

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	Precursor dissolution temperature as a size-controller in
2	Fe ₃ O ₄ submicrospheres synthesis and their effect in catalytic
3	degradation of Rhodamine B
4	
5	Beatriz da Costa Carvalho ^a , Fabiana Cristina Andrade Corbi ^a , Fernando Aparecido
6	Sigoli ^a and Italo Odone Mazali ^{a,*}
7	
8	^a Functional Materials Laboratory – Institute of Chemistry – University of Campinas -
9	UNICAMP, P.O. Box 6154, Zip Code 13083-970 - Campinas - SP- Brazil
10	
11	* Author to whom correspondence should be addressed.
12	E-mail: mazali@iqm.unicamp.br
13	Phone: +55 19 35213164 / Fax: +55 19 35213023
14	
15	
16	
17	
18	

19 Abstract

20	Iron oxides submicrospheres have been synthesized by solvothermal method.					
21	Particle sizes decrease from 700 to 100 nm as a function of dissolution temperature of					
22	iron salt precursors, keeping constant the reaction temperature in the autoclave. The					
23	submicrospheres particles are formed by aggregation of smaller nanoparticles,					
24	nanograins. Fe $_3O_4$ submicrospheres show high saturation magnetization (Ms) and low					
25	hysteresis (low remnant magnetization, M_r and coercivity, H_c), showing					
26	superparamagnetic behavior. The size tailoring of the iron oxide particles allowed their					
27	application as catalyst on photo-Fenton reaction of Rhodamine B degradation, in which					
28	smaller particles showed high catalytic activity and the degradation efficiency showed					
29	strong dependence on the nanograin size.					
30						
31						
32						
33						
34						
35						
36						
37	Keywords:					
38	Iron oxide, solvothermal synthesis, dissolution of iron salt precursor, temperature effect,					
39	Rhodamine					
40						

42 The synthesis of magnetic iron oxide particles has been widely explored in the 43 last decades due to their potential application as catalysts, chemical sensors, theranostic materials in biological systems, etc^{1,2,3,4}. These magnetic nanoparticles show interesting 44 45 properties such as high saturation magnetization and superparamagnetic behavior, i.e., 46 the magnetic response of the particles is immediately canceled by removing the external 47 magnetic field, and thus, they can be easily used in catalysis and biomedical application⁵ The magnetic properties may be adjusted in accordance with the 48 49 methodology of the particles preparation. Several chemical methods can be used to prepare magnetic iron oxide particles such as co-precipitation⁶, microemulsions⁷, 50 hvdrothermal⁹ solvothermal¹⁰ sonochemical⁸. and 51 reactions and thermal decomposition¹¹, which can provide nano/micro particles of magnetite (Fe₃O₄) with 52 controlled size and morphology. In general, such particles must provide high chemical 53 54 stability, uniform size distribution and facile dispersion in aqueous medium. In this 55 study the solvothermal method was chosen because it produces highly dispersed 56 particles and narrow size distribution. The reaction consists in dissolving a precursor of Fe^{III} and a precipitating agent, such as sodium acetate in a particular solvent which must 57 also promotes the reduction of ions Fe^{III} to Fe^{II} such as ethylene glycol, to obtain 58 (Fe^{II})(Fe^{III})₂O₄ with inverted spinel structure. In some cases surfactants are also used to 59 60 stabilize the particles in the process of magnetite formation at high pressure, such as polyvinylpyrrolidone (PVP), polyethylene glycol (PEG). 61

It has been observed that the variation of different parameters in the solvothermal synthesis may affect directly the morphology and size of nanoparticles. Fan et al.¹² studied the Fe^{III} concentration effect on particle sized and observed that the particle size increases as a function of the precursor concentration. Shen et al.¹³ used

66 diethylene glycol as solvent and reducing agent, and sodium citrate as growth inhibitor 67 to obtain nanoparticles from 2 to 13 nm highly stable in water ("water-soluble"). Zhu and Diao¹⁴ investigated the influence of different parameters of the reaction such as the 68 69 concentration of precursor and precipitant agent, reaction time and autoclave 70 temperature on the morphology and size of the particles. They observed that an increase 71 in autoclave temperature leads to smaller particles size. When the concentrations of the precipitant agent or Fe^{III} precursors were low, porous nanospheres with small size were 72 73 obtained. The authors observed that the autoclave reaction time directly affects the final 74 magnetic properties of the products. However, to the best of our knowledge, the effect 75 of dissolution temperature of iron salt precursor in the properties of iron oxides was not 76 investigated.

