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Mg(ClO4)2-Promoted [4 + 3] Cycloaddition of Oxindole Derivatives 

with Conjugated Dienes: Concise Synthesis of Spirocycloheptane 

Oxindole Derivatives 

Yun Liu, Zhou Sun, Song Li, Kuirong Xiang, Yuan Zhang,* and Ying Li*

We herein reported a novel Mg(ClO4)2-promoted intermolecular [4 

+ 3] cycloaddition reaction of oxindole derivatives and 

cyclopentadiene. This new strategy provides a convenient 

approach to the concise synthesis of a series of spirocycloheptane 

oxindole derivatives, with moderate to good yields and high 

diastereoselectivities. 

The spirooxindole skeletons have drawn tremendous attention 

among synthetic and medicinal chemists during the past few 

years due to their functional diversity and their significance in 

organic synthesis as crucial intermediates.
1
 Among them, the 

spirocycloheptane oxindole frameworks represent ubiquitous 

structural motifs in a broad range of alkaloids and bioactive 

compounds (Figure 1). Most of these alkaloids have been 

found to exhibit remarkable biological and pharmacological 

activities. For example, the gelsemine, which was first isolated 

from Carolina jasmine (Gelsemium sempervirens)
2
 in 1876,

3
 

have recently been found to exhibit potent and specific 

antinociception in chronic pain by acting at the three spinal 

glycine receptors.
4
 In this context, the development of flexible 

synthetic methods for the synthesis of spirocycloheptane 

oxindole skeletons would thus be beneficial for the synthesis 

of those bioactive alkaloids.
5
 Although the chemistry of 

spirooxindole has been studied quite extensively, the 

investigations are mostly focused on the construction of 

spirocyclopentane
6
 or spirocyclohexane oxindole

7
 moieties. To 

date, there has been limited work on the direct construction of 

spirocycloheptane oxindole frameworks from oxindole 

derivatives.
8,9
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Figure 1. Structures of natural products possessing the spirocycloheptane 
oxindole skeleton. 

The [4 + 3]-cycloaddition between allylic cations and 

conjugated dienes has been proved to be a powerful method 

for the direct synthesis of seven-membered rings.
10-13

 The 

acid-catalysed [4 + 3] cycloaddition reactions of 

furfurylalcohols and 1,3-diene were first reported by 

Pattenden in 2009 to construct the 5,5,7-tricyclic skeletons.
13f

 

The substituted furfuryl alcohols could undergo acid-catalysed 

hydrolysis transformations, and accompanied by displacement 

of the hydroxyl group, then leading to the furanoxonium ion 

intermediates, which could react with 1,3-diene via a [4 + 3] 

cycloaddition.
10e

 Our group have recently disclosed the 

intermolecular [4 + 3] cycloaddition of heterocyclic compounds 

(such as benzofuran, benzothiophene and indole)
14b,c

 with 

conjugated dienes to construct various 6,5,7-polycyclic 

skeletons and their application in the total synthesis of 

Liphagal and Frodonsin B.
14a

 In continuation of our previous 

work, we envisaged that a [4 + 3] cycloaddition reaction 

between oxindole derived allylic cations and conjugated 

dienes would result in the straightforward formation of 

spirocycloheptane oxindoles. Herein, we report a highly 

diastereoselective [4 + 3] cycloaddition route to the synthesis 

of spirocycloheptane oxindoles (Scheme 1).
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Scheme 1. [4 + 3] Cycloaddition reactions of heterocyclic compounds with conjugated 

dienes. 
 

We initiated our studies using oxindole derivative 3a
15

 as 

dienophiles and cyclopentadiene 4 as conjugated dienes to 

explore the cycloaddition conditions. Compounds 3a could be 

readily prepared from N-substituted isatins and 2-methyl furan 

(for details see ESI). Selected representative screening results 

for this model reaction are presented in Table 1. Initially, a 

variety of frequently used Brønsted acids as well as Lewis acids 

were examined for the cycloaddition reaction at room 

temperature in DCM. However, Brønsted acids and most of 

Lewis acids resulted in no reaction at all (for details see ESI). 

Lewis acids such as SnCl4 and ZnCl2 could promote the reaction, 

but resulted in low yields, probably due to the polymerization 

of dienes or decomposition of the starting materials in these 

conditions (Table1, entries 4 and 5). Finally, Mg(ClO4)2 was 

proved to be the optimum Lewis acid. Upon treatment with 

1.5 equiv of anhydrous Mg(ClO4)2 in DCM at ambient 

temperature, 3a underwent cycloaddition with 4 to afford the 

spirooxindole 5a in 58% yield within 2h (Table 1, entry 8). 

Further optimization of the reaction conditions by changing 

the temperature and solvents did not improve the yields 

(Table1, entries 6-10). 

