies on capillary filling1–8,13–15 indicates that 

those are primarily concerned with the transport of fluids through circular or rectangular channel 

geometries. However, besides studies related to the capillary filling in simple geometries, certain 

other channel geometries find emerging importance in capillary filling studies due to the 

interesting consequences of shape-induced alterations in the surface tension and viscous effects. 

In practice, the use of different geometries in capillary filling dynamics may be exploited to 

harvest and study a non-trivial interplay of the different forces affecting the capillary front 

motion, and may find relevance in the fields of transport phenomena in concrete structures, 

porous materials with complex pore structures, heat pipes16–18 and other industrial applications. 

In oil and gas industry, the pumping of drill mud through concentric annular space (space 

between the drill pipe and the wellbore) over long distances is necessary.19,20 In industries 

dealing with slurries like processed foodstuff, sewage and industrial waste, and in those handling 

molten plastic undergoing extrusion processes, flow of non-Newtonian fluid through annular 

space is essentially encountered.19,21 Furthermore, studies regarding capillary action of complex 

fluids find ever-increasing importance in various interdisciplinary fields, like blood flow through 

micro-capillaries or flow of polymers through porous media,1,11 flow of polymer solution, 

lubricants and other biofluids.22,23 Many of these fluids are non-linear in their constitutive 

behavior and have viscoelastic characteristics.19,24–28 Capillary filling dynamics of viscoelastic 

fluids through concentric annulus, however, has not been investigated previously,13,29 to the best 

of our knowledge. 

 Here we analyze the capillary front evolution of a viscoelastic fluid, particularly 

following the Phan-Thien and Tanner (PTT) constitutive model,30 through a concentric annulus. 

We employ reduced order model3,4 for the study of the capillary filling dynamics, which is found 

to be fairly accurate in estimating the capillary front evolution within the conduit.29,31,32 In 

particular, we focus on the oscillatory regime that the capillary front encounters, before the front 

settles at the equilibrium Jurin height.14,33
 In the literature, researchers have observed the 

tendency of oscillation before attaining an equilibrium Jurin height for capillary filling of 

viscoelastic fluids through simple cylindrical geometries.14Here, we report the distinctive 

features in such oscillatory behavior of the capillary front, as an intrinsic consequence of the 

annular geometry. Furthermore, we attempt to address the criterion for the onset of oscillatory 
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dynamics for the present scenario and link it with the corresponding dimensionless numbers in 

the linear rheological regime. 

 

2. Mathematical Modeling 

 

We consider a viscoelastic liquid rising through a narrow annular capillary formed by the gap 

between two concentric cylinders, under the action of surface tension forces, as shown in Figure 

1. The concentric cylinder has an inner radius of 1r  and outer radius 2r , with capillary 

gap 2 1r rδ = − . The origin of the cylindrical coordinate system is present at the plane of capillary 

entry and the center of the concentric cylinders. We appeal to the reduced order 

description3,4,13,14,34 and attempt to build the governing equation of the meniscus height 

development, the equilibrium height, and the oscillatory characteristics. For the present analysis, 

we denote the density of the fluid by ρ , viscosity by µ , the equilibrium contact angle at the 

fluid-solid-gas interface by θ , and the surface tension at the fluid-gas interface by σ . 

 

Figure 1. A schematic representation of Capillary penetration through concentric cylindrical 
geometry. The angle θ  represents the contact angle during the capillary motion.  

 

In order to capture the transients of the capillary height rise, one must account for all the 

forces; namely the inertial, viscous, surface tension and gravitation forces. Applying the above 
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mentioned force balance, the governing equation to model the capillary filling dynamics is given 

as,13,14 

 ( )2 2
2 1 surf grav visc

d dx
r r x F F F

dt dt
ρπ − = − − 

 
 (1) 

where x  denotes the axial coordinate in the direction of capillary rise and r  is the radial 

coordinate. Descriptions of the surface tension and gravity forces in Eq.(1) are trivial. However, 

more comprehensive considerations are demanded for evaluating the viscous drag force, which 

we outline first. 