77 In our previous study, we showed that maghemite nanoparticles synthesized in a Vycor® glass exhibit typical superparamagnetic behaviors¹⁵. In the present study, we 78 79 report the solvothermal synthesis of iron oxide particles using ethylene glycol as the 80 solvent and reducing agent, while sodium acetate and polyethylene glycol were used as 81 precipitating and stabilizing agents, respectively. The influence of dissolution 82 temperature of iron salt precursor in ethylene glycol was evaluated according of 83 magnetic behavior, crystal phase, morphology and particles size. Furthermore, the 84 degradation of Rhodamine B under visible light, using H_2O_2 as the oxidation reagent in 85 a photo-Fenton reaction was chosen as a model reaction to investigate the effect of 86 particle size on the catalytic activity of the Fe_3O_4

87

88 Experimental section

89 Materials

All chemicals were analytical grade and used as received. FeCl₃ and Rhodamine B (RhB) were purchased from Sigma-Aldrich, CH₃COONa·3H₂O (NaAc), ethylene glycol (EG) and polyethylene glycol 4000 (PEG) from Vetec, Hydrogen peroxide (H₂O₂, 30%) from Synth.

- 94
- 95 Synthesis of Fe₃O₄ particles with different particle size

 Fe_3O_4 particles were prepared via solvothermal synthesis¹⁶. Typically, 5.0 mmol 96 97 of FeCl₃ were dissolved in 40 mL of EG, followed by addition of 26.5 mmol of NaAc 98 and PEG (1.0 g). The mixture was stirred vigorously for 30 min at room temperature to 99 form a homogeneous solution. In order to evaluate the effect of dissolution temperature 100 of iron salt precursors (before autoclave step) on morphology and particle size, the 101 mixture solution was heated at different temperatures (25, 40, 60, 80, 100, 120 and 140 102 °C), and then transferred and sealed in a Teflon-lined stainless-steel autoclave (80 mL of 103 capacity). The autoclave was heated to 200 °C for 8 h to complete the reaction. The 104 products were collected and rinsed several times with deionized water and ethanol, then 105 dried under vacuum at 60 °C for 15 h.

106

107 Catalytic Activity of Fe₃O₄ in heterogeneous photo-Fenton degradation of RhB

The photocatalytic activities of the Fe₃O₄ particles were evaluated by photo-Fenton degradation of RhB with H₂O₂ under UV-Vis irradiation (125 W Hg lamp with a 399 nm cut-off filter). For RhB degradation, 12 mg of Fe₃O₄ was suspended in 10 mL of a 1.0×10^{-5} mol L⁻¹ RhB aqueous solution. Before irradiation, the RhB-catalyst suspension was dispersed in the dark for 5 min. 1.24 mmol of H₂O₂ was added to the solution at the beginning of the irradiation. The concentration of RhB at different

RSC Advances Accepted Manuscript

114 reaction times was determined by UV spectroscopy (Varian Cary-50115 spectrophotometer).

- 116
- 117 *Characterization*

118 X-ray powder diffraction (XRD) was performed on Shimadzu XRD-7000 119 diffractometer, operating with CuK α radiation ($\lambda = 1.5406$ Å, 40 kV, 30 mA). Infrared 120 spectra (FTIR) were obtained on a Bomem MB100 Spectrometer using a KBr pellet with resolution of 4 cm^{-1} . The morphology and particle size were determined by 121 122 Scanning Electron Microscopy (SEM) in a FEI Inspect-50 microscope and 123 Transmission Electron Microscopy (TEM) in a HR-TEM JEOL 3010 (300 kV) 124 equipment from the National Nanotechnology Laboratory (LNNano). The magnetic 125 behavior of the samples was investigated by the Vibrating Sample Magnetometer 126 technique (VSM) on a LakeShore-7400 magnetometer with a maximum magnetic field 127 equal to 2.0 Tesla. The measurements were performed at room temperature.

