

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

RSC Advances

Structure-based prediction of CAD response factors of dammarane-type
tetracyclic triterpenoid saponins and its application to the analysis of saponin
contents in raw and processed Panax Notoginseng
Ming Peng ^{a,b} , Tong Zhang ^{*c} , Yue Ding ^c , Yaxiong Yi ^a , Yongjian Yang ^b , Jian Le ^b a. School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203,
China;
b. Department of Chemistry, Shanghai Institute for Food and Drug Control, Shanghai, 201203,
China;
c. Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese
Medicine, Shanghai, 201203, China
* Corresponding author: Tel.: +86 21 51322318; Fax: 86 21 51322337
E-mail address: zhangtdmj@hotmail.com
Abstract: The analysis of saponin contents in Panax Notoginseng (Sanqi) is challenged by the
lacking of authentic reference standards. In this study, a gradient eluted HPLC method coupled
with charged aerosol detector (CAD) has been established to solve this problem. The impact of
structural features, including the type of aglycon, the optical rotations at C-20, the glycosyl
substituent and the glycosyl linkage of dammarane-type tetracyclic triterpenoid saponins on their
CAD response factors has been discovered. The rules of the impact have been utilized to predict
CAD response factors of saponins in raw and processed notoginseng based on their structures
elucidated by LC-QTOFMS. An intensive investigation of the saponin contents in raw (different
cultivate places, sizes, and medicinal parts) and processed (steaming, baking, autoclaving, stewing
and frying) Panax Notoginseng were implemented. This method was successfully applied to
distinguishing the quality of raw and processed Panax Notoginseng, finding out biomarkers in

24 processed notoginseng, and screening the best processing technique for this herb.

25 Key words: Panax Notoginseng; charged aerosol detector (CAD); dammarane-type tetracyclic

26 triterpenoid saponin; response factor; raw; processed

Abbreviations: Ara: arabinose; CAD: Charge aerosol detector; Chp: Chinese Pharmacopoeia; ESI:
electrospray ion; Glc: glucose; Man: mannose; *P. notoginseng: Panax notoginseng;* PPD:
protopanaxadiol; PPT: protopanaxatriol; QAMS: multi-component with single marker; QTOFMS:
quadrupole time-of-flight mass spectrometry; RCF: relative correction factor; RF: response factor;
Rha: rhamnose; Xyl: xylose

32 **1. Introduction**

33 Notoginseng, the dry root or rhizome of Panax notoginseng (Burk.) F. H. Chen (P. 34 notoginseng), also called 'Sanqi' or 'Sanchi', is a precious traditional Chinese medicine with a 35 long history of medical use. The saponin components have been discovered to contribute to the 36 main pharmacological functions of this herb, such as the treatment of cardiovascular diseases,¹ 37 the biological activities of anti-cancer,² anti-hyperlipoidemia,³ and anti-hyperglycemia,⁴ etc. In 38 traditional Chinese medical applications, processed notoginseng is distinguished from the raw herb by the claim of its capability to "nourish" blood.⁵ Furthermore, contemporary researches 39 40 have reported that processed notoginseng exhibit more potent pharmaceutical activities than raw notoginseng, such as anticancer,⁶⁻⁸ antiplatelet, anticoagulant, and platelet aggregation inhibition 41 effects,9 etc. Apparently, different compound basis of raw and processed notoginseng directly 42 43 influences their pharmacological activities.

44 Dammarane-type tetracyclic triterpenoid saponins have been found to be the major active components in *P. notoginseng*,¹⁰ and can essentially be classified into two types: protopanaxadiol 45 46 (PPD) and protopanaxatriol (PPT) type. The lacking of authentic reference standards of rare 47 saponins, especially those secondary saponins only existed in processed notoginsengs has impeded 48 the quality control of this herb. Recently, some strategies of quantitative analysis of 49 multi-component with single marker (OAMS) have been developed for the determination of 50 saponin content in P. notoginseng mostly based on HPLC-UV and LC-MS platforms. A QAMS 51 method focused on 11 saponins in P. notoginseng has been established and validated at UV 200 nm.¹¹ The slopes of the equations of linear regressions for each saponin were used to calculate the 52 53 relative correction factor (RCF). Although this method is simple and accurate, the RCFs of each

54 saponin need to be calculated before the testing on real samples. Moreover, the RCFs of those 55 saponins without authentic reference available are still not achievable and predicted, and the 56 intensive analysis of the whole saponin contents in notoginsengs, especially those in processed herbs could not easily be accomplished. Lai et al.¹² developed a green protocol for the utilizing of 57 58 specific enzymatic hydrolyzing process to calculate relative response factor of specific PPD type 59 saponins, with less consumption of solvent and authentic reference standards. However, this 60 protocol has only focused on 4 PPD saponins so far. Further researches are needed to find the 61 specific enzymes for the hydrolyzing of other types of saponins. Moreover, a HPLC-ESI-MS 62 coupled with mobile-phase compensation method has been investigated for the determination of saponins in *P. notoginseng* calculated based on normalized data of saponin peaks.¹³ However, the 63 64 variations of MS responses of different saponins owing to their structural types and molecular 65 weights could still not be neglected, which limits the extensive application of this method.

Charged aerosol detector (CAD) was firstly introduced in 2002.¹⁴ CAD is a mass sensitive 66 67 and universal detector for the routine determination of any non-volatile and many semi-volatile 68 chemical species. The liquid mobile phase is nebulized in CAD chamber by N₂ to become aerosol 69 droplets. Then the small droplets containing analytes enter the drying tube, and the big droplets 70 which are composed of the majority of mobile phase enter the wasting tube. After that, the dry 71 particles are mixed with a charged N_2 gas flow which has just passed through the corona discharge 72 needle, and at the meantime the charges are transferred to the dry particles. The charged analyte 73 particles are then collected and the electrical charges are measured with an electrometer. CAD has extensively been applied for the analysis of impurities in pharmaceuticals,^{15,16} food products and 74 herbal dietary supplements, 17 - 19 pharmaceutical formulations, 20, 21 and environmental 75 pollutants,²²etc. Moreover, HPLC-CAD has been performed on the analysis of major saponins in 76 77 raw notogingseng by external standard method using commercially available reference standards.^{23,24} However, the content of those minor saponins were not mentioned due to the 78 79 absence of authentic reference standards. CAD was claimed to be generating identical peak 80 response for all non-volatile substances, however, quite a few studies have also investigated that CAD responses of the analytes are not always the same.²⁵⁻²⁷ The variations of the responses may 81 82 be due to the particle density, hygroscopicity, and volatility, etc., of the analytes in the particle

phase during nebulization.²⁸ This means that it is inappropriate to arbitrarily assume an identical CAD response for all the saponins which embrace close but different structures without figuring out the their relationships. However, once the relation between the saponin structure and its CAD response is elucidated, this detector is still a convenient and stable detector for the determination of saponins which are short of chromophores in their structure.

88 In this article, a gradient eluted HPLC-CAD method with post-column mobile phase 89 compensation has been developed to determine the saponin contents in raw and processed P. 90 notoginseng. The impact of the structural features, including types of aglycon, optical rotation, 91 glysosyl substituent and glycosyl linkage of dammarane-type tetracyclic triterpenoid saponins on 92 their CAD response factors (RFs) has been discovered. Moreover, the rules have been successfully 93 utilized to predict CAD RFs of the saponins based on their structures, which were identified by 94 LC-QTOFMS in our study, and the prediction has also been validated. An in-depth investigation 95 on saponin contents in raw *P. notoginseng* of different sizes, cultivated places and medicinal parts, 96 as well as the secondary saponins and biomarkers in processed notoginseng of different processing 97 procedures was then implemented.

98 **2. Experimental**

99 2.1. Chemicals and reagents

100 Reference standards of notoginsenoside R_1 , ginsenoside R_2 , R_2 , R_1 , R_2 , R_1 , R_2 , R_2 , R_3 , R_4 , R_5 , R_1 , R_2 , R_3 , R_4 , R_5 , 101 20(S)-Rh₁, 20(R)-Rg₂, 20(R)-Rh₁, Rb₂, Rb₃, F₁, Rd, F₂, 20(S)-Rg₃, 20(R)-Rg₃, 20(S)-PPT, CK, 102 20(R)-Rh₂ and 20(R)-PPD were purchased from Chengdu Must Bio-technology Co. LTD. 103 Ginsenoside 20(S)-Rh₂ and 20(S)-PPD were kindly supplied by Shanghai Pharm Valley Co. LTD. 104 Except for 20(R)-Rh₁ (purity 97.65%), 20(R)-Rh₂ (purity 92.33%) and 20(S)-PPD (purity 95.99%), 105 the purities of all the above reference standards were labeled above 98% by the manufacturers. 106 Reference standard of gypenoside XVII was obtained from Shanghai Winherb Medical Science 107 Co., Ltd (purity 98.93%). Tinidazole (purity 100%) was provided by Zhejiang Supor 108 Pharmaceuticals Co., Ltd. HPLC grade acetonitrile and methanol were obtained from Merck 109 (Darmstadt, Germany). Deionized water was purified using a Milli-Q system (Millipore, Bedford, 110 MA).

111 2.2. Raw herb of *Panax notoginseng*

112 Main roots of raw *P. notoginseng* were purchased from two cultivated places in China. 113 Seven different sizes of main root (20, 30, 40, 60, 80, 120 and countless heads) were purchased 114 from Wenshan county, Yunnan province. And five different sizes of main root (30, 40, 60, 120 and 115 countless heads) were purchased from Bobai county, Guangxi province. The term "head" in Panax 116 notoginseng refers to the size of this herb, which has been used in China for a long history. It 117 refers to the number of pieces of notoginseng main roots per 0.5 kg. For example, "40 heads" in 118 this article means that each 0.5 kg of notoginseng herb contains 40 pieces. Apparently, the greater 119 the number of head is, the smaller is the size of main root. In Chinese market, the smaller the 120 number of head is, the more expensive is the notoginseng, because people believe that 121 notoginseng of bigger sizes contain greater amount of total saponins, thus have more potent 122 pharmacology effects. In addition, other medicinal parts of *P. notoginseng* (rhizome, branch root 123 and root hair) were all obtained from Wenshan county. All the raw P. notoginsengs were 124 pulverized and screened through an 80 mesh sieve. Water contents of the notoginseng powders 125 were determined by Karl Fischer method.

126 2.3. Processing procedures of notoginseng

Processed notoginsengs were prepared by different procedures, i.e., steaming, autoclaving, baking, stewing and frying. All the processed notoginsengs were prepared using raw 120-head main root of *P. notoginseng* cultivated in Wenshan county. All the processed notoginsengs were dried under vacuum at 80 °C for 48 hr before being pulverized. Then the pulverized powder was being screened through an 80 mesh sieve. Karl Fischer titration was performed afterwards to determine the water contents of all processed notoginseng powder.

133 2.3.1 Steaming

Raw notoginsengs were steamed at 100°C in a steamer for 1, 2, 3 and 4 hrs. Before being steamed, all the raw notoginsengs were soaked in water for 2 hrs.