2.1. Viscous force evaluation following the Phan-Thien and Tanner (PTT) Model 

Diverse constitutive models describing viscoelastic fluid rheology35,36 range from linear 

Maxwell’s model to the non-linear Oldroyd B model.37,38 In this present work, we consider one 

of the most commonly studied viscoelastic models, known as Phan-Thien and Tanner(PTT) 

constitutive model,30 which describes the behavior of wide variety of fluids including complex 

biofluids such blood.24,25,27 In this section, first we model the viscous forces that the PTT fluid 

experiences under the capillary action. Towards this, we appeal to the relation describing linear 

PTT constitutive behavior that is given by30 

 ( )1 2τ τ τ Dtr
ελ

λ µ
µ

∇ 
+ + = 

 
 (2) 

where τ  and D  denotes the deviatoric stress and deformation rate tensor, respectively;λ denotes 

the relaxation time, µ  stands for the viscosity coefficient and τ
∇

 is the Gordon-Schowalter 

derivative, ( ) ( )Tτ
τ τ u u τ

D

Dt

∇ = − ∇ − ∇
 
while ε  signifies the elongation behavior of the fluid 

and u  is the velocity vector field.  

For the estimation of viscous forces in the scope of the reduced order formalism,4,13,14 we 

first proceed to calculate the average flow velocity for a fully developed laminar flow of PTT 

fluid within a concentric annular channel of radius ratio 1 2r rκ = , and successively formulate 

the resulting viscous forces. This average velocity further represents the rate of advancement of 
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the capillary front in the form U dx dt= .4 The non-vanishing components of the stress tensor of 

PTT rheology from equation (2) are then given by 

 
( )( )1 /r x

x x

µ
τ γ

ε λ µ τ
=

+
&

 (3) 

 

( )( )
2

2

2

1 /
xx

xx

λµ
τ γ

ελ µ τ
=

+
&

 (4) 

where du drγ =& is the shear rate. Dividing equation (4) by the square of equation (3) gives the 

form 

 22
xx rx

λ
τ τ

µ
=  (5) 

For a steady pressure-driven flow, P dp dx= − , within an annular channel of micro-scale 

dimensions, the shear stress distribution is given by the form39 

 
2

*P

2rx

r
r

r
τ

 
= − 

 
 (6) 

where *r denotes the position between 1r and 2r signifying the plane of vanishing shear stress. A 

specific challenge in studying the capillary rise through any confinement is finding the location 

of the zero-shear plane. The plane of zero-shear ( )*r cannot be explicitly assumed beforehand in 

the solution process for an annular geometry, unlike what has been previously done for 

geometries involving circular or rectangular cross-section. The non-dimensional shear stress 

using equation (6)is then represented as  

 
2
*4

( / )
rx c

rx

U y
T y

U U y

τ
µ δ

 
= = − 

 
 (7) 

where 
2P

8CU
δ
µ

 
= − 

 

40is used to define the characteristic velocity scale, U defines the average 

velocity of the capillary fluid and /y r δ≡  with * * /y r δ≡  defining the non-dimensional positional 

parameters. Similarly, equation has the dimensionless form as; 
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 9

 22xx c rxT De T=  (8) 

where cDe Uλ δ=  denotes the Deborah number, which is the ratio of the relaxation time-scale of 

the fluid to the characteristic time-scale of the flow system. 

The velocity gradient may now be directly deduced from equation (3), having the form 

 1
1rx x x

ελ
γ τ τ

µ µ
 

= + 
 

&
 (9) 

The shear rate may be described in a non-dimensional form by taking / ( / )Uγ δΓ≡ &  

 ( )1rx c xxT De TεΓ = +  (10) 

Substituting equations (7) and (8) into (10), we obtain the following equation for dv dy  as 

 

2

2* *
* *

* *

4 1 2 4c c
c

U Uy ydv y y
y De y

dy U y y U y y
ε

      = − + −           
 (11) 

The form obtained above is integrated employing the no-slip boundary condition at the inner 

wall ( ) 01u y κ
κ= =−

, giving an expression for ν  (where v u U= ) as 

 

( )( )

( )( ) ( )( ) ( )

22

2 2
*2

*
2
* 2 2 22 2 2

*
2 2 2 2
* *

1(1 )
ln 32

2
4

1 1 1(1 ) 1
3ln 3

2 2 2

c

yy
De y

y
u

v Gy
U y y yy

y y y

κ κκ
ε

κ

κ κ κ κ κκ
κ κ

  − −−  − − 
    ≡ =
     − − + − −−   + − + −           

(12) 