128

129 **Results and Discussion**

130

131 Iron oxide particles using classical solvothermal synthesis: precursor dissolution at

132 *room temperature*

The classical solvothermal synthesis was performed to be used as a reference. The diffraction peaks were indexed (Figure 1a) and magnetite phase was identified (Fe₃O₄, JCPDS 19-0629). The crystallite size (D) was evaluated by Debye-Scherrer equation¹⁷ (D= $k\lambda/\beta\cos\theta$), where k is a shape constant (equal to 0.9 assuming that the crystallite is spherical), λ is the X-ray wavelength (1.5406 Å), θ is the Bragg diffraction

138 angle (deg.), and β is the full-width at half-maximum (rad.) of the diffraction peak (311)

139 with higher intensity. To this sample, the crystallite size was calculated as 77 nm.

140 The FTIR spectrum (Figure 1b) shows a single band at 583 cm⁻¹ assigned to 141 v(FeO) in magnetite. In addition, other two bands are observed with lower intensity 142 ascribed to $\delta(CH_2)$ at 1431 cm⁻¹ and v(COC) at 1076 cm⁻¹. These bands indicate the 143 presence of a small amount of PEG in the sample.

146 **Figure 1. (a)** XRD and **(b)** FTIR of the Fe₃O₄-Cl-RT sample

147

The morphology of the particles obtained with precursors dissolution at room temperature was investigated by SEM, the images are shown in Figure 2. The particles are spheroidal with particle size of ca. 700 nm. The particles surface is rough, as can be

- 151 clearly seen in the Figure 2c. The microsphere particles are formed by aggregation of
- 152 smaller nanograins (Figure 2c).

155 156 Figure 2. SEM images of Fe_3O_4 -Cl-RT in different n-cations revealing the

157 nanograins structures

158 Based on the results obtained from the magnetite particles here synthesized and on the literature^{18,19,20,21}, two steps to obtain these particles are proposed. Firstly, in the 159 160 precursors dissolution FeCl₃, EG, NaAc and PEG (before autoclave step), the formation 161 of iron(III) acetate is observed (reddish precipitate). In the second step, which occurs in the autoclave at high temperature and pressure, the partial reduction of Fe^{III} to Fe^{II} by 162 EG occurs, leading to the formation of the respective Fe^{II} and Fe^{III} hydroxides, which 163 164 lead to the magnetite phase. Therefore, in this paper a new strategy of particle size 165 control was used by changing the temperature of precursors dissolution before the 166 solvothermal reaction.

167

168 Dissolution temperature of precursors before solvothermal process: size, morphology,

- 169 crystal structure and magnetic properties of Fe_3O_4
- Usually, the procedure of salt dissolution is carried out at room temperature, but in this study the dissolution temperature was raised from 40 to 140 °C, keeping the other synthesis conditions unchanged, as shown in Scheme 1.

Scheme 1. Experimental arrangement of the Fe₃O₄ synthesis, highlighting the step of
dissolution of iron salt precursors under heating. The autoclave temperature was kept at
200 °C for all experiments, and the change was carried out just in the step of FeCl₃,
NaAc, EG and PEG mixture before autoclave process.

RSC Advances Accepted Manuscript

178	The XRD pattern of the samples shown in Figure 3 reveals that all diffraction
179	peaks may be indexed to magnetite (Fe ₃ O ₄ JCPDS 19-0629). It can be noticed that the
180	peaks broaden as the dissolution temperature increases, indicating the formation of
181	smaller crystals. The crystallite size was calculated by Debye-Scherrer equation and one
182	may observe (Table 1) that their size decreases as the dissolution temperature increases
183	SEM images show that the nanograins are equivalent to crystallite size, as can be seen
184	in Figure 4. Particles with 700 nm formed by aggregation of 77 nm grains were
185	obtained when the precursors dissolution was carried out at room temperature, while at
186	140 °C the particle size is c.a.100 nm with nanograins of c.a. 13 nm. Therefore, as the
187	dissolution temperature increases, the nanograin and particles sizes decrease. These
188	results reveal that the dissolution temperature plays an important role on controlling the
189	Fe ₃ O ₄ particle sizes obtained by solvothermal process.