136 2.3.2 Autoclaving

Raw notoginsengs were steamed in an autoclave at 100 or 120 °C for 2, 4, 6, 8, 12, 24, 36,
48 and 72 hrs, respectively. Before being autoclaved, all the raw notoginsengs were soaked in

- 139 water for 2 hrs.
- 140 2.3.3. Baking

141 Raw notoginsengs were baked in an electric blast drying oven at 100 or 120 °C for 24, 48

- 142 and 72 hrs, respectively.
- 143 2.3.4. Stewing
- 144 Raw notoginseng powder (80 mesh) were stewed in water. After the water was boiling for 10
- 145 minutes, the remaining notoginseng powder and liquid was collected and evaporated to dryness.

146 2.3.5. Frying

147 Raw notoginsengs were steamed until tender before being cut into slices. Then the 148 notoginseng slices were fried in tea-seed oil over moderate heat till both sides of the slices 149 appeared to be golden in color.

150 2.4 Preparation of reference standard stock solution and internal standard solution

The stock reference solution was prepared using 70% methanol aqueous solution. Since the contents of different saponins vary greatly, the concentrations of 22 reference standards in stock solution ranged from 0.05~1.5 mg/mL according to the saponin contents in notoginseng. Tinidazole was dissolved in 70% methanol aqueous solution to prepare an internal standard (IS) solution at the concentration of 2 mg/mL.

156 2.5. Preparation of sample solution

About 0.5 g of notoginseng powder was accurately weighed and transferred into a 20 mL volumetric flask. Then 5 mL of IS solution and 10mL of 70% methanol aqueous solution was added into the volumetric flask. The flask was ultra-sonicated (500 W, 50 Hz) for 60 min, and 70% methanol aqueous solution was added to volume afterwards. After the sample solution was shaken well and standing for a while, the supernatant was withdrawn and filtered through a 0.22 µm polytetrafluoroethylene (PTEE) filter.

163 2.6. HPLC Chromatographic conditions

HPLC analysis was performed on a Dionex Ultimate 3000 series HPLC system, equipped with
vacuum degasser, dual gradient pump, autosampler, ultraviolet detector, and Corona Ultra charged
aerosol detector (Munich, Bavaria, Germany). A Waters HSS C18 column (25 cm×4.6 mm, i.d.,
3.5 µm, Ireland) was used for chromatographic separation at 30 °C. The separation was achieved
using a binary gradient elution system consisted of water and acetonitrile (ACN) as mobile phases.
The gradient program was as follows: 0-31 min (20.5% ACN), 31-32 min (20.5%→30% ACN),

170	32-50.5 min (30%→35% ACN), 50.5-61 min (35%→50% ACN), 61-81 min (50%→90% ACN),
171	81-91 min (90% ACN). The flow rate was set at 1.0 mL/min and the sample injection volume was
172	$10\ \mu\text{L}.$ The sample elution was eluted to UV and CAD detector successively. UV detector
173	wavelength was set at 203 nm. CAD data collection frequency was 2 Hz, and nebulizer
174	temperature was 35 °C.
175	In order to keep the organic modifier content to be constant when the mobile phases reached
176	CAD detector, post column compensation of mobile phases was introduced. Since dual gradient
177	pumps of this HPLC system had a slight difference in the dead volume, the post column counter
178	gradient program for CAD detector was set for a 0.3min's delay, which was as follows: 0-31.3
179	min (79.5% ACN), 31.3-32.3 min (79.5%→70% ACN), 32.3-50.8 min (70%→65% ACN),
180	50.8-61.3 min (65%→50% ACN), 61.3-81.3 min (50%→10% ACN), 81.3-91.0 min (10% ACN),
181	with the total flow rate of 1.0 mL/min.
182	2.7 Validation of HPLC method
183	2.7.1 Calibration curves
184	The stock reference solution was serially diluted by 70% methanol aqueous solution to
185	prepare 7 levels of calibration standard solutions for 22 saponins with authentic reference
186	standards available. For instance, the concentrations of ginsenoside R_1 in calibration standard
187	solutions were 0.0048, 0.120, 0.240, 0.480, 0.1201, 0.2402 and 0.3603 mg/mL (L1~L7),

respectively. In each level of calibration standard solution, IS maintained a constant concentration of 0.5 mg/mL. Each calibration standard solution was injected in triplicate. And the calibration curves were established by plotting the peak area ratio of each analyte versus IS against the

- 191 concentration of each analyte.
- 192 2.7.2 Limits of detection (LOD) and limits of quantification (LOQ)

193 LOD and LOQ of each analyte were calculated on the peak response at signal-to-noise (S/N)

194 of 3 and 10, respectively.

195 2.7.3 Accuracy

196The accuracy of this HPLC method was evaluated by the recovery test. For the preparation of197each recovery sample solution, 0.25 g of raw notoginseng powder (120 heads, Yunnan) was198transferred to a 20 mL volumetric flask. And then different quantities of individual stock reference

RSC Advances Accepted Manuscript

Faye o OI

solution were added in to prepare 3 spiked concentration levels. In each recovery sample solution,
IS concentration was maintained to be 0.5 mg/mL constantly. For each spiked level, recovery
sample solution was prepared in triplicate.

202 2.7.4. Precision

203 Precision of this method were evaluated by intra-day precision, injection precision, and 204 sample repeatability, respectively. The intra-day precisions were calculated based on the variations 205 of the accuracies in recovery tests. For the validation of injection precision, $10 \ \mu$ L of reference 206 standard solution was injected in triplicate, and the variations of the area ratios of each analyte 207 versus IS were calculated.

208 2.8. LC-MS conditions

209 LC-MS data were acquired on an Agilent 1290 Infinity UPLC coupled with Agilent 6538 210 UHD Accurate-Mass QTOF LC/MS system and an ESI source (Agilent Technologies, Santa Clara, 211 USA). The chromatographic conditions, including type of chromatographic column, column 212 temperature, gradient elution, flow rate and injection volume, were exactly the same as those of 213 HPLC-CAD system, except that the mobile phase A was 0.01% formic acid instead of water. A 214 post-column tee joint was used to split the flow rate, and the actual flow rate passed through ESI 215 source kept 0.2 mL/min constantly. The optimized mass parameters were as follows: electrospray 216 ion (ESI) source; gas temperature, 350 °C; drying gas (N₂), 10 L/min; nebulizing gas pressure, 40 217 psig; capillary voltage, 3500 V; capillary current, 0.032 µA; chamber current, 2.20 µA. ESI 218 negative and positive modes were performed on both MS and tandem MS in the m/z range of 219 100~1400. Besides, MS/MS analysis was achieved using collision energies of 10 V, 20 V, 30 V 220 and 40 V, respectively. Prior to mass data acquisition, the mass spectrometry was tuned and 221 optimized using Agilent ESI-L low concentration Tunning mix (lot: LB95102). The accurate mass 222 was measured to identify the structures of saponins in raw and processed notoginsengs using 223 Agilent MassHunter Workstation software (Version B.04.00).

224 2.9. Prediction of CAD response

In this article, 22 dammarane-type tetracyclic triterpenoid saponins or aglycons with authentic reference standards were utilized to set up the HPLC-CAD method. And these above 22 saponins have covered the scope of different structure features, including type of aglycon, optical

rotation at C-20, glycosyl substituent and glycosyl linkage, of the saponins basically existed in notoginsengs. In this experiment, the slope of calibration curve for each known saponin was regarded as the RF of its chromatographic peak. According to our results, the differences of CAD RFs of saponins with different structures were much smaller than UV RFs. The impact of structural features of PPD and PPT saponins on the CAD RFs has been investigated. Since the structures of all the saponins in notoginsengs have already been identified by LC-MS, the CAD RFs of saponins without authentic reference standards could then be predicted.

235 2.10. Validation of the prediction of CAD RFs

The prediction of CAD RFs was validated by some of the saponins with authentic reference standards. The differences between their CAD slopes obtained from the linear regressions and their predicted CAD RFs are calculated as: $\frac{ABS(\text{Pr edicted } CAD \ RF - CAD \ slope)}{CAD \ slope} \times 100\%.$

239 Ten PPT type saponing with authentic reference standards in this article were regarded as sample 240 saponins so that their CAD RFs were going to be assigned based on the rule of impact of their 241 structural features. Furthermore, another authentic reference standard of PPD type saponin, 242 namely gypenoside XVII, was chosen to perform the validation. The stock validation solution was 243 prepared using 70% methanol aqueous solution. A series of validation solutions were prepared by 244 diluting the stock validation solution for 6 concentration levels, and the concentrations were 245 between $0.0041 \sim 0.1220$ mg/mL. In each level of validation solutions, IS maintained a constant 246 concentration of 0.5 mg/mL. The validation solutions were then injected into HPLC under the 247 developed chromatographic condition. Then the CAD linear regression was set up by plotting the 248 peak area ratio versus IS against the concentration. The difference between CAD slope of linear 249 regression and the predicted RF value was calculated.

250 2.11. Saponin content determination of notoginseng

The saponin contents of real notoginseng samples were calculated using internal standard method based on the CAD peak area ratio versus IS for each analyte. For the saponins with authentic reference standard available, an internal standard curve method was applied based on their validated calibration curve equations. Nevertheless, for those saponins without reference standards available in this experiment, their CAD RFs were predicted based on the structures

RSC Advances Accepted Manuscript

256 identified by LC-MS. Thus, the content of each saponin was calculated using a simple internal

- 257 standard method according to the predicted CAD RFs.
- 258 3. Results and discussion
- 259 3.1 Optimisation of gradient elution program

260 Based on the polarities, the 22 saponins with authentic reference standards available in this 261 experiment can be divided into three groups: (1) high polarity saponins, including R_1 and Rg_1 ; (2) 262 medium polarity saponins, including Re, Rf, Rb₁, 20(S)-/20(R)-Rg₂, 20(S)-/20(R)-Rh₁, Rb₂, Rb₃, 263 F₁ and Rd; (3) low polarity saponins, including F₂, 20(S)-/20(R)-Rg₃, CK, 20(S)-/20(R)-Rh₂, 264 20(S)-PPT and 20(S)-/20(R)-PPD. Since there is one more hydroxyl group in PPT aglycon than in 265 PPD aglycon, the polarities of PPT type saponins are basically higher than those of PPD type 266 saponins, given the same number and type of glycosyl substituents. The most difficult part of 267 establishing this LC method is the separation of optical isomers, e.g., 20(S)-/20(R)-Rg₃ and 268 20(S)-/20(R)-Rh₂, and geometric isomers at C-20 position, e.g., RK₃/Rh₄, and RK₁/Rg₅, since 269 these isomers bear very similar polarities and close chemical properties. Gradient elution program 270 was set up, and the saponin peaks were successfully separated. In the sample chromatogram of 271 raw notoginsengs, the retention times of all the saponins were within 60 min, which indicated that 272 the saponins were of high and medium polarities. However, upon steaming for 3 hrs, low polar 273 saponins emerged in processed notoginseng. Furthermore, the content of low polar saponins 274 increased dramatically when notoginsengs were autoclaved at 120 $^{\circ}$ C for 18 hrs (Fig. 1).

275 3.2 Optimisation of post column compensation program of CAD detector

276 One of the distinguishing features of CAD detector is that different compounds theoretically 277 exhibit similar responses. However, the amount of organic modifier in the mobile phase 278 significantly influences the CAD response. It has been reported that with the increasing of organic 279 modifier from 0% to 100% in the mobile phase, the CAD response may increase dramatically from 5 to 10 times.²⁹ Unfortunately, the wide range of polarities of saponins in raw and processed 280 281 notoginsengs hinders the use of isocratic elution of mobile phase. Dual pump HPLC system has 282 been invented to overcome this restraint. A counter gradient program was designed for post 283 column compensation, and a constant quantity of organic modifier in mobile phase reached the 284 CAD detector at any time. Due to a slight difference in the dead volumes of the dual pump system,

a 0.3-minute time lag was considered in the post column counter gradient program.