The no-slip boundary condition at the outer boundary of the annulus ( )1 01u y κ= =−  is 

imposed on this expression for ν , resulting in the following equation which is cubic in *x
 

(where 2
* *m y= ) 
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( )
( ) ( ) ( )

( )
( ) ( )

( )( )
( )

2
3 2
* * *2 4 22 2 2 2

22 2 2 2

4

6ln ln κ3κ 1

161 κ 1 1 1 κ ε 1 κ 1 κ 1

κ 1 32ε 1 κ 2 1 κ
0

1 κ
                                                           

c

c

m m m
De G

De G

κ

κ

 
 + + −
 − ⋅ − − − − 

+ + −
+ =

−

 (13) 

Here G  is defined as a dimensionless number 
cG U U=  which physically signifies as the non-

dimensional pressure gradient. The average velocity across the cross-section of the concentric 
 

annulus is determined using ( )
11

2 2 2
2

1

2 ( ). 1U u y ydy r

κ

κ κ

πδ π κ
−

−

= −∫ , where the velocity u is 

obtained from relation of ν  from equation (12). The following equation is obtained after 
integration:40 

 ( ) ( )( )2 2 3 2
1 * 2 *32 1 8 1 1 0cI G De y I G yε κ κ− − − + =  (14) 

where 
( )

( )
( ) ( )( )

( )

2
*

1 2 22
*

κ 1 2 κ 1 κ 1ln 11 1

2 8κ 1 κ 1

y
I

y

κ + − − −
= +

− −
and 

( )

( ) ( ) ( ) ( ) ( ) ( )( )( )
( )

2
2 * 2

5 3 26 4 2 2 2 2 2
* * *

44 2
*

1 3 1
ln

2 κ2 κ 1

κ 1 6 κ 1 18 κ κ 1 9 κ κ 1 κ 1 κ κ 1 2κ 11

24 κ κ 1

I y

y y y

y

   = +      − 

+ − + − − − + + + +

−
         +

 

The two unknowns *y  and G  can now found using an iterative solution of the equations (13) 

and (14). Once we have the knowledge of G , the total viscous force per unit length acting on 

both cylindrical walls is determined using equation (6) in terms of U  and G , to get 

 ,

1
8

1v wallF GU
κ

πµ
κ

+ =  − 
 (15) 

2.2. Equation of Motion 

In an effort to complete the description of the equation of motion of the capillary front, following 

Eq. (1), the surface tension force and the gravity force also need to be prescribed. The surface 
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tension force is given by ( )2 12 cossurfF r rπ σ θ= ( + )  and the hindering force of gravity is given in 

the form 2 2
2 1( )gravF g r r xρπ= − . Thus, the resulting dimensionless governing equation, using the 

dimensionless parameters x x δ= , 0t t t= , as obtained from the viscous, surface tension, 

gravitational and inertial force balance (as shown in equation (1)) reads 

 ( )
( )2

0

ρ 4
cos

2σ σt

gd dx G dx
x x x

dt dt dt

δ µ δ
θ  = − − 

 
 (16) 

The simplification to non-dimensional form is performed using the terms x x δ=  and where the 

reference time scale is given by 3

0

ρ

2σ
t

δ
=  ,with the dimensionless parameters appearing in the 

governing equation are 
2g

Bo
ρ δ
σ

=  and 
0

Ca
t

µδ
σ

= .  

Eq. (16) is a non-linear governing equation that describes the forward motion of the 

capillary front, wherein the value of G  has to be updated in every time step calculation. A subtle 

observation from equation (16) reveals that the motion is independent of radius ratio κ  except 

through the value of G . However, a striking characteristics to note that the magnitude of G  

itself is independent of κ ,40 and therefore, the height rise of the capillary front becomes 

effectively κ -independent. An elaboration and further discussion on this will be made in the 

Results and Discussion section.  