190

191 Table 1. Parameters of Fe₃O₄ microspheres prepared using different temperatures of

Sample	Temperature dissolution of precursors / °C	Particle size / nm ^a	Crystallite size / nm ^b	Mr / emu g ⁻¹	Hc / Oe
Fe ₃ O ₄ -Cl-RT	25	700	77	7.2	51.8
Fe ₃ O ₄ -Cl-40	40	700	77	6.8	60.5
Fe ₃ O ₄ -Cl-60	60	600	78	6.3	67.5
Fe ₃ O ₄ -Cl-80	80	350	70	7.6	65.4
Fe ₃ O ₄ -Cl-100	100	150	28	5.5	33.2
Fe ₃ O ₄ -Cl-120	120	115	20	3.7	23.0
Fe ₃ O ₄ -Cl-140	140	100	13	1.9	9.5

192 dissolution of precursors.

^aMeasured by SEM, ^bMeasured by XRD

194

195 Figure 3. XRD pattern of Fe_3O_4 -Cl-T (T= 40-140 °C) samples

196

197 Some studies have showed that the initial concentration of precursors affects the formation of nanocrystals and consequently the size of microspheres^{14,20}. In the present 198 199 study, it was noticed for the first time that the precursor dissolution temperature plays 200 direct influence on the particle and their crystallite sizes. It is known that the formation of Fe₃O₄ includes nucleation of the oxide, followed by the growth of these nuclei to 201 202 form primary crystals (nanograins) which will organize to form larger submicrospheres¹⁴. Some authors have shown that the particle size decreases as the 203 water content decreases due decrease the ratio ethylene glycol/water $(EG/W)^{20,22}$. It is 204 205 possible that evaporation of water during heating causes lower EG/W ratio explaining 206 the small size for particles whose synthesis was carried out in high temperature 207 dissolution of precursors. However, the procedure performed in reflux condenser does 208 not show change on particle size, such fact confirms the temperature influence has main 209 role in the particle size.

Figure 4. SEM images of the Fe_3O_4 synthesized in different precursor dissolution temperature. A: 40 °C, B: 60 °C, C: 80 °C, D: 100 °C, E: 120 °C, F: 140 °C. On the left column the bar is 2 μ m. On the right column the bar is 0.5 μ m for all samples.

214 The morphology and size of the particles were investigated by SEM. Figure 4 215 shows SEM images of the Fe₃O₄ microspheres synthesized at different precursor 216 dissolution temperatures. One may clearly see that the higher the dissolution 217 temperature the smaller the particle size. The particle size of the sample Fe_3O_4 -Cl-40 218 and Fe₃O₄-Cl-60 (Figure 4c and 4b) do not show significant changes compared to the 219 sample obtained at room temperature Fe₃O₄-Cl-RT (Figure 2). The Fe₃O₄-Cl-80 sample 220 (Figure 4c) has an average particle size of 350 nm, that is about the half of the magnetite particle size obtained at room temperature (classic synthesis¹⁶). When the precursor 221 222 temperature dissolution is 100 °C, 120 °C and 140 °C (Figure 4d, 4e and 4f), the mean 223 sizes of particles are 150 nm, 115 and 100 nm, respectively, and they are about seven 224 times smaller than those obtained by classical synthesis.

TEM images also show that the particles are also formed by nanograins similar to those obtained by classical synthesis. (see detail in Figure 5). The Fe₃O₄ particle is made of aggregates of nanograins and therefore may be understood as a nanostructured particle. Spheroidal particles of c.a. 700 nm are formed by nanograins of 60 nm, while those with diameter of 150 nm are formed by nanograins of 15 nm, implying that the precursor temperature dissolution has a direct influence on nanograin size and consequently on the final particle size.