Table 1. Optimization of the reaction condition.
a 

 

Entry Conditions Solvent T(
o
C) Yield(%)

b
 

1 TFA DCM -78 to 0 trace
c
 

2 CSA DCM -78 to rt NR
d
 

3 HClO4 DCM -78 ND
d
 

4 SnCl4 DCM -78 to rt 18 

5 ZnCl2 DCM rt 30 

6 Mg(ClO4)2 DCM 0 <5 

7 Mg(ClO4)2 DCM rt 58 

8 Mg(ClO4)2 DCM reflux ND
d
 

9 Mg(ClO4)2 THF rt 20 

10 Mg(ClO4)2 Et2O rt 25 

a
 Unless otherwise noted, all reaction was performed with 3 (0.1 mmol, 1.0 eq), 4 

(1.0 mmol, 10.0 eq) and Lewis acids or Brønsted acids (0.15 mmol, 1.5 eq) in 

solvent (15 mL). 
b
 Yield of isolated product. 

c
 Determined by 

1
H NMR (400 MHz) 

analysis (starting material was decomposed). 
 d

 NR = no reaction (starting 

material was recovered); ND = not determined (starting material was 

decomposed). 
 
 

Having established the optimal reaction conditions, we then 

investigated the reactivity of a series of oxindole compounds 

3a-l towards cyclopentadiene 4 (Figure 2). As is shown in 

Figure 2, this novel [4 + 3] cycloaddition reaction was found to 

be applicable for a series of oxindole substrates, and a number 

of spirocycloheptane oxindole derivatives were afforded in 

moderate to good yields. The electronic properties of R1 group 

on the N-atom of oxindole derivatives clearly influenced the 

reactivity of substrates. The substrates with electron-donating 

groups (R1 = Me/Bn) afforded products 5 in good yields (Figure 

2, 5a-5b), whereas those with electron-withdrawing groups (R1 

= Ac) could not afford the desired products. Similarly, 

electronic effects of R2 also substantially affected the yields. In 

general, the presence of halogen atoms on the phenyl ring 

obviously reduced the reactivity of substrates (Figure 2, 5d-5j), 

therefore the higher temperatures were needed for these 

reactions. While the electron-donating substituents had 

positive effects (Figure 2, 5c and 5k). However, the reaction 

could not proceed when the substituents on the phenyl ring 

were two fluorine atoms (Figure 2, 5l). Notably, this [4 + 3] 

cycloaddition reaction showed excellent diastereoselectivities 

for all substrates, and the relative configuration could be 

determined by the single X-ray crystallographic analysis data of 

5a (Figure 2). 
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Figure 2. Scope of the [4 + 3] cycloaddition reaction. 
a
 Unless otherwise noted, the reaction was performed with 3 (0.1 mmol, 1.0 eq), 4 (1.0 

mmol, 10.0 eq), and Mg(ClO4)2 (0.15 mmol, 1.5 eq) in DCM (15 mL) at rt. 
b
 The reaction 

was performed at refluxing temperature. 
c
 Diastereomeric ratios were determined by

 1
H 

NMR (400 MHz) analysis. In the experimental results, the diastereoisomer could not be 

detected in
 1

H NMR spectra, therefore we identified the dr as >20:1  

The details of the [4 + 3] cycloaddition mechanism have not 

yet been fully understood. The theoretical results proposed by 

Winne et al. pointed to a two-step cationic cyclization 

process,
16a

 and this can also be supported by Wu's report via 

the DFT calculations.
16b

 On the basis of our previous 

research
14,16e

 and literature reports,
16a-d

 a possible mechanism 

was proposed,
 
as is shown in Scheme 2. Firstly, an allylic cation 

intermediate 6a could be achieved from the oxindole 

compounds under Lewis acid conditions. Then, an 

intermolecular [4 + 3] cycloaddition between 6a and dienes 4 

via endo-cycloaddition transition state 8a resulted in the 

spirocycloheptane oxindole skeleton 5a. Most intermolecular 

oxyallyl cation-type reactions usually prefer an exo- (or 

extended) addition mode; while in our experiment, we 

proposed the transformation was taking place under kinetic 

control  (performed at room temperature or ca 40 
o
C), which 

probably prefer the endo-transition state for maximizing the π-

π stacking interaction between the oxindole cation and 

conjugated cyclopentadiene.
17

  
 

 
Scheme 2. A plausible mechanism for the [4 + 3] cycloaddition reaction. 

Conclusions 

In summary, we have developed a novel and convenient 

approach for the construction of spirocycloheptane oxindole 

skeletons through a Mg(ClO4)2-promoted [4 + 3] cycloaddition 

of oxindole derivatives with conjugated dienes. This method 

could achieve the concise synthesis of a series of 

spirocycloheptane oxindoles in moderate yields with high 

diastereoselectivities. We believe that the strategy 

demonstrated here may be utilized in the further synthesis of 

natural products and potential bioactive compounds 

containing spirocycloheptane oxindole skeletons. Further 

investigations towards the refinement of the reaction 

mechanism, as well as applications in total synthesis, are now 

under way in our lab and will be reported in due course. 
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Novel Mg(ClO4)2-promoted [4 + 3] cycloaddition reaction of oxindole derivatives and cyclopentadiene was 

achieved for the construction of spirocycloheptane oxindole skeleton. 
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