2.3. Criterion of Oscillation 

One of the important but subtle features of the above equation is that it predicts an oscillatory 

nature of the capillary front near the Jurin height, which can be tracked by a linearized 

approximation of the governing equation about the Jurin height. Previously, numerous studies 

were performed where scaling analysis were employed to delineate the condition of 

oscillation.13,14 At large times in capillary filling, the capillary front either gradually reaches to 

the equilibrium Jurin height and stops or undergoes a damped oscillatory motion about the mean 

Jurin height before cessation of motion. The prediction on the criteria of oscillation has 

previously been captured theoretically by employing the relevant non-dimensional parameters13; 

and these criteria also been experimentally verified.41 Here a quantitative approach is followed to 
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obtain a close approximation of the oscillatory regime and predict a dimensionless criterion for 

the onset of oscillation as the capillary front approaches the Jurin height (the non-linearity of the 

constitutive model leads to the approximation in onset of oscillatory criteria evaluation). 

Towards this, we first obtain the equilibrium Jurin height from equation (16) which can be 

determined by setting the inertial and viscous terms to zero. The required dimensionless form of 

the Jurin height is given by 

 ( )
2

2 σ c o s θ

ρ

J
J

gδ δ
= =  (17) 

Now, we recast equation (16) with the substitution x J x= −
) ,which transforms the origin of the 

measurement at the Jurin height. This facilitates the linearization of the governing equation about 

the Jurin height wherein we neglect all the nonlinear terms involving 
x

J

)

 and 
dx

dt

)

as each of these 

terms are 1�  near the equilibrium height. Finally, a rescaling of the governing equation by 

X x J= )
, in order to magnify the variations about the Jurin height is done, and the resulting 

equation reads  

 
2

2
0

d X d X
A B X

d t d t
+ + =  (18) 

where 
0

4 G
A

t

µ δ
σ

=
 

and 
( )

2 2 4

24 cos

G
B

ρ δ
σ θ

= . Equation (18) is the governing form of a damped 

oscillatory motion with a natural frequency Bω = .Here we use Eq. (18) to find the criteria for 

oscillation. The onset of oscillation will occur if the system is under-damped whereas over-

damped system, signifying dominant viscous effects compared to gravitational effects, will 

ensure that no oscillatory motion occurs.13 

Resorting to a solution of type ( )expX mt= , we find the roots of the equation of type 

(18) are
2 24

2

A A
m

ω− ± −
= . Here we note that the criterion for the onset of oscillations is 

achieved when 2 24 0A ω− < .With the aforementioned analysis of the capillary motion, the 

criterion of onset of oscillation derivation leads to the form 
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( ) 2 2

5
3 2

32cos θ σ

ρ

G

g

µ
δ >  (19) 

An equivalent non-dimensional form for the above criteria reads14 

 4 . cosBo Ca G θ>  (20) 

wherein the right hand side of equation (20) will be denoted as Bo , or the critical Bond number. 

In the above equations, the value of G  is either obtained during the simulation, when fluid 

reaches close to Jurin height, or by solving Eq. (13) and (14) simultaneously, using the scaled 

Deborah number which is  

 

o

D e
t

λ δ
δ

 
=  

 
 (21) 

It must here be noted that the Deborah number cDe needs to be dynamically estimated during the 

simulation run, while the scaled Deborah number De  is the dimensionless input parameter 

representing the extent of viscoelasticity that the fluid exhibits. If G  is calculated using the 

scaled value (eq.(21)), there would not be any need to obtain it dynamically from the simulation. 

Accuracy of the Bo  will significantly depend on how G  is estimated, and will be further 

explored in the subsequent section. 

The effects of rheology are estimated through the parameter G , which in turn is a function 

of λ  (or De ). From qualitative considerations, it may be inferred that for a particular radius 

difference ( )δ , an increase in the value of De  causes the viscous damping to get attenuated, 

therefore, leading to oscillations. The influence of radius ratio has a complicated and intricate 

influence on the resulting criteria; however, qualitatively it can be inferred that for a given outer 

radius an increase in the radius ratio κ , reduces the capillary front oscillation. 

3. Results And Discussions 

As discussed earlier, various factors may contribute to the oscillatory nature of the capillary front 

before it finally settles to the equilibrium Jurin height. In the present section, we focus on the 

oscillatory regimes of the capillary filling dynamics, and discuss the effects of various 
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parameters that lead to capillary oscillation. Further, we make an analytical argument on the 

accuracy of the onset of oscillation criteria in terms of linearity of the governing equations. 