233

Figure 5. SEM high magnification of the Fe_3O_4 microspheres (A: Fe_3O_4 -Cl-40, B: Fe₃O₄-Cl-100), (C): TEM of the Fe_3O_4 -Cl-40 and (D): scheme of the formation of Fe₃O₄ nanostructure with different size formed from nanograins, demonstrating that smaller grains grow in smaller particles

238

The FTIR spectra of all Fe_3O_4 samples show a band at 583 cm⁻¹ corresponding to the Fe-O lattice mode of Fe_3O_4 (Figure 6). The other signals observed in the spectra indicate the presence of a small amount of PEG or EG in the samples.

242 The magnetic properties of the microspheres were evaluated using a vibrating 243 sample magnetometer (VSM), measured at room temperature. The magnetic 244 measurements of Fe₃O₄-Cl-RT sample (magnetite obtained with reaction mixture at 245 room temperature) show magnetization saturation (M_s) , remanent magnetization (M_r) and coercivity (H_c) values of 85 emu g⁻¹, 7.2 emu g⁻¹ and 51.8 Oe, respectively. The 246 247 hysteresis loops shown in Figure 7 suggests the superparamagnetic behavior of the 248 sample. Furthermore, these spheres with homogeneous dispersion showed fast response 249 to the external magnetic field due to its superparamagnetic properties.

252 Figure 6. FTIR spectra of the Fe₃O₄ samples at different precursors dissolution

253 temperatures

254

256 Figure 7. Magnetic hysteresis loops of Fe₃O₄ at different temperature of precursors

- 257 dissolution
- 258

259 All samples obtained from the modified precursor dissolution temperature show 260 the same magnetization profile curve (Figure 7). The data showed in Table 1 indicate 261 that the M_s decrease while the particle size decreases

262 The decrease in M_s is due to higher contribution of surface effects, anisotropy 263 and non-stoichiometry of smaller diameters particles. Because of the spin disorder on 264 the particles surface, such particles tend to have lower M_s than the respective bulk. The spin disorder is directly related to the magnetic behavior of the system^{23,24,25}. M_r and H_c 265 of the samples also decreased as the particle size decreases (Table 1), and it is known 266 267 that superparamgnetic particles do not exhibit M_r and H_c, being very interesting in 268 biomedical and catalytic applications due to null residual magnetization observed after magnetic field removal. 700 nm magnetic particles show H_c 60.5 Oe and M_r 6.8 emu g⁻¹ 269 values, being lower than reported by Fan et al¹² in nanostructured particles with 130 nm. 270 The smaller particles (100 nm) obtained in this work show the $H_c = 9.5$ and $M_r = 1.9$. 271 272 Thus, it can be seen that the values of H_c and H_r tend to zero as the particle sizes decreases. The magnetic properties of the particles with size above critical diameter to 273 Fe_3O_4 superparamagnetic (ca. 60 nm)²⁶ can be explained due to nanograin size that 274 275 aggregate to form a submicrosphere (100 to 700 nm) thus the superparamgnetic 276 response, low coercivity and magnetization remanent can be assigned to the nanograins.

277

278 Catalytic Activity of the Fe_3O_4 particles with different sizes

279 The Fe_3O_4 particles with different sizes can be used in heterogeneous catalytic 280 degradation of organic compounds. The photo-Fenton reaction was used as model 281 reaction to study the catalytic properties of these magnetic particles. RhB was chosen as 282 organic dye to degradation reaction by H_2O_2 under UV-Vis radiation. The UV-Vis 283 degradation curves are presented on Figure S1 (Supporting Information). As shown in

Figure 8a, without Fe_3O_4 particles, the degradation is very low (less than 5%, considered negligible), being attributed to the low oxidation potential of H_2O_2 as compared to hydroxyl radicals $(OH)^{27}$. When Fe_3O_4 -Cl-140 was irradiated under visible radiation without H_2O_2 (Figure 8b), it was observed a little RhB degradation, approximately 10%, due to adsorption of RhB in Fe_3O_4 catalyst. The effect of the particles size in degradation efficiency was evaluated using 100, 350 and 700 nm Fe_3O_4 particles.