286 The total content of ACN in mobile phase in post-column gradient elution was evaluated. It 287 has been found that if ACN content increased from 20% to 50%, the peak height and S/N ratio of 288 R1 increased by 40% and 100%, respectively. However, if ACN content further increased to 80%, 289 the peak height and S/N ratio of R_1 decreased dramatically by 200% and 400%, respectively. This 290 result indicated that a higher organic modifier content may not always bring better CAD responses 291 to analytes. Thus, the optimal post-column gradient program was established, where a constant 292 content of 50% ACN was eluted to CAD detector, and the baseline drifting caused by pre-column 293 gradient elution was effectively avoided.

294 3.3 Validation of HPLC-CAD method

295 Linearity, LOQ, accuracy, and precision were validated by this developed HPLC-CAD 296 method. The linearities and LOQs were also compared with those results simultaneously acquired 297 at UV 203nm. The correlation coefficients (r) of most of the saponins were above 0.999, and those 298 of the rest of the analytes were above 0.994, which basically met the requirements of 299 quantification determination. In comparison to CAD results, UV detector generally provided 300 higher correlation coefficients (>0.999). However, LOQs of CAD for most of the saponins were 301 obviously lower than those of UV detector, manifesting a higher sensitivity of CAD compared 302 with UV detector. The RSDs for injection precision were all below 2.6% (n=3) (Table 1). The 303 developed HPLC-CAD method proved to be accurate by the explanation of recoveries. Mean 304 recoveries of 3 spiked concentration levels for each analyte were ranged from 85.7%-112.9%, with 305 the RSDs within 6.8%, which could also be interpreted as intra-day precision. The method 306 validation results of recovery and intra-day precision for each saponin could be found in Table 1S. 307 These results demonstrated that the HPLC-CAD method was linear, sensitive, accurate and precise 308 for quantification of saponins in notoginseng sample. Although the linearity results of CAD 309 detector were inferior to those of UV detector, this proposed HPLC-CAD method was more 310 sensitive, and was a reliable method for the analysis of saponins in raw and processed 311 notoginseng.

Saponin	RT (min)	linearity range (mg/ml)	Calibration curve (CAD, n=7)	LOQ (CAD, ng)	Calibration curve (UV, n=7)	LOQ (UV, ng)	Injection precision (RSD, %, n=3)
R_1^a	20.6	0.0048~0.3603	Y=2.7382X+0.0047, r=0.9994	40.0	Y=0.3783X+0.0001,r=0.9995	80.1	0.52
Rg_1	29.7	0.0142~1.0669	Y=2.5478X+0.0803, r=0.996	118.5	Y=0.5167X-0.0031,r=0.9999	118.5	0.28
Re	31.6	0.0024~0.1790	Y=3.1448X-0.0031, r=0.9998	79.5	Y=0.3871X-0.0007,r=0.9996	79.5	0.68
Rf	43.9	0.00146~0.1096	Y=3.2941X+0.0015, r=0.9994	24.4	Y=0.5165X+0.0002,r=0.9994	24.4	0.20
Rb_1	47.0	0.0104~0.7793	Y=1.8034X+0.0567, r=0.994	86.6	Y=0.3362X-0.0011,r=1.0000	86.6	0.17
$20(S)-Rg_2$	48.7	0.00224~0.1681	Y=3.1435X+0.0071, r=0.998	18.7	Y=0.5569X-0.0001,r=0.9999	37.4	0.96
$20(S)-Rh_1$	49.0	0.00291~0.2181	Y=3.1826X+0.0082, r=0.999	24.2	Y=0.6615X-0.0005,r=0.9999	48.5	0.12
$20(R)-Rg_2$	49.9	0.00247~0.1850	Y=3.1004X+0.0016, r=0.9992	20.6	Y=0.5309X-0.0002,r=0.9998	41.1	0.26
$20(R)-Rh_1$	51.0	0.00256~0.1919	Y=3.1374X+0.0028, r=0.9992	21.3	Y=0.6424X-0.0005,r=0.9999	42.6	0.41
Rb ₂	51.7	0.00141~0.1056	Y=3.1191X-0.0050, r=0.9998	23.5	Y=0.3619X-0.0001,r=0.9998	23.5	0.90
Rb ₃	52.6	0.00284~0.3267	Y=3.0678X-0.0043, r=0.9997	25.0	Y=0.3517X-0.0002,r=0.9999	25.0	0.43
\mathbf{F}_1	54.9	0.00125~0.0934	Y=3.0166X-0.0034, r=0.9997	20.8	Y=0.5650X-0.0002,r=0.9999	83.0	0.12
R _d	56.5	0.00238~0.1787	Y=2.6787X+0.0044, r=0.998	19.9	Y=0.4191X-0.0003,r=1.0000	39.7	0.22
F_2	63.6	0.00158~0.1188	Y=2.9717X+0.0014, r=0.999	13.2	Y=0.5272X-0.0003,r=1.0000	26.4	0.45
$20(S)-Rg_3$	66.5	0.00082~0.0616	Y=3.5249X-0.0012, r=0.9995	13.7	Y=0.5836X-0.0001,r=1.0000	13.7	0.37
$20(R)-Rg_3$	67.1	0.00057~0.0426	Y=3.4383X-0.0026, r=0.995	9.5	Y=0.5329X+0.0001,r=0.9991	9.5	0.56
20(S)-PPT	69.2	0.00164~0.1230	Y=3.2837X+0.0032, r=0.999	13.7	Y=0.9282X-0.0005,r=0.9999	54.7	0.30
CK	72.8	0.00101~0.0757	Y=2.9136X-0.0030, r=0.9997	33.6	Y=0.5789X-0.0000,r=0.999	33.6	0.75
$20(S)-Rh_2$	74.3	0.00078~0.0581	Y=3.9694X-0.0028, r=0.9998	12.9	Y=0.7483X-0.0003,r=1.0000	25.8	1.05
$20(R)-Rh_2$	74.6	0.00049~0.0364	Y=4.0073X-0.0036, r=0.9992	8.1	Y=0.6942X+0.0002,r=1.0000	16.2	0.24
20(S)-PPD	86.0	0.00111~0.0831	Y=3.6304X-0.0017, r=0.9996	18.5	Y=0.8634X-0.0005,r=0.9999	36.9	0.26
20(R)-PPD	86.6	0.00066~0.0492	Y=3.6493X-0.0032, r=0.9996	10.9	Y=0.8227X-0.0002,r=0.9999	21.9	2.57

a. More data could be found in the Supplementary material.

314

315

316 3.4 Structural identification of saponins in notoginsengs

317 LC-QTOFMS analysis both in ESI negative and positive mode was utilized for structural 318 identification of the saponins in notoginseng. For those saponins with authentic reference 319 standards available in this experiment, their retention times of chromatographic peaks were further 320 confirmed. The addition of 0.01% formic acid in mobile phase A which facilitated the ionization 321 of saponins would not affect the retention times of TIC chromatographic peaks, and the retention 322 time differences were less than 0.7% for the all saponins with authentic reference standards. 323 Results suggested that ESI negative mode provided stronger mass spectrometric signals for PPD 324 and PPT type saponins under this chromatographic condition. Most of the saponins existed in 325 notoginseng could acquire [M-H]⁻ and/or [M+HCOO]⁻ under ESI negative mode, which provided 326 explicit information on molecular weights of those undetermined saponins. Moreover, mass peaks 327 of m/z 459 and m/z 475, which represent the ion fragments of [PPD-H]⁻ and [PPT-H]⁻, 328 respectively, always appeared in MS spectrograms in ESI negative mode for PPD and PPT type 329 saponins.

330 The glycosyl substitutents in notoginseng mainly include glucose (GLC), xylose (Xyl), 331 arabinose (Ara), rhamnose (Rha), and mannose (Man), etc. For instance, two most characteristic 332 ion peaks for Glc in ESI negative mode are m/z 161, i.e., [(Glc-H₂O)-H]⁻, and m/z 101, which 333 represents the fragment as a result of a neutral loss of $C_2H_4O_2$ group from m/z 161. Furthermore, 334 the structure transformation of saponins based on collision-induced dissociation provides detailed 335 information on the identification of glycosyl substitutents. For example, if there is a loss of 336 m/z162, it usually indicates the loss of a Glc-H₂O fragment. Nevertheless, the loss of m/z146, 132 337 and 324 practically suggest the loss of Rha-H₂O, Xyl-H₂O or Ara-H₂O, and Glc-Glc-2H₂O 338 fragment, respectively.

Moreover, ESI positive mode was also a good means for the identification of $[M+H]^+$ and [M+Na]⁺ for those saponins with fairly weak molecular ion peaks in ESI negative mode. Besides, some mass spectrometric fragments collected in ESI positive mode provided essential clues for the structural confirmation of saponin agylcons. For instance, the existing of a series of fragments including m/z 443, 425 and 407 practically indicate the ion fragments of [PPD-H₂O+H]⁺, [PPD-2H₂O+H]⁺ and [PPD-3H₂O+H]⁺, respectively. However, the occurrence of the series of m/z

345 441, 423 and 405 imply the ion fragments of $[PPT-2H_2O+H]^+$, $[PPT-3H_2O+H]^+$ and 346 $[PPT-3H_2O+H]^+$, respectively.

347 Raw and processed notoginseng sample solutions were analyzed by LC-ESI-QTOFMS. At an 348 analytical level, a total of 16 saponins were identified in raw notoginseng, and 25 more saponins 349 were found in processed samples. The structures of the saponins in raw and processed P. 350 notoginseng are given in Fig. 2, and the observed precursor and product ions of saponins are listed 351 in Table 2a and 2b. What should be mentioned is that different medicinal part, including main root, 352 branch root, rhizome and root hair, of notoginseng did not show difference in the saponin 353 components. The differences of saponin molecular weights obtained by MassHunter software and 354 the results inferred from molecular formulas were all below 4ppm. The structure skeletons of the 355 saponins in notoginseng included PPD, PPT, C-20 dehydrated PPD, C-20 dehydrated PPT, 25-OH 356 PPD, and 25-OH PPT. If the saponins are classified by the aglycons, 16 PPD type saponins were 357 found, where 5 original saponins in raw samples and 11 more secondary saponins in processed 358 samples were identified. Nevertheless, 25 PPT type saponins were discovered, in which 11 359 original saponins and 24 secondary saponins were figured out.