 

Figure 2. Non-dimensional capillary penetration distance x  as a function of non-dimensional time t  for 
Viscoelastic fluids, corresponding to different scaled Deborah numbers. Other parameters in the figure 
include 0.002Ca = , 0.02Bo = , ε = 0.25  and 0.5κ = . Inset of figure 2 shows the variation of the 
capillary filling velocity x&  as a function of time, for different Deborah number. 

 

Figure 2 depicts the capillary front advancement for a viscoelastic fluid as a function of 

the dimensionless time for different Deborah numbers (De). An increase in De  leads to elasticity 

dominated behavior of the fluid, thereby, enhancing the oscillatory characteristic of the capillary 

front. An increase in De  increases the relaxation time λ as compared to the system time scale, 

and in turn decreases the shear stress (or viscous effects) monotonically. Therefore, an increase 

in De  results in higher oscillation amplitude and a larger settling time, as can be observed in the 

above figure. For fluids belonging to the viscoelastic regime, such trends have also been reported 

in previous studies.14,42 Inset of figure 2 describes the variation of the rate of capillary front 

advancement with dimensionless time for corresponding De  values. It is apparent that the initial 

stages of filling, the capillary front velocities are high owing to the surface tension dominated 

transport. With time, as the front reaches the equilibrium Jurin height, the rate of capillary front 

advancement reduces and settles to zero. However, the settling characteristics become 

increasingly oscillatory as the De  number is increased. In fact, higher De  gives a higher 

oscillation velocity, and consequently, larger oscillation amplitude is observed.  
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Figure 3. Dimensionless capillary penetration length 2x x r=%  as a function of non-dimensional time for 

different κ  and �Ca . Here the capillary filling length is non-dimensionalized using outer radius 2r . The 

other parameters for the present figure include � 0.2Bo = , � ~ 2De = , ε =1 . The tilde sign is to demarcate 
the different type of dimensionalization from that shown above, the rationale of which will be elaborated 
in the corresponding discussion. The solid and dashed lines that converge at large times are drawn for 
same capillary number. 

 

 Figure 3 depicts the progress of the capillary front with dimensionless time for various 

combinations of radius ratio κ  and the capillary number. The corresponding dimensionless 

governing equation that is solved for the present case, re-normalized with 2x x r=%  and 0t t t=% % , 

is given as 
( ) � �

( )2

cos 8

1 2 2 1

d dx Bo GCa dx
x x x

dt dt dt

θ
κ κ

  = − ⋅ −  −  −

% %
% % %

% % %
wherein the dimensionless parameters 

have the form �
2

2gr
Bo

ρ
σ

= ; � 2

0

r
Ca

t

µ
σ

=
%

; �

0

De
t

λ
=
%

and the modified time scale is chosen as 

3
2

0 2

r
t

ρ
σ

=% . In the previous 0tδ −  non-dimensionalization procedure, even changing the value of 

radius ratio κ , the effective gap may be kept constant, and hence, the effect of change in κ  

cannot be explicitly depicted (as seen from equation (16)). However, with the present 2 0r t− % non-

dimensionalization procedure, the dependence on radius ratio can be clearly shown. A direct 

observation from the present derived equation with 2 0r t− %  normalization shows that for a given 

outer radius 2r  , the liming case of 0κ → explicitly provides the governing equation for capillary 

filling through a cylindrical channel. It is observed in figure 3 that for a given outer radius, 
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increasing the radius ratio κ  (or decreasing the effective gap between the concentric capillaries) 

increases the Jurin height. At the limiting case for κ → 0  signifying a cylindrical geometry, the 

equilibrium height is minimum for a given outer radius. Although the Jurin height is independent 

of the Capillary number, as discussed earlier, the onset of oscillation depends both on the 

Capillary number and the effective gap ( )2 1r r− . Thus, for a lower Capillary number and higher 

gap (low κ ), oscillations of the capillary front set in. It can be concluded from this figure that for 

a given outer radius, a pure cylindrical channel will induce higher oscillations to the capillary 

front than an annular channel. 