291

292

293 **Figure 8**. Degradation of RhB under different conditions: (a) RhB/H₂O₂/vis; (b) 294 RhB/Fe₃O₄-Cl-140/vis; (c) RhB/ Fe₃O₄-Cl-RT/ H₂O₂/vis; (d) RhB/ Fe₃O₄-Cl-80/ 295 H₂O₂/vis; (e) RhB/ Fe₃O₄-Cl-140/ H₂O₂/vis

296

The RhB degradation of the 700 and 350 nm particles (Figure 10c and 10d, respectively) is similar, around 70% in 60 min. Although these particles have different sizes, there is almost no difference in their crystallite size (nanograin), as can be seen in Table 1, being about 77 nm (Fe₃O₄-Cl-RT) and 70 nm (Fe₃O₄-Cl-80), and thus this slight difference is not enough to promote higher catalytic activity for the 350 nm microspheres. However, the degradation of RhB by H_2O_2 using 100 nm magnetite

raye to of

particles (Fe₃O₄-Cl-140) under Vis irradiation reached 100% in 60 min (Figure 8e), showing higher efficiency for RhB degradation. The smaller crystallite size (13 nm) contributes to enhance the catalytic effect in these particles for RhB degradation probably because the higher surface/volume ratio. Furthermore, the catalysts can be conveniently separated by applying an external magnetic field.

308

309 Conclusions

Fe₃O₄ nanostructured spheroidal particles have been obtained by modified 310 311 solvothermal method. The synthesis leads to nanostructured spheres formed by 312 nanograins that aggregate to form submicroparticles. The dissolution of iron precursor 313 at different temperatures before autoclave process provided a control of the particle size 314 without changing the morphology. As the precursor dissolution temperature increases, 315 the particle size decreases, being possible to obtain particles from 100 to 700 nm formed 316 by different nanograins sizes. The particles showed superparamagnetic properties, high 317 magnetization saturation and small M_r and H_c . The precursor dissolution temperature is 318 an important synthesis parameter that can be changed to modulate the size of particles 319 depending on the need of the application. Fe₃O₄ particles showed to be highly efficient 320 in RhB degradation by photo-Fenton reaction, demonstrating the influence of crystallite 321 size on catalytic activity of the particles, with best results for 100 nm particles and 13 322 nm crystallite.

323

324 Acknowledgements

The authors would like to thank the FAPESP, CAPES and CNPq agencies for financial supports. Contributions from Brazilian Nanotechnology National Laboratory (LNNano, Campinas-SP) for SEM and TEM are also gratefully acknowledged. This is a

328	cor	tribution of the National Institute of Science and Technology in Complex Functional				
329	Materials (CNPq-MCT/FAPESP).					
330						
331	Re	ferences				
332	1.	E. Andronescu, M. Ficai, G. Voicu, D. Ficai, M. Maganu and A. Ficai, Journal of				
333		Materials Science: Materials in Medicine, 2010, 21, 2237-2242.				
334	2.	GD. Fang, D. D. Dionysiou, S. R. Al-Abed and DM. Zhou, Applied Catalysis B:				
335		Environmental, 2013, 129 , 325-332.				
336	3.	A. Ito, H. Honda and T. Kobayashi, Cancer Immunology, Immunotherapy, 2006,				
337		55 , 320-328.				
338	4.	H. Qiu, C. Luo, M. Sun, F. Lu, L. Fan and X. Li, Carbon, 2012, 50, 4052-4060.				
339	5.	M. Mahmoudi, S. Sant, B. Wang, S. Laurent and T. Sen, Advanced Drug Delivery				
340		<i>Reviews</i> , 2010, 63 , 24-46.				
341	6.	W. Zhang, S. Jia, Q. Wu, J. Ran, S. Wu and Y. Liu, Materials Letters, 2011, 65,				
342		1973-1975.				
343	7.	P. A. Dresco, V. S. Zaitsev, R. J. Gambino and B. Chu, Langmuir, 1999, 15, 1945-				
344		1951.				
345	8.	F. Dang, N. Enomoto, J. Hojo and K. Enpuku, Ultrasonics Sonochemistry, 2009,				
346		16 , 649-654.				
347	9.	T. J. Daou, G. Pourroy, S. Bégin-Colin, J. M. Grenèche, C. Ulhaq-Bouillet, P.				
348		Legaré, P. Bernhardt, C. Leuvrey and G. Rogez, Chemistry of Materials, 2006, 18,				
349		4399-4404.				
350	10.	A. Yan, X. Liu, G. Qiu, H. Wu, R. Yi, N. Zhang and J. Xu, Journal of Alloys and				
351		Compounds, 2008, 458 , 487-491.				