No.	Peak Identification	R _t (min)	Theoretical accurate mass (m/z)	Experimental (m/z) (ESI-) or (ESI+)	Mass accuracy (ppm)	CID (m/z)
1	20-O-Glucoginsenoside $R_{\rm f}$	9.0	961.5378[M-H] ⁻	961.5372[M-H] ⁻	0.62	$637.4300[M-H-2(Glc-H_2O)]^{,}475.3781[M-H-3(Glc-H_2O)]^{,}$ 323.1008[(Glc-Glc)-2H ₂ O-H]^{, 161.0459[(Glc-H ₂ O)-H]^{,} 101.0243[(Glc-H_2O)-H-C ₂ H ₄ O ₂]^{-}
						$\begin{array}{l} 441.3726 [PPT-2H_2O+H]^+, \ 423.3621 [PPT-3H_2O+H]^+, \\ 405.3516 [PPT-4H_2O+H]^+ \end{array}$
2	Notoginsenoside R ₃	15.3	961.5378[M-H] ⁻	961.5372[M-H] ⁻	0.62	799.4883[M-H-(Glc-H ₂ O)] ⁻ , 637.4343[M-H-2(Glc-H ₂ O)] ⁻ , 475.3793[M-H-3(Glc-H ₂ O)] ⁻ , 161.0453[(Glc- H ₂ O)-H] ⁻ , 101.0241[(Glc-H ₂ O)-H-C ₂ H ₄ O ₂] ⁻
						$\begin{array}{l} 441.3726 [PPT-2H_2O+H]^+, 423.3622 [PPT-3H_2O+H]^+, \\ 405.3516 [PPT-4H_2O+H]^+ \end{array}$
3	Notoginsenoside R ₁ *	18.0	931.5272[M-H] ⁻	931.5270[M-H] ⁻	0.21	799.4885[M-H-(Xyl-H ₂ O)] ⁻ , 637.4349[M-H-(Xyl-H ₂ O)-(Glc-H ₂ O)] ⁻ , 475.3835[M-H-(Xyl-H ₂ O)-2(Glc-H ₂ O)] ⁻ , 161.0466[(Glc-H ₂ O)-H] ⁻ , 101.0253[(Glc-H ₂ O)-H-C ₂ H ₄ O ₂] ⁻
4	Ginsenoside Rg ₁ *	25.6	845.4904[M+HCOO] ⁻	845.4913[M+HCOO] ⁻	1.06	799.4874[M-H] ⁻ , 637.4352[M-H-(Glc-H ₂ O)] ⁻ , 475.3816[M-H-2(Glc-H ₂ O)] ⁻ , 161.0455[(Glc-H ₂ O)-H] ⁻ , 101.0248[(Glc-H ₂ O)-H-C ₂ H ₄ O ₂] ⁻
5	Ginsenoside Re*	27.3	945.5428[M-H] ⁻	945.5426[M-H] ⁻	0.21	799.4885[M-H-(Rha-H ₂ O)] ⁻ , 783.4897[M-H-(Glc-H ₂ O)] ⁻ , 637.4327[M-H-(Rha-H ₂ O)-(Glc-H ₂ O)] ⁻ , 475.3811[M-H-(Rha-H ₂ O)-2(Glc-H ₂ O)] ⁻ , 101.0263[(Glc-H ₂ O)-H-C ₂ H ₄ O ₂] ⁻
6	Malonyl-ginsenoside Rg ₁	34.9	885.4853[M-H] ⁻	885.4855[M-H] ⁻	0.23	799.4822[M-H-Mal] ⁻ , 781.4746[M-H-Mal-H ₂ O] ⁻ , 679.4442[M-H-(Glc-H ₂ O)] ⁻ , 637.4328[M-H-Mal-(Glc-H ₂ O)] ⁻ , 475.3798[M-H-Mal-2(Glc-H2O)] ⁻ , 161.0451[(Glc-H ₂ O)-H] ⁻ , 101.0243[(Glc-H ₂ O)-H-C ₂ H ₄ O ₂] ⁻
						$\begin{array}{l} 441.3729 [\text{PPT-2H}_2\text{O}+\text{H}]^+, 423.3624 [\text{PPT-3H}_2\text{O}+\text{H}]^+, \\ 405.3517 [\text{PPT-4H}_2\text{O}+\text{H}]^+ \end{array}$

360 **Table 2a.** Precursor and product ions of saponins in raw notoginsengs using LC-QTOFMS

7	Yesanchinoside D	37.1	887.5010[M+HCOO] ⁻	887.5012[M+HCOO] ⁻	0.23	841.4956[M-H] ⁻ , 799.4872[M-H-COCH ₂] ⁻ , 781.4737[M-H-COCH ₂ -H ₂ O] ⁻ , 637.4217[M-H-COCH ₂ -(Glc-H ₂ O)] ⁻ , 619.4226[M-H-COCH ₂ -(Glc-H ₂ O)-H ₂ O] ⁻ , 475.3801[M-H-COCH ₂ -2(Glc-H ₂ O)] ⁻ , 161.0453[(Glc-H ₂ O)-H] ⁻ , 101.0246[(Glc-H ₂ O)-H-C ₂ H ₄ O ₂] ⁻
						$\begin{array}{l} 441.3727 [PPT-2H_2O+H]^+, \ 423.3622 [PPT-3H_2O+H]^+, \\ 405.3517 [PPT-4H_2O+H]^+ \end{array}$
8	Notoginsenoside R ₄	41.2	1239.6379[M-H] ⁻	1239.6373[M-H] ⁻	0.48	1107.5932[M-H-(Xyl-H ₂ O)] ⁻ , 1077.5821[M-H-(Glc-H ₂ O)] ⁻ , 945.5419[M-H-(Xyl-H ₂ O)-(Glc-H ₂ O)] ⁻ , 783.4915[M-H-(Xyl-H ₂ O)-2(Glc-H ₂ O)] ⁻ , 621.4379[M-H-(Xyl-H ₂ O)-3(Glc-H ₂ O)] ⁻
						443.3885[PPD-H ₂ O+H] ⁺ , 425.3777[PPD-2H ₂ O+H] ⁺ , 407.3674[PPD-3H ₂ O+H] ⁺ , 325.1128[(Glc-Glc)-2H ₂ O+H] ⁻
9	Notoginsenoside Fa	43.1	1239.6379[M-H] ⁻	1239.6372[M-H] ⁻	0.56	$\label{eq:hardware} \begin{array}{l} 1107.5947 [M-H-(Xyl-H_2O)]^{\circ}, 945.5433 [M-H-(Xyl-H_2O)-(Glc-H_2O)]^{\circ}, \\ 783.4858 [M-H-(Xyl-H_2O)-2(Glc-H_2O)]^{\circ}, \\ 621.4373 [M-H-(Xyl-H_2O)-3(Glc-H_2O)]^{\circ}, 161.0452 [(Glc-H_2O)-H]^{\circ}, \\ 101.0241 [(Glc-H_2O)-H-C_2H_4O_2]^{\circ} \end{array}$
						443.3886[PPD-H ₂ O+H] ⁺ , 425.3779[PPD-2H ₂ O+H] ⁺ , 407.3674[PPD-3H ₂ O+H] ⁺ , 325.1129[(Glc-Glc)+H-2H ₂ O] ⁺
10	20(S)-Notoginsenoside R_2	45.0	769.4744[M-H] ⁻	769.4748[M-H] ⁻	0.52	637.4339[M-H-(Xyl-H ₂ O)] ⁻ 475.3789[M-H-(Xyl-H ₂ O)-(Glc-H ₂ O)] ⁻ , 161.0449[(Glc- H ₂ O)-H] ⁻ , 101.0244[(Glc-H ₂ O)-H-C ₂ H ₄ O ₂] ⁻
						$\begin{array}{l} 459.3834 [PPT-H_2O+H]^+, \ 441.3728 [PPT-2H_2O+H]^+, \\ 423.3625 [PPT-3H_2O+H]^+, \ 405.3517 [PPT-4H_2O+H]^+ \end{array}$
11	Ginsenoside Rb ₁ *	45.8	1107.5957[M-H] ⁻	1107.5960[M-H] ⁻	0.27	945.5443[M-H-(Glc-H ₂ O)] ⁻ , 927.5267[M-H-(Glc-H ₂ O)-H ₂ O] ⁻ , 783.4933[M-H-2(Glc-H ₂ O)] ⁻ , 765.4803[M-H-2(Glc-H ₂ O)-H ₂ O] ⁻ , 621.4370[M-H-3(Glc-H ₂ O)] ⁻ , 459.3871[M-H-4(Glc-H ₂ O)] ⁻ , 423.4257[M-H-4(Glc-H ₂ O)-2H ₂ O] ⁻ , 323.1072 [(Glc-Glc)-2H ₂ O-H] ⁻

12	20(S)-Ginsenoside Rg ₂ *	47.5	829.4955 [M-HCOO] ⁻	829.4962 [M-HCOO] ⁻	0.84	783.4931[M-H] ⁻ , 637.4324[M-H-(Rha-H ₂ O)] ⁻ , 475.3810[M-H-(Rha-H ₂ O)-(Glc-H ₂ O)] ⁻ , 161.0451[(Glc-H ₂ O)-H] ⁻ , 101.0245[(Glc-H ₂ O)-H-C ₂ H ₄ O ₂] ⁻
13	20(S)-Ginsenoside Rh ₁ *	47.9	683.4376[M+HCOO] ⁻	683.4387[M+HCOO] ⁻	1.61	$\begin{array}{l} 637.4359 [M-H]^{\text{-}}, 475.3820 [M-H-(Glc-H_2O)]^{\text{-}}, 161.0450 [(Glc-H_2O)-H]^{\text{-}}, \\ 101.0250 [(Glc-H_2O)-H-C_2H_4O_2]^{\text{-}} \end{array}$
14	Ginsenoside F ₁ *	53.6	683.4376[M+HCOO] ⁻	683.4385[M+HCOO]	1.31	$637.4334[M-H]^{-}, 475.3790[M-H-(Glc-H_2O)]^{-}, 161.0442[Glc-H_2O-H]^{-}, 101.0250[(Glc-H_2O)-H-C_2H_4O_2]^{-}$
			661.4266[M+Na] ⁺	661.4290[M+Na] ⁺	3.63	$\begin{array}{l} 459.3834 [PPT-H_{2}O+H]^{+}, \ 441.3728 [PPT-2H_{2}O+H]^{+}, \\ 423.3623 [PPT-3H_{2}O+H]^{+}, \ 405.3517 [PPT-4H_{2}O+H]^{+} \end{array}$
15	Ginsenoside Rd*	55.4	945.5428[M-H] ⁻	945.5430 [M-H] ⁻	0.21	783.4950[M-H-(Glc-H ₂ O)] ⁻ , 621.4379[M-H-2(Glc-H ₂ O)] ⁻ , 161.0464[(Glc-H ₂ O)-H] ⁻ , 101.0247[(Glc-H ₂ O)-H-C ₂ H ₄ O ₂] ⁻
						$\begin{array}{l} 443.3855 [PPD-H_2O+H]^+, 425.3784 [PPD-2H_2O+H]^+, \\ 407.3677 [PPD-3H_2O+H]^+, 325.1129 [(Glc-Glc)+H-2H_2O]^+ \end{array}$
16	Gypenoside-XVII	57.4	945.5428[M-H] ⁻	945.5426[M-H] ⁻	0.21	$\begin{array}{l} 621.4857[M-H-2(Glc-H_2O)]^{-}, 475.8270[M-H-3(Glc-H_2O)]^{-},\\ 323.0988[(Glc-Glc)-2H_2O]^{-}, 161.0456[(Glc-H_2O)-H]^{-},\\ 101.0242[(Glc-H_2O)-H-C_2H_4O_2]^{-} \end{array}$
						$\begin{array}{l} 443.3887 [PPD-H_{2}O+H]^{+}, 425.3779 [PPD-2H_{2}O+H]^{+}, \\ 407.3674 [PPD-3H_{2}O+H]^{+}, 325.1128 [(Glc-Glc)+H-2H_{2}O]^{+} \end{array}$