The effect of Capillary number and Bond number has also intriguing influence on the 

characteristics of the capillary filling dynamics. However, since the influences of these 

parameters have fairly been well documented in the literature,13,14,34,43 for the sake of brevity, we 

have not included them in the present work. Nevertheless, few significant remarks at this stage 

must be reported. It is observed that at larger Deborah number, an increase in Ca  induces higher 

oscillation amplitudes, attributable to further decrease in the viscous damping. However, for the 

systems not exhibiting oscillations (large Ca  filling regime),an increase in De  reduces viscous 

effects, thereby decreasing the settling time if the capillary number is greater than the critical 

capillary number Ca  (signifying no oscillations) for a particular Bond number. One further 

interesting aspect to note is that the oscillatory nature is revealed at higher Bond number 

regimes. This is consistent with an inference previously drawn (as shown in equation (20)) that 

there is a critical Bond number above which the capillary front experiences an oscillatory motion 

before finally reaching the equilibrium Jurin height. With these observations, we proceed to 

demonstrate the effect of fluid rheology on the oscillation criteria and peak overshoot of the 

capillary front. 

3.1. Rheological Influence on Peak Overshoot 
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Figure 4. Variation of max /x J  as a function of /Bo Bo for a) different Deborah numbers; b) different 

capillary numbers with 0.05De = . Extensibility parameter ε and radius ratio κ are fixed at 0.25 and 0.5 
for all cases, respectively. Inset of 6a represents B o  criteria obtained using different calculation 
methodologies mentioned in mathematical formulation section. 

 

Figure 4a represents the evolution of max /x J  as a function of /Bo Bo  for viscoelastic 

fluids, corresponding to different Deborah numbers. For the evaluation of the critical Bond 

number criterion (or Bo ) for the above figure, we have used the values of G  as obtained 

dynamically from simulations using equation (20). The rationale of choosing the updated value 

of G  will be clear while elaborating the figure inset. It is noteworthy that the expression of Bo  

is obtained after linearization of the pertinent differential equation, and therefore, value of Bo  

should always fail to take into account the non-linear viscoelastic nature.14 It can be seen that as 

the Deborah number increases, the prediction from the above equation becomes erroneous 

suggesting that the non-linear viscoelastic nature enhances with an increase in the Deborah 

number (while 0De =  represents the Newtonian fluid case). It must, however, be noted that for 

low Deborah number ( )1De < , the formulation can effectively capture the Bond number criteria. 

This can be seen clearly since the ratio of max /x J  remains unity suggesting no oscillations till 

the point the ratio /Bo Bo  remains unity. Nevertheless, to visualize how the start of oscillations 

or Bo  changes with De , we need to look at inset of figure 4a, where circular marker describes 

the actual critical Bond number (or *Bo ), square marker gives criteria using the updated velocity 

from simulation (to obtain De  used by the coupled equations), and criteria represented by 

a) 
b) 
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rhombus shaped markers can be found without simulation. The *Bo  is obtained from the 

simulations by noting the Bond number at which the oscillation just initiates. Both the criteria 

obtained in the mathematical modeling section closely follow the trend shown by the actual 

critical Bo  ( *Bo ). However, the Bond number criteria associated with the updated simulated 

velocity (equation(20)) gives a fundamentally more consistent prediction with *Bo  for low De  

values. This is the primary reason to employ the updated value of G  for figure 4a. The deviation 

of estimation of Bond number criteria prediction using the scaled velocity from *Bo  is attributed 

to the high non-linearity in the viscoelastic fluid rheology. 

Figure 4b represents the evolution of max /x J  as a function of /Bo Bo  for viscoelastic 

fluids for different Capillary numbers, with a fixed Deborah number at 0.05. A small De  

effectively signifies the case when the fluid tends toward Newtonian rheology. It is interesting to 

note that for such low De , the different lines practically converge together exhibiting a capillary 

number independence regime. To explore the reason, why the ratio is independent of the 

Capillary number for the limiting linear (Newtonian) regime ( 1De < ), we attempt to explore the 

analytical framework starting from a general form of a second order differential equation 

governing oscillatory motion: 

 ( ) ( )
2

1 22
0

d g d g
T T g

d t d t
+ + =  (22) 

where 1T  and 2T are arbitrary, constant coefficients. The ratio of the initial peak overshoot to the 

equilibrium height (similar to max /x J ), for a differential equation of the form in Eq. (22) is 

represented by M given by44 : 

 
2

exp
1

M
πξ

ξ

 −
 =
 − 

 (23) 

where 1

22

T

T
ξ = is the damping factor in equation (22),44 and results in the form

 

 1

2 2
2 11 4

T

T T

ζ

ζ
=

− −
 (24) 
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The criteria for onset of oscillations, as was mentioned before, read 2
1 24T T< .The above 

differential form is similar to the one that we obtain pertinent to the present work, after 

linearizing the governing equation, which gives the form as shown in (18).   