- 352 11. D. Maity, P. Chandrasekharan, P. Pradhan, K.-H. Chuang, J.-M. Xue, S.-S. Feng
- and J. Ding, *Journal of Materials Chemistry*, 2011, **21**, 14717-14724.
- 12. T. Fan, D. Pan and H. Zhang, *Industrial & Engineering Chemistry Research*, 2011,
 50, 9009-9018.
- 13. L.-h. Shen, J.-f. Bao, D. Wang, Y.-x. Wang, Z.-w. Chen, L. Ren, X. Zhou, X.-b. Ke,
 M. Chen and A.-q. Yang, *Nanoscale*, 2013, 5, 2133-2141.
- 358 14. M. Zhu and G. Diao, *The Journal of Physical Chemistry C*, 2011, **115**, 1892318934.
- 360 15. D. Cangussu, W. C. Nunes, H. L. d. S. Corrêa, W. A. d. A. Macedo, M. Knobel, O.
- 361 L. Alves, A. G. S. Filho and I. O. Mazali, *Journal of Applied Physics*, 2009, 105,
 362 013901.
- 363 16. P. Yang, Z. Quan, Z. Hou, C. Li, X. Kang, Z. Cheng and J. Lin, *Biomaterials*, 2009,
 364 30, 4786-4795.
- 365 17. R. Jenkins and R. L. Snyder, *Introduction to x-ray powder diffractometry*, John
 366 Wiley & Sons, New-York, 1996.
- 367 18. Q. Q. Xiong, J. P. Tu, Y. Lu, J. Chen, Y. X. Yu, Y. Q. Qiao, X. L. Wang and C. D.
 368 Gu, *The Journal of Physical Chemistry C*, 2012, **116**, 6495-6502.
- 369 19. S. Liu, R. Xing, F. Lu, R. K. Rana and J.-J. Zhu, *The Journal of Physical Chemistry*
- *C*, 2009, **113**, 21042-21047.
- 371 20. M. Jean, V. Nachbaur and J.-M. Le Breton, *Journal of Alloys and Compounds*,
- 3722012, **513**, 425-429.
- 373 21. L.-L. Wang and J.-S. Jiang, *Nanoscale Research Letters*, 2009, **4**, 1439-1446.
- 22. S.-B. Cho, J.-S. Noh, S.-J. Park, D.-Y. Lim and S.-H. Choi, Journal of Materials
- 375 *Science*, 2007, **42**, 4877-4886.

376	23. B. D. Cullity, C. D.	Graham,	Introduction	to	magnetic	materials,	John	Wiley,
377	Hoboken, 2009.							

- 378 24. A. Yan, X. Liu, G. Qiu, H. Wu, R. Yi, N. Zhang and J. Xu, *Journal of Alloys and*379 *Compounds*, 2008, **458**, 487-491.
- 380 25. O. Moscoso-Londono, D. Muraca, L. A. S. de Oliveira, K. R. Pirota and L. M.
- 381 Socolovsky, Magnetics, IEEE Transactions on, 2013, 49, 4551-4554.
- 382 26. S. Mörup, M. F. Hansen and C. Frandsen, in *Comprehensive Nanoscience and* 383 *Technology*, Academic Press, Amsterdam, Editon edn., 2010, pp. 437-491.
- 384 27. S. Guo, G. Zhang and J. Wang, Journal of Colloid and Interface Science, 2014,
- **433**, 1-8.