361 * These compounds have been further confirmed by the peak retention time of authentic reference standard

362

RSC Advances Accepted Manuscript

363	Table 2b. Precursor and product ions of saponi	ns in processed notoginsengs us	ing LC-QTOFMS (Saponins	originally existed in raw r	notoginseng are not included in
-----	--	---------------------------------	-------------------------	-----------------------------	---------------------------------

this table)

No.	Peak Identification	R _t (min)	Theoretical accurate mass (m/z)	Experimental (m/z) (ESI-) or (ESI+)	Mass accuracy (ppm)	CID (m/z)
17	20(S)-25-OH Ginsenoside Rh ₁	11.8	701.4482 [M-HCOO] ⁻	701.4490[M-HCOO] ⁻	1.14	655.4433[M-H] ⁻ , 493.3905[M-H-(Glc-H ₂ O)] ⁻ , 161.0454[(Glc-H ₂ O)-H] ⁻ , 101.0245[(Glc-H ₂ O)-H-C ₂ H ₄ O ₂] ⁻
						$\begin{array}{l} 639.4479 [M+H-H_2O]^+, 477.3942 [M+H-H_2O-(Glc-H_2O)]^+, \\ 459.3841 [PPT-H_2O+H]^+, 441.3730 [PPT-2H_2O+H]^+, \\ 423.3623 [PPT-3H_2O+H]^+, 405.3518 [PPT-4H_2O+H]^+ \end{array}$
18	20(R)-25-OH Ginsenoside Rh ₁	15.0	701.4482[M-HCOO] ⁻	701.4492[M-HCOO] ⁻	1.43	655.4427[M-H] ⁻ , 493.3907 [M-H-(Glc-H ₂ O)] ⁻ , 161.0453[(Glc-H ₂ O)-H] ⁻ , 101.0246[(Glc-H ₂ O)-H-C ₂ H ₄ O ₂] ⁻
						$\begin{array}{l} 639.4481[M+H-H_2O]^+, 477.3942[M+H-H_2O-(Glc-H_2O)]]^+, \\ 441.3730\ [PPT-2H_2O+H]^+, 423.3623[PPT-3H_2O+H]^+, \\ 405.3521[PPT-4H_2O+H]^+ \end{array}$
19	20(S)-Rh ₁ (Man as glycosyl substituent)	39.4	683.4376[M-HCOO] ⁻	683.4385[M-HCOO] ⁻	1.32	637.4332[M-H] ⁻ , 475.3811[M-H- (Man-H ₂ O)] ⁻ , 161.0455[Man-H] ⁻ , 101.0242[Man-H-C ₂ H ₄ O ₂] ⁻
20	20(R)-Rh ₁ (Man as glycosyl substituent)	40.5	683.4376 [M-HCOO] ⁻	683.4384[M-HCOO] ⁻	1.17	637.4333 [M-H] ⁻ , 475.3771 [M-H- (Man-H ₂ O)] ⁻ , 161.0447[Man-H] ⁻ , 101.0235[Man-H-C ₂ H ₄ O ₂] ⁻
21	20(R)-Ginsenoside Rg_2^*	48.4	829.4955 [M-HCOO] ⁻	829.4953[M-HCOO] ⁻	0.24	783.4926 [M-H] ⁻ , 637.4548[M-H-(Rha-H ₂ O)] ⁻ , 161.0444[Man-H] ⁻
						$\begin{array}{l} 807.4870[M+Na]^{+}, 639.4472[M+H-(Rha-H_2O)]^{+}, \\ 477.3940[M+H-(Rha-H_2O)-(Glc-H_2O)]^{+}, 441.3729[PPT-2H_2O+H]^{+}, \\ 423.3626\ [PPT-3H_2O+H]^{+}, 405.3519[PPT-4H_2O+H]^{+} \end{array}$
22	20(R)-Ginsenoside Rh ₁ *	49.5	683.4376[M-HCOO] ⁻	683.4386M-HCOO] ⁻	1.346	637.4361 [M-H] ⁻ , 475.3836[M-H-(Glc-H ₂ O)] ⁻ , 161.0456[(Glc-H ₂ O)-H] ⁻ , 101.0248[(Glc-H ₂ O)-H-C ₂ H ₄ O ₂] ⁻
						$\begin{array}{l} 661.4294 [M+Na]^{+}, 621.4369 [M+H-H_2O]^{+}, 603.4265 [M+H-2H_2O]^{+}, \\ 459.3834 [M+H-H_2O-(Glc-H_2O)]^{+}, 441.3731 [PPT-2H_2O+H]^{+}, \\ 423.3629 \ [PPT-3H_2O+H]^{+}, 405.3519 [PPT-4H_2O+H]^{+} \end{array}$

23	25-OH Ginsenoside Rg ₃	50.9	801.5006[M-H] ⁻	801.5008[M-H] ⁻	0.25	$639.4473[M-H-(Glc-H_2O)]^{,} 477.3960[M-H-2(Glc-H_2O)]^{,} 101.0245[(Glc-H_2O)-H-C_2H_4O_2]^{-}$
						$\begin{array}{l} 785.5064[M+H-H_2O]^+,\ 767.4949[M+H-2H_2O]^+,\\ 749.4846[M+H-3H_2O]^+,\ 623.4524[M+H-H_2O-(Glc-H_2O)]^+,\\ 461.3992[M+H-H_2O-2(Glc-H_2O)]^+,\ 443.3884[PPD+H-H_2O]^+,\\ 425.3780[PPD+H-2H_2O]^+,\ 407.3674[PPD+H-3H_2O]^+,\\ 325.1987[Glc-Glc-2H_2O+H]^+ \end{array}$
24	Gypenoside LXXV	60.5	783.4900[M-H] ⁻	783.4904[M-H] ⁻	0.51	$621.4378[M-H-(Glc-H_2O)]^{-}, 459.3802[M-H-2(Glc-H_2O)]^{-},$
			785.5046[M+H] ⁺	785.5063[M+H] ⁺	2.16	$101.0431[(01c-n_20)-n_1, 101.0240[(01c-n_20)-n-c_2n_40_2]$
						$\begin{array}{l} 623.4525[M+H-(Glc-H_2O)]^+, \ 461.3991[M+H-2(Glc-H_2O)]^+, \\ 443.3877[PPD+H-H_2O]^+, \ 425.3775[PPD+H-2H_2O]^+, \\ 407.3674[PPD+H-3H_2O]^+, \ 325.1136[(Glc-Glc)-2H_2O+H]^+ \end{array}$
25	Gypenoside LXXV isomer	61.2	783.4900[M-H] ⁻	783.4902[M-H] ⁻	0.26	621.4403 [M-H-(Glc-H ₂ O)] ⁻ , 161.0441[(Glc-H ₂ O)-H] ⁻ , 101.0252[(Glc-H ₂ O)-H-C ₂ H ₄ O ₂] ⁻
			785.5046[M+H] ⁺	$785.5057[M+H]^+$	1.40	
						623.4523[M+H-(Glc-H ₂ O)] ⁺ , 461.3986[M+H-2(Glc-H ₂ O)] ⁺ , 443.3875[PPD+H-H ₂ O] ⁺ , 425.3775 [PPD+H-2H ₂ O] ⁺ , 407.3673[PPD+H-3H ₂ O] ⁺ , 325.1132[(Glc-Glc)-2H ₂ O+H] ⁺
26	Notoginsenoside T_5	61.5	751.4638[M-H] ⁻	751.4641[M-H] ⁻	0.40	619.4225[M-H-(Xyl-H ₂ O)] ⁻ , 457.3687[M-H-(Xyl-H ₂ O)-(Glc-H ₂ O)] ⁻ , 161.0452[(Glc-H ₂ O)-H] ⁻ , 101.0247[(Glc- H ₂ O)-H-C ₂ H ₄ O ₂] ⁻
27	Notoginsenoside U	62.2	799.4849 [M-H] ⁻	799.4820[M-H] ⁻	3.63	
			801.4995[M+H] ⁺	$801.4994[M+H]^+$	0.12	477.3940[M+H-2(Glc-H ₂ O)] ⁺ , 459.3833[PPT-H ₂ O+H] ⁺ , 441.3730[PPT-2H ₂ O+H] ⁺
28	Notoginsenoside T ₅ isomer	62.4	751.4638[M-H] ⁻	751.4642[M-H] ⁻	0.53	$619.4218[M-H-(Xyl-H_2O)]^{-}, 161.0463[(Glc-H_2O)-H]^{-}$
						$\begin{array}{l} 441.3728 [PPT-2H_2O+H]^+, 423.3624 [PPT-3H_2O+H]^+, \\ 405.3514 [PPT-4H_2O+H]^+ \end{array}$
29	Ginsenoside F ₄	62.8	765.4795[M-H] ⁻	765.4797[M-H] ⁻	0.26	619.4268[M-H-(Rha-H ₂ O)] ⁻ , 161.0460[(Glc-H ₂ O)-H] ⁻ , 101.0246[(Glc-H-O)-H-C-H-O-) ⁻
			789.4759 [M+Na] ⁺	789.4765[M+Na] ⁺	0.86	
						$621.4333[M+H-(Rha-H_2O)]^{-}, 441.3728[PPT-2H_2O+H]^{+},$