Proceeding exactly in a similar manner for a Newtonian fluid that is rising through an annular 

channel due to surface tension effects, the values of the constants shall be 

( ) ( )
( ) ( )( )

2

2 2

4 1 ln

ln 1 ln
A Ca

κ κ

κ κ κ κ

−
=

− + +
 and 

( )

2

2 4 cos

Bo Bo
B

J θ
= = . The corresponding dimensional 

values would be 
( ) ( )
( ) ( )( )

2

2 2

1 κ ln4 2µ

κ ln -κ 1 lnρ
A

κ

κ κσδ

−
=

+ +
 and 

( )

2 2 4

2

1 ρ

4 σ cos θ

g
B

δ
= .  

Comparing the form of equation (18) and (22), it can be said that 1T  and 2T
 
of equation (22) can 

be written in the form of 1 1.T Ca f= and 2
2 2.T Bo f= , where 1 8f G= and 2 1 cos( )f θ= are 

functions of radius ratio (κ ) and the contact angle (θ ), respectively. Substituting these values 

into the form 1

2 2
2 11 4

T

T T

ξ

ξ
=

− −
 we get, 

 1

2 2 2 2
2 1

.

1 4 . .

Ca f

Bo f Ca f

ξ

ξ
=

− −
 (25) 

The dimensionless criterion for oscillation for the Newtonian counterpart, obtained in a similar 

manner as shown for viscoelastic fluid, is 
2

2 2

4(1 ) ln ( )
co s

(1 (1 ) ln ( )
B o C a

κ κ θ
κ κ κ

 
 
 

−
>

− + +
. Now, the 

criterion for oscillation for Newtonian fluids may be cast as 1

2

.

2

C a f
B o

f
=

 

( Bo  is the critical Bond 

number above which oscillations may occur), which, when substituted in equation (25) gives 

 2

2 2 2

2 2

2 1

1
4 4 1

f

Bo Bo
f f

Bo Bo

ξ

ξ
= =

−    − −   
   

 (26) 

Page 19 of 24 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 20 

From equation (26), it is apparent that maxM x J=  is only a function of Bo

Bo
 and a plot with 

maxx J  against Bo

Bo
, thus, becomes independent of the Capillary number, radius ratio ( )κ  and 

contact angle (θ ) for Newtonian fluid rheology (which is simulated as 0De → ).Such a trend can 

only be expected if the equations have a fairly linear nature; however, for highly non-linear 

governing equations, as in the case for PTT rheology, a deviation from this a trend has been 

observed.  

3.2. Experimental Perspective 

 Although the literature lacks thorough experimental investigations of viscoelastic flows 

through capillary annulus, there are comprehensive experimental studies for the capillary rise of 

Newtonian fluids through cylindrical channels.41,45–47 No parallel study, however, has been 

performed where these studies are theoretically verified as a limiting case of capillary dynamics 

for a viscoelastic fluid. Towards this, we attempt to validate our theoretical model in the limiting 

case with 0De →  (signifying Newtonian rheology) and 0κ →  (signifying single cylindrical 

capillary) with experimental studies performed previously. 