						$423.3624[PPT-3H_2O+H]^+$, $405.3514[PPT-4H_2O+H]^+$
30	Ginsenoside RK ₃	63.4	665.4270[M+HCOO] ⁻	665.4280[M+HCOO] ⁻	1.50	619.4590[M-H] ⁻ , 457.3739[M-H-(Glc-H ₂ O)] ⁻ , 457.3739[PPT-H ₂ O] ⁻ ,
			621.4361[M+H] ⁺	621.4368[M+H] ⁺	1.13	$161.0452[(Gic-H_2O)-H], 101.0246[(Gic-H_2O)-H-C_2H_4O_2]$
						$\begin{array}{l} 603.4264[M+H-H_2O]^{*}, 441.3731[M+H-H_2O-(Glc-H_2O)]^{*}, \\ 441.3731[PPT-2H_2O+H]^{*}, 423.3629[PPT-3H_2O+H]^{*}, \\ 405.3521[PPT-4H_2O+H]^{*} \end{array}$
31	Ginsenoside Rh ₄	64.4	665.4270[M+HCOO] ⁻	665.4280[M+HCOO] ⁻	1.50	619.4200[M-H] ⁻ , 457.3702[M-H-(Glc-H ₂ O)] ⁻ , 457.3702[PPT-H ₂ O] ⁻ , 161.0452[Glc-H ₂ O-H] ⁻ , 101.0248[Glc-H ₂ O-H-C ₂ H ₄ O ₂] ⁻
			621.4361[M+H] ⁺	621.4365[M+H] ⁺	0.64	
						603.4263[M+H-H ₂ O] ⁺ , 441.3732[M+H-H ₂ O-(Gic-H ₂ O)] ⁺ , 441.3732[PPT-2H ₂ O+H] ⁺ , 423.3629[PPT-3H ₂ O+H] ⁺ , 405.3520[PPT-4H ₂ O+H] ⁺
32	20(S)-Ginsenoside Rg ₃ *	65.4	783.4900[M-H]-	783.4905[M-H]-	0.64	621.4385[M-H-(Glc-H2O)] ⁻ , 459.3867[M-H-2(Glc-H2O)] ⁻ ,
						$101.0248[(Glc-H_2O)-H-C_2H_4O_2]^-$
33	20(R)-Ginsenoside Rg ₃ *	65.9	783.4900[M-H]-	783.4904[M-H]-	0.51	621.4392[M-H-(Glc-H ₂ O)]-, 459.3870[M-H-2(Glc-H ₂ O)]-,
						$161.0449[(Glc-H_2O)-H]^{-}, 101.0248[(Glc-H_2O)-H-C_2H_4O_2]^{-}$
34	Unknown 1 [#]	68.1	975.7623[M+Na] ⁺	975.7642[M+Na] ⁺	1.95	953.7817 $[M+H]^+$, 499.3755 $[M+H-PPT]^+$, 477.394 $[PPT+H-H_2O]^+$,
						$423.3629[PPT+H-3H_2O]^+, 405.3523[PPT+H-4H_2O]^+, 147.1167(Ph-1H_2O)^+, 147.1167(Ph-1H$
						$147.110/[(Kna-n_2O)+n]$
						805.9862[M-H-(Rha-H ₂ O)] ⁻ , 475.3794[PPT-H] ⁻
35	Unknown 2 [#]	68.5	975.7623[M+Na] ⁺	975.7639[M+Na] ⁺	1.64	$\begin{array}{l} 953.7817 \ [\text{M}+\text{H}]^{+}, 499.3764 [\text{M}+\text{H}-\text{PPT}]^{+}, 459.3840 [\text{PPT}+\text{H}-\text{H}_2\text{O}]^{+}, \\ 441.3736 [\text{PPT}+\text{H}-2\text{H}_2\text{O}]^{+}, 423.3628 [\text{PPT}+\text{H}-3\text{H}_2\text{O}]^{+}, \\ 405.3520 [\text{PPT}+\text{H}-4\text{H}_2\text{O}]^{+}, 147.1167 [(\text{Rha}-\text{H}_2\text{O})+\text{H}]^{+} \end{array}$
						805.9878[M-H-(Rha-H ₂ O)] ⁻ , 475.3808[PPT-H] ⁻

36	Ginsenoside RK ₁	71.4	765.4795[M-H] ⁻	765.4801[M-H] ⁻	0.78	$603.4288[M-H-(Glc-H_2O)]^{-}, 161.04534[(Glc-H_2O)-H]^{-}, 101.0246[(Glc-H_2O)-H-C_2H_4O_2]^{-}$
						$\begin{array}{l} 789.4770[M+Na]^{+}, 767.4950[M+H]^{+}, 605.4417[M+H-(Glc-H_2O)]^{+}, \\ 587.4312[M+H-(Glc-H_2O)-H_2O]^{+}, 477.3947[PPT+H]^{+}, \\ 459.3835[PPT+H-H_2O]^{+}, 443.3887[M+H-2(Glc-H_2O)]^{+}, \\ 443.3887[PPD+H-H_2O]^{+}, 425.3784[PPD+H-2H_2O]^{+}, \\ 407.3677[PPD+H-3H_2O]^{+}, 325.1131[2(Glc-H_2O)+H]^{+} \\ \end{array}$
37	Ginsenoside Rg ₅	71.9	765.4795[M-H] ⁻	765.4803[M-H] ⁻	1.05	603.4277[M-H-(Glc-H2O)]-, 323.0994[(Glc-Glc)-2H2O+H]+, 161.0454[(Glc-H2O)-H]-, 101.0245[(Glc-H2O)-H-C2H4O2]-
						789.4770[M+Na]+, 767.4950[M+H]+, 605.4416[M+H-(Glc-H2O)]+, 587.4315[M+H-(Glc-H2O)-H2O]+, 477.3947[PPT+H]+, 459.3836[PPT+H-H2O]+, 443.3886[M+H-2(Glc-H2O)]+, 443.3886[PPD+H-H2O]+, 425.3784[PPD+H-2H2O]+, 407.3678[PPD+H-3H2O]+, 325.1131[(Glc-Glc)-2H2O)+H]+
38	20(S)-Ginsenoside Rh ₂ *	73.2	667.4427[M-HCOO] ⁻	667.4438[M-HCOO] ⁻	1.65	621.4388[M-H] ⁻ , 459.3904[M-H-(Glc-H ₂ O)] ⁻ , 161.0458[(Glc-H ₂ O)-H] ⁻ , 101.0241[(Glc-H ₂ O)-H-C ₂ H ₄ O ₂] ⁻
39	20(R)-Ginsenoside Rh ₂ *	73.6	667.4427[M-HCOO] ⁻	667.4439[M-HCOO] ⁻	1.80	621.4385[M-H]-, 459.3869[M-H-(Glc-H ₂ O)] ⁻ , 161.0459[(Glc-H ₂ O)-H] ⁻ , 101.0242[(Glc-H ₂ O)-H-C ₂ H ₄ O ₂] ⁻
40	Ginsenoside RK ₂	80.0	649.4321[M-HCOO] ⁻	649.4331[M-HCOO] ⁻	1.54	603.4266[M-H] ⁻ , 161.0457[(Glc-H ₂ O)-H] ⁻
			605.4412[M+H]+	605.4392[M+H] ⁺	3.30	443.3892[M+H-(Glc-H ₂ O)] ⁺ , 443.3892[PPD+H-H ₂ O] ⁺ , 425.3787[PPD+H-2H ₂ O] ⁺ , 407.3682[PPD+H-3H ₂ O] ⁺
41	Ginsenoside Rh ₃	80.6	649.4321[M-HCOO] ⁻	649.4329[M-HCOO] ⁻	1.23	603.4292[M-H] ⁻ , 161.0457[(Glc-H ₂ O)-H] ⁻ , 101.0239[(Glc-H-O)-H-C-H-O.] ⁻
			605.4412[M+H] ⁺	605.4412[M+H] ⁺	0.00	443.3888[M+H-(Glc-H ₂ O)] ⁺ , 443.3888[PPD+H-H ₂ O] ⁺ , 425.3785[PPD+H-2H ₂ O] ⁺ , 407.3681[PPD+H-3H ₂ O] ⁺

365 # The peaks at retention times of 68.1min and 68.5min are a pair of PPT type saponin isomers, with a –Rha glycosyl substitute in their structures.

366

During the processing of notoginseng, the two most common routes to produce secondary saponins were (1) deglycosylation and (2) dyhydration at C-20 of their aglycons. For example, the deglycosylation of one -Glc at C-20 of ginsenoside Rd forms Rg₃, and the loss of one -Glc at C-3 of Rg₃ produces Rh₂. Moreover, notoginsenoside T₅, ginsenoside F₄, Rk₃/Rh₄, RK₁/Rg₅, and Rk₂/Rh₃ are the C-20 dehydrated products of notoginsenoside R₂, 20(S)-ginsenoside Rg₂, 20(S)/(R)-Rh₁, 20(S)/(R)-Rg₃ and 20(S)/(R)-Rh₂, respectively.

373 3.5. Impact of structural features on CAD responses of PPD and PPT ginsenosides

374 Since the intercept value in linearity test was far smaller than the corresponding slope value 375 for both CAD (<3%) and UV (<0.6%) detector, the slope could be regarded as the RF for each 376 analyte. In virtue to its feature of being a universal detector where the RF value is theoretically 377 independent of the analyte's chemical structure, CAD presented far smaller RF differences than 378 UV detector. However, there was still little variation of the CAD RFs of each saponin in the 379 process of nebulization in CAD detector, leading to a narrow range of CAD RFs. Based on the 380 difference of CAD RFs of authentic reference standards, the rules of CAD response over structural 381 features of PPD and PPT ginsenosides were discovered. Nevertheless, UV RFs were not found to 382 have relevance to saponin structures.

383 It was found that the optical rotations at C-20 had no influence on CAD responses (Table 384 2Sa). 20(S)-epimers of Rg₂, Rh₁, Rg₃, Rh₂ and PPD all exhibited very little variation ($\leq 2.3\%$) on 385 CAD RFs compared with their corresponding 20(R)-epimers. Data also showed that CAD RFs of 386 PPD saponins were generally higher (6%-26%) than those of PPT saponins (Table 2Sb). The 387 glycosyl substituent at C-3 position of PPD saponins had little impact on CAD RFs (Table2Sc). 388 For example, 20(S)-PPD, 20(S)-Rh₂ and 20(S)-Rg₃ all bear -H at C-20, and the substituents at C-3 389 are -H, -Glc, and -Glc-Glc, respectively. The variations of CAD RFs of these above three saponins 390 were below 15%. If these variations are ignored, the CAD RFs of all PPD saponins with the same 391 C-20 substituent while different C-3 substituents could be considered as a constant value.

The glycosyl substituent at C-6 position of PPT saponins had a little influence on CAD RFs (Table 2Sd). For example, when -H is fixed at C-20, the variations of CAD RFs of 20(S)-PPT, Rh1, Rf, and Rg₂, which bears -H, -Glc, -Glc-Glc and -Glc-Rha at C-6, respectively, were within 5%. However, if -Glc is fixed at C-20, cases were complicated. When C-6 substituent changed

from -H to -Glc, CAD RF decreased by 18%. When C-6 substituent changed from -Glc to -Glc-Xyl, i.e., one more five-carbon sugar was added, CAD RF increased by 7%. When C-6 substituent changed from -Glc to -Glc-Rha, i.e., one more six-carbon sugar was added, CAD RF increased by 23%.

For PPT saponins, once the C-6 substituent was fixed, the change of C-20 substituent from -H to -Glc caused less than 25% of the variation of CAD RFs (Table 2Se). Nevertheless, different glycosyl substituents at C-20 caused relatively greater changes speaking of PPD saponins. It indicated that once C-3 substituent is fixed, the adding of one more six-carbon sugar, i.g. -Glc, caused the reduction of CAD from 25% to 49%. Furthermore, the addition of one more five-carbon sugar, i.g., -Xyl and -Ara, led to a 72% increase of CAD RFs (Table 2Sf).

406 3.6 Prediction of CAD RF values of saponins with known structure

407 Now that the impact of structural features of PPD and PPT saponins on their CAD RFs has 408 been discovered, the CAD RF values of those saponins without authentic reference standards 409 available could be predicted. The assigned RF values were further employed to determine the 410 overall saponin content in raw and processed notogingseng samples. To make things easier, PPT 411 saponins can be divided into two groups according to their CAD RF values: (1) high polar 412 saponins, including R_1 and R_{g_1} , with retention times prior to 30 min; (2) medium and low polar 413 saponins, including F₁, Rg₂, Rh₁, Re, Rf and PPT, with retention times from 30 min to 69 min. 414 CAD RFs in the former group were 2.55 and 2.74, with the variation less than 8%. Nevertheless, 415 CAD RFs in the latter group were ranging from 3.02 to 3.29, with the variation within 10%. This 416 classification made the CAD RF assignments easier when PPT saponins were concerned: if the 417 saponin was of high polarity (Rt<30min), CAD RF was assigned to be 2.64, i.e., the average value 418 of 2.55 and 2.74; if the polarity of the saponin was medium or low (Rt>30min), CAD RF was 419 assigned as 3.16, i.e., the average value of 3.02 and 3.29. Since C-20 dehydrated and 25-OH 420 hydrated PPD and PPT saponins all belong to secondary saponins which may only appear in 421 processed notoginsengs with quite low contents, their authentic reference standards were difficult 422 to obtain. The assignment rule of CAD RFs of these PPD/PPT saponin derivatives was regarded as 423 the same as regular PPD/PPT saponins. The prediction of CAD RF values of the saponins without 424 authentic reference standard in raw and processed notoginsengs is presented in Table 3a and 3b.

425	Table 3a. The retention times	, aglycons, glycosyl	substituents and the prediction	of CAD RF values of saponing	without authentic reference stand	dard in raw
-----	-------------------------------	----------------------	---------------------------------	------------------------------	-----------------------------------	-------------

426 notoginsengs

RT(min)	Saponin	Aglycon	C-3 substituent	C-6 substituent	C-20 substituent	Predicted CAD RF	Comments on the prediction of CAD RF
10	20- O -glucoginsenoside $R_{\rm f}$	PPT	-Н	-Glc ² - ¹ Glc	-Glc	2.64	High polar PPT type
17	Notoginsenoside R ₃	PPT	-Н	-Glc	-Glc ⁶ - ¹ Glc	2.64	ginsenoside
36.9	Malonyl-ginsenoside Rg ₁	PPT	-Н	-Glc ⁶ - ¹ Malony	-Glc	3.16	Medium/low polar PPT type
38.4	Yesanchinoside D	PPT	-H	- Glc ⁶ -Ac	-Glc	3.16	ginsenoside
42.3	Notoginsenoside R ₄	PPD	-Glc ² - ¹ Glc	/	-Glc ⁶ - ¹ Glc ⁶ - ¹ Xyl	2.07	a
44.2	Notoginsenoside Fa	PPD	-Glc ² - ¹ Glc ² - ¹ X yl	/	-Glc ⁶ - ¹ Glc	1.80	b
46.1	Notoginsenoside 20(S)-R ₂	PPT	-H	-Glc ⁶ - ¹ Glc	-H	3.16	Medium/low polar PPT type ginsenoside
58	Gypenoside XVII	PPD	-Glc	/	-Glc ⁶ - ¹ Glc	1.98	c

427 a. Notoginsenoside R4 has one more -Xyl at C-6 substituent compared with Rb1. Since the addition of one -Xyl to C-6 in PPD ginsenosides causes 15% increasing of

428 CAD RF, the CAD RF of R_4 was assigned as 2.07 (=1.80×115%).

b. Notoginsenoside Fa has one more -Xyl at C-3 substituent compared with Rb1. Sine the glycosyl substituent at C-3 position of PPD type ginsenosides had little impact

430 on CAD RF, the CAD RF of Fa was assigned as that of Rb₁.

431 c. Gypenoside-XVII has one more –Glc at C-20 substituent compared with F2. Since The change of –Glc to –Glc-Glc at C-20 in PPD ginsenosides causes 50% decreases

- 432 of CAD RF, the CAD RF of Gypenoside-XVII was assigned as 1.98(=2.97÷150%).
- 433 Table 3b. The retention times, aglycosyl substituents and the prediction of CAD RF values of saponins without authentic reference standard in processed
- 434 notoginsengs (saponins already listed in Table 3a are not included)

RT(min)	Saponin	Aglycon	C-3 substituent	C-6 substituent	C-20 substituent	Predicted CAD RF	Comments on the prediction of CAD RF	
13.3	25-OH-20(S)-Rh ₁	25-ОН РРТ	-H	-Glc	-H	2.64	high polar PDT gingenoside	
17.0	25-OH-20(R)-Rh ₁	25-ОН РРТ	-H	-Glc	-H	2.64	nign polar er i ginschoside	
40.3	20(S)-Rh ₁ isomer	РРТ	-H	-Mannose	-H	3.16	Medium/low polar PPT	
41.4	20(R)-Rh ₁ isomer	РРТ	-H	-Mannose	-H	3.16	ginsenoside	
52.3	25-OH Rg ₃	25-OH PPD	-Glc	/	-Glc	3.48	The average RF value of 20(S)-Rg ₃ and 20(R)-Rg ₃	
59.3	Gypenoside LXXV	PPD	-H	/	-Glc ⁶ - ¹ Glc	1.94		
61.5	Gypenoside LXXV isomer	PPD	-H	/	-Glc-Glc (linkage not sure)	1.94	a	
62.3	Notoginsenoside T ₅	C-20 dehydrated PPT	-H	-Glc ⁶ - ¹ Xyl	-H	3.16		
63.2	Nnotoginsenoside U	PPT	-H	-H	-Glc ⁶ - ¹ Glc	3.16	Medium/low polar PPT	
63.4	Notoginsenoside T ₅ isomer	C-20 dehydrated PPT	-H	-Glc ⁶ - ¹ Xyl	-H	3.16	ginsenoside	
63.9	Ginsenoside F ₄	C-20	- H	-Glc ⁶ - ¹ Rha	-H	3.16		

		dehydrated PPT					
64.5	Ginsenoside RK ₃	C-20 dehydrated PPT	-H	-Glc	-H	3.16	
65.4	Ginsenoside Rh ₄	C-20 dehydrated PPT	-H	-Glc	-H	3.16	
69.1	Unknown 1	PPT	-H	Unknown	Unknown	3.16	
69.5	Unknown 2	РРТ	-H	Unknown	Unknown	3.16	
72.4	GinsenosideRK ₁	C-20 dehydrated PPD C-20	-Glc ² - ¹ Glc	/	-H	3.48	The average RF value of $20(S)$ -Rg ₃ and $20(R)$ -Rg ₃ ^b
73.1	Ginsenoside Rg ₅	dehydrated PPD C-20	-Glc ² - ¹ Glc	/	-H	3.48	
81.0	Ginsenoside RK ₂	dehydrated PPD C-20	-Glc	/	-H	3.99	The average RF value of $20(S)$ -Rh ₂ and $20(R)$ -Rh ₂ ^c
81.5	Ginsenoside Rh ₃	dehydrated PPD	-Glc	/	-H	3.99	

435 a. Gypenoside LXXV has one more -Glc at C-20 substituent compared with CK. Since the change of -Glc to -Glc-Glc to C-20 in PPD ginsenosides causes 50% decreasing of CAD RF, the

436 CAD RF of Gypenoside LXXV was assigned as $1.94 (=2.91 \div 150\%)$.

437 b. Ginsenoside RK₁ and Rg₅ are C-20 dehydrated Rg₃

 $438 \qquad \ \ c. \ Ginsenoside \ RK_2 \ and \ Rh_3 \ are \ C-20 \ dehydrated \ Rh_2$

439 3.7 Validation results of the prediction of CAD RFs

440 The predicted CAD RFs values for notoginsenoside R_1 and ginsenoside R_{g_1} are 2.64, since 441 they are both high polar PPT type saponins. And the predicted CAD RFs for the medium or low 442 polar PPT type saponins with authentic reference standard, i.e., ginsenoside Re, Rf, 443 $20(S)-/20(R)-Rh_1$, $20(S)-/20(R)-Rg_2$, F_1 , and 20(S)-PPT, are all assigned as 3.16. The differences 444 between the predicted RFs and CAD slopes of linear regression for all the ten PPT saponins are 445 between 0.48% and 4.75%, indicating the accuracy of our prediction. Moreover, the retention time 446 of gypenoside XVII was 58.9 min, which was in accordance with the retention time, i.e., 58.0 min, 447 based on our identification by the combination of LC-QTOFMS and HPLC-CAD analysis (Table 448 2a). The linear regression equation was Y=2.0744X+0.00818, r=0.999 (n=6). The difference 449 between the CAD slope of linear regression and the predicted RF value was 4.77%, suggesting 450 that our prediction was reasonable and accurate. Although it is very difficult to get all the authentic 451 reference standards in raw and processed notoginsengs at this stage, our prediction is a quite easy, 452 accurate and stable method to determine the complex saponin contents in this herb according to 453 our validation results.

454 3.8 Determination of saponins in raw and processed notoginseng

455 Notoginseng saponins are the main component of *P. notoginseng*. Besides, volatile oils, 456 polysaccharides, dencichine and flavonoids are also contained in this herb. Among these species, 457 volatile oils do not have CAD signals because CAD can only detect non-volatile or semi-volatile compounds. Polysaccharides and dencichine are of high polarity, and may have very short 458 459 retention times or could even hardly be retained on C18 column. Moreover, the contents of 460 flavonoids are quite low in the underground parts of notoginseng. As long as the assigned saponin 461 peaks without authentic reference standards in CAD chromatograms are one-to-one corresponding 462 to the ones identified by LC-QTOFMS, the low content of flavonoids would not interfere with the 463 detection of saponins in this method.

The content of saponins in raw notoginseng from different cultivated places, and of various sizes and medicinal parts were calculated. Moreover, saponin content in processed notoginseng with diverse processing procedures were also evaluated and compared. The powder (80 mesh) of corresponding notoginseng sample was employed to prepare sample solutions. For the saponins

with authentic reference standards available in this experiment, a simple internal standard method was performed to calculate the content of saponins. However, if the saponin had no authentic reference standard, its CAD RF was predicted and calculated based on the structure identified using LC-QTOFMS. And then an internal standard method could easily be carried out. To better compare the saponin content in different kinds of notoginsengs, the water content of each batch of notoginseng powder was previously determined by Karl Fisher titration, and the final results were calculated based on water-free basis. The saponins contents in raw notoginsengs are listed in Table

475 3S. Our results conformed to the data presented in previous literature.³⁰

476 The total amount of all saponins, the total amount of ginsenoside Rg_1 , Rb_1 and R_1 , and the 477 ratio of PPD vs. PPT saponins were compared in raw P. notoginseng. Take 120 head raw P. 478 *notoginseng* as an example, the saponins with content greater than 1 mg/g were as follows: R_{1} , 479 Rg₁, Re, malonyl Rg₁, R₄, Fa, 20(S)-R₂, Rb₁, 20(S)-Rh₁ and Rd, among which R₁, Rg₁ and Rd are 480 considered to be the three most representative saponins, since the total amount of R1, Rg1 and Rd 481 is used to evaluate the quality of raw P. notoginseng in Chinese Pharmacopoeia (Chp). The total 482 amount of R₁, Rg₁ and Rb₁ accounted for 74% to 81% of the total saponin content no matter of 483 what herbal size, cultivate place or medicinal part, with fairly low variation (RSD 3.0%, n=15). It 484 can be concluded that the total amount of these three saponins can be used to represent the total 485 saponin content, and tedious determination of total amount is unnecessary. In Chp, the total 486 amount of these three saponins should be no less than 5.0% (50 mg/g). Based on our results, all 487 but the saponin contents in the main root of countless head notoginseng met the requirement in 488 Chp. Interestingly, our study exhibited that the saponin contents were not always proportionate to 489 the size of main root. To our surprise, 40-head, not 20 or 30-head, P. notoginseng possessed the 490 highest total saponin content no matter where the cultivated place was. In addition, 40-head P. 491 notoginseng also exhibited the highest PPD/PPT ratios, which were 0.984 and 0.912 for the 492 notoginseng from Yunnan and Guangxi, respectively. The PPD/PPT ratios in main root of P. 493 notoginseng from Yunnan were basically higher than those from Guangxi for the corresponding 494 sizes greater than 120 heads. Literature has mentioned that PPD/PPT ratio could be used as a tool to distinguish the types of ginseng.³¹ Thus, we tried to find the relationship between PPD/PPT 495 496 ratios and total saponin contents. We correlated these two results obtained from different heads of

497 notoginsengs (Yunnan), a correlation coefficient of 0.614 was calculated from the linear regression 498 (Fig. 1S). Although the linear correlation was not good enough, there is still some trend that the 499 PPD/PPT ratio has relation to total saponins at least in the case of different size of main root. This 500 result suggested that PPD/PPT ratio could be regarded as a parameter to determine the quality of P. 501 notoginseng. Moreover, the total saponin amount in different medicinal parts decreased in the 502 following order: 40 or 60 head main root≈rhizome>branch root>>root hair. What should be 503 mentioned is that the total amount of R_1 , R_{g_1} and Rb_1 in root hair was 52.5mg/g, which was only 504 5% above the qualified line of notoginseng in Chp 2010. These results conformed to the 505 description of Sanqi in Chp 2010, in which only the main root, branch root and rhizome are 506 included.

Chan et. al firstly introduced the term "biomarker" into steamed notoginseng.³² Here, the 507 508 "biomarker" means the compounds only existed in steamed notoginseng, or those of quite high 509 content in steamed notoginseng yet of extremely low content in raw herbs. The concept of 510 biomarker could be successfully utilized to differentiate raw and processed notoginseng. In our 511 study, 25 secondary saponins were found in processed notoginseng, among which Rk₃, Rh₄, 512 $20(S)-/20(R)-Rg_3$, RK₁ and Rg₅ were those with the highest amount. In the processed notoginseng 513 which has been steamed for 3hrs, the content of these above saponins were no less than 0.5 mg/kg. 514 Thus, these 6 saponins were designated as biomarkers in processed notoginseng at the analytical 515 level in this experiment. Researches have shown that ginsenoside Rk₃, Rh₄, Rg₃, RK₁ and Rg₅ are proven to be biologically potent in anti-tumor activities and in cardiovascular systems.³³⁻⁴¹ Thus. 516 517 the function difference of processed notoginseng compared with the raw herbs was basically due 518 to the difference of compound basis, in which the biomarkers may have major contributions to the 519 pharmacological activities of processed notoginseng.

Steaming is a most frequently used processing method for this herb, and steaming at 100 °C for 3 hrs has been set as the provincial standard for processed notoginseng powder in Yunnan, China, since Apr. 1, 2013. The contents of the biomarkers and total secondary saponins increased basically with the increasing of steaming time, and the data of the content of all saponins are shown in Table 4Sa, 4Sb, 4Sc, 4Sd and 4Se. However, the increasing rate of the biomarker content in steamed notoginseng from 3hr to 4hr was not obvious, indicating that a 3 to 4-hr steaming time

526 is enough, while a longer steaming time may not always lead to significantly greater contents of 527 secondary saponins. Thus, steaming for 3hrs can be regarded as the beginning of the platform of a 528 relatively constant content of biomarkers. Furthermore, the ratio of secondary vs. original saponins 529 of 3hr-steamed notoginsengs was the highest among the steamed samples, proving that 3hr could 530 be regarded as the best steaming time for notoginseng based on our results. Moreover, steaming is 531

also a cost efficient way for processing notoginseng.

532 Except for steaming, frying and stewing of notoginseng are two other traditional processing 533 procedures in Chinese culture. However, our results showed that the contents of biomarkers and 534 total secondary saponins were quite low compared with those in 3hr-steamed notoginseng, 535 indicating that frying or stewing may not be an appropriate way for processing notoginseng. In 536 recent literatures, baking and autoclaving are two techniques to process notoginsengs. 42,43 537 Apparently, with the increasing of temperature and time, the contents of biomarkers and secondary 538 saponins increased dramatically. Given the same temperature (100 °C) and processing time (24 539 hr), the contents of biomarkers and secondary saponins in autoclaved notoginseng were of about 540 10 times compared with those in the baked sample, indicating that pressure was an important 541 parameter for the generation of secondary saponins. According to our data, the biomarkers and 542 secondary saponin contents in baked notoginseng under 100 °C for as long as 48hrs were just 543 comparable to those in 3hr-steamed sample, suggesting that the humidity in the processing 544 procedure was also essential. Thus, four major parameters, ie., humidity, temperature, time and 545 pressure, should be taken into consideration on the journey of seeking for the best processing 546 procedure for notoginseng. The saponin contents in the processed notoginsengs which has been 547 baked at 120 \degree for 24 hrs, autoclaved at 100 \degree for 4 to 6 hrs, and autoclaved at 120 \degree for 2 548 hrs are comparable to those in 3hr-steamed notoginsengs. Although baking is easy to achieve, a 549 relatively longer processing time leads to a low cost efficiency in this case. In the case of 550 autoclaving, the 6 hr-autoclaving at 120 °C and the 18 hr-autoclaving at 100 °C led to the 551 increasing of the amount of secondary saponins by 3 to 5 times. However, the advantage of 552 steaming at high pressure at 100 °C over ordinary steaming for a relatively short period of 553 processing time, i.e., less than 6 hrs, was not very obvious. The autoclaving at 120 $^{\circ}$ C for a

30

comparatively shorter period could produce a considerable amount of secondary saponins. However, the equipment of autoclave needs special attention for operation, and could not be implemented in household. To sum up, steaming for 3 hrs was confirmed to be an easy and cost efficient method for the processing of notoginseng. Nevertheless, autoclaving for a relatively longer period could be an economic and efficient way to prepare and isolate secondary saponins with potent pharmacological effects which are not existed in raw notoginsengs.

560 4. Conclusions

561 In this study, an in-depth analysis of the saponin components and saponin contents in raw and 562 processed *Panax notoginseng* was performed. A gradient eluted HPLC method using acetonitrile 563 and water as mobile phases coupled with charged aerosol detector was established and validated to 564 determine 22 PPD and PPT saponins and aglycons simultaneously in notoginseng. Since the 565 discrepancy of CAD RFs of saponins is quite narrow, the impact of the structural features, 566 including the type of aglycon, the optical rotations at C-20, the glycosyl substituent and the 567 glycosyl linkage of different PPD and PPT saponins on their CAD RFs was discovered. Moreover, 568 the structures of saponins existed in raw and processed notoginseng were extensively identified 569 using LC-QTOFMS. At the analytical level, 16 original and 25 secondary saponins were detected 570 in raw and processed notoginseng, respectively. Since the saponins in raw or in processed 571 notoginsengs were predominately dammarane-type tetracyclic triterpenoid saponins, the impact 572 rules were successfully applied to predict the CAD RFs of saponins, and then a simple internal 573 standard method could be carried out to determine the content of each saponin in notoginsengs. An 574 investigation on saponin contents in raw P. notoginseng of different sizes, growing places, 575 medicinal parts, and those in processed notoginseng of different processing procedures, *i.e.*, 576 steaming, baking, autoclaving, stewing and frying was then implemented. Our results indicated 577 that 40 head main root of notoginseng possessed the greatest quantity of total saponins among raw 578 herbs. The total saponins in raw P. notoginseng from Yunnan were greater that those from Guangxi 579 for the corresponding size. Moreover, the total saponins in different medicinal parts were 580 decreased in the following order: 40 or 60 head main root~rhizome>branch root>>root hair. 581 Ginsengnoside Rk₃, Rh₄, 20(S)-/20(R)-Rg₃, RK₁ and Rg₅ were set as biomarkers, as these were the 582 6 most abundant secondary saponins existed in processed notoginseng, and may be responsible for

583 the main difference of pharmacological functions between the raw and processed herbs. As a result, 584 steaming for 3hrs was proven to be the best processing method as it produces fairly high amount 585 of biomarkers and secondary saponins in processed samples for a relatively shorter period and in a 586 cost effective and convenient way. The authentic reference standards of quite a few saponins in 587 notoginsengs could not be obtained commercially, especially those secondary saponins in 588 processed herb. The major advantage of this HPLC-CAD method over previous established 589 QAMS methods is that it is not necessary to get relative correction factors for each saponin 590 experimentally, but the CAD response factor could just be predicted theoretically according to our 591 data. Thus, this article has for the first time provided an easy and reliable method to evaluate the 592 content of those saponins and the quality of raw and processed notoginseng which had never been 593 extensively studied in previous literatures.

594

595 Acknowledgements

596 This work was financially supported by the Project of Shanghai Committee of Science and 597 Technology (13401900300) and the Foundation of the Ministry of Education of China 598 (NCET-10-0944).

599 References

- 1 S.Y. Han, H.X. Li, X. Ma, K. Zhang, Z.Z. Ma, Y. Jiang, P.F. Tu, Evaluation of the anti-myocardial ischemia effect of individual and combined extracts of *Panax notoginseng* and *Carthamustinctorius* in rats, *J. Ethnopharmacol.*, 2013, **145**, 722.
- 2 P.W. Wang, J.G. Cui, X.Y. Du, Q.B. Yang, C.L. Jia, M.Q. Xiong, X.T. Yu, L. Li, W.J. Wang, Y. Chen, T. Zhang, *Panax notoginseng* saponins (PNS) inhibits breast cancer metastasis, *J. Ethnopharmacol.*, 2014, **154**, 663.
- 3 W. Xia, C.H. Sun, Y. Zhao, L.J. Wu, Hypolipidemic and antioxidant activities of Sanchi (Radix Notoginseng) in rats fed with a high fat diet, *Phytomedicine*, 2011, **18**, 516
- 4 C.Y. Yang, J. Wang, Y. Zhao, L. Shen, X. Jiang, Z.G. Xie, N. Liang, L. Zhang, Z.H. Chen, Anti-diabetic effects of *Panax notoginseng* saponins and its major anti-hyperglycemic components, *J. Ethnopharmacol.*, 2010, **130**, 231.
- 5 State Administration of Traditional Chinese Medicine (People's Republic of China). Zhong Hua Ben Cao Jin Xuan Ben. vol. 1. Shanghai: Shanghai Science and Technology Publishers; 1996.
- 6 D.F. Toh, D.N. Patel, E.C.Y. Chan, A. Teo, S.Y. Neo, H.L. Koh, Anti-proliferative effects of raw

and steamed extracts of *Panax notoginseng* and its ginsenoside constituents on human liver cancer cells, *Chin. Med.*, 2011, **6**, 4.

- 7 S. Sun, C.Z. Wang, R. Tong, X.L. Li, A. Fishbein, Q. Wang, T.C. He, W. Du, C.S. Yuan, Effects of steaming the root of *Panax notoginseng* on chemical composition and anticancer activities, *Food Chem.*, 2010, **118**, 307
- 8 S. Sun, L.W. Qi, G.J. Du, S.R. Mehendale, C.Z. Wang, C.S. Yuan. Red notoginseng: Higher ginsenoside content and stronger anticancer potential than Asian and American ginseng, *Food Chem.*, 2011, **125**, 1299.
- 9 A.J. Lau, D.F. Toh, T.K. Chua, Y.K. Pang, S.O. Woo, H.L. Koh, Antiplatelet and anticoagulant effects of *Panax notoginseng*: Comparison of raw and steamed *Panax notoginseng* with *Panax ginseng* and *Panax quinquefolium*