 

Figure 5. The capillary front progression x  with time t  for different values of relaxation time λ  ( 0t  

represents the system time scale). The lines represent the results from the theoretical analysis and the 
circular markers represent the experimental data for Newtonian rheology obtained from ref. 45. 
Experimental conditions: density, capillary radius, contact angle, surface tension, and viscosity are 

3710 kg/m , 0.5 mm , 0, 16.7 mN/m  and 0.6 mPa s . Inset shows the capillary front position with time 
based on theoretical analysis (solid line; plotted for Newtonian rheology) and experimental data (circular 
markers) obtained from ref 46. Experimental conditions: density, capillary radius, contact angle, surface 

tension, and viscosity are 3710 kg/m , 0.68 mm , 0, 16.6 mN/m  and 0.3 mPa s . 
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 Figure 5 depicts the progression of the capillary front (in m) as a function of time (in 

seconds) for different values of the relaxation time (or, equivalently, De  number). In the figure 

0t  represents the system time scale that is chosen as 
2

0 2
t

ρδ
σ

= . A relaxation time, for example, 

0tλ = 5  signifies an equivalent dimensionless 5De = . From the figure it is apparent that in the 

limit of De →0 , as the viscoelastic nature reduces (as λ  vanishes), the theory simulates the case 

of capillary rise of Newtonian fluid through a cylindrical channel. For 0De =  and κ = 0 , our 

theoretical lumped parameter model makes a close prediction of the experimental data obtained 

from ref. 45. However, with an increase in the relaxation time, and thereby the De , a higher 

oscillation of the capillary front is observed which is characteristic to any viscoelastic fluid. In 

the figure inset, we further attempt to simulate the case of another experimental study (ref. 46) in 

the limit 0De =  and κ = 0 . We find a close prediction for the same where the oscillation peaks 

are grossly captured by the lumped-order model. Therefore, a close approximation of capillary 

front dynamics is obtained for Newtonian fluids employing the present theoretical analysis and 

such an analysis may be extended to predict capillary rise dynamics involving viscoelastic flows. 

4. Conclusions 

In the present study, we have investigated the capillary filling dynamics of a viscoelastic fluid 

rising through a concentric annular channel. Reduced order formalism has been employed to 

derive the differential form of the governing equations and various forces associated with the 

flow for a fluid modeled using the PTT-constitutive relation. It must be noted that the Lucas-

Washburn formulation has been rigorously applied in numerous theoretical studies in order to 

predict the capillary front dynamics in the scope of lumped-order parameter analysis.13,14,23,34 

The same is also used for the present problem, following an approach that has been grossly 

successful to closely predict the results of numerous experimental 34,41,48–50 and molecular 

dynamic studies 51. An approximate analytically-based and numerically-based criterion for the 

onset of oscillation for such fluids has been derived. It is observed that the capillary front 

encounters an oscillatory regime for particular cases before settling to the equilibrium Jurin 

height. It has been shown that as the radius ratio decreases, there is a greater tendency for the 

capillary front to encounter an oscillatory regime before flow cessation. In sharp contrast to the 

case of capillary filling of viscoelastic fluid through a cylindrical capillary, for annular geometry, 
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we report attenuation in the oscillatory tendency, with a greater Jurin height attainment for an 

annular channel having the same outer radius. This is attributed to the interplay between the 

complex constitutive behavior and the annular nature of the geometry. Furthermore, oscillatory 

regime for Newtonian fluids has previously been predicted from linearity 

analysis,13,14,22,33,41although no such parallel analysis for concentric annular capillary rise of 

viscoelastic fluids has been reported. Since the oscillatory nature of any viscoelastic fluid is 

enhanced due to its extensibility property, a closer look at the oscillatory regime in the presence 

of such non-linearity is essentially demanded.14In the present study, therefore, we additionally 

address the oscillation criteria of the capillary front about the Jurin height and demarcate the 

oscillatory nature established for a concentric annular channel from that in a cylindrical channel. 

The approximate criterion is compared with the actual criterion obtained through simulations. 

Besides the oscillatory criterion, we appeal to the non-linearity of the flow behavior and re-focus 

on the added insights in the oscillatory dynamics due to the viscoelastic nature. We demonstrate 

that in the oscillatory regime of the capillary filling, the ratio of the peak overshoot of the 

capillary front to its Jurin height is independent of the Capillary number of the flow when the 

fluid rheology tends towards Newtonian constitutive nature as a limiting case. However, such a 

Capillary-number independent situation disappears as non-linear effects, due to the viscoelastic 

nature of the fluid, become dominant in the physical paradigm. These results may have 

significant implications in designing of annular flow geometries for capillary filling with 

complex fluids that are inherently nonlinear in their constitutive nature. 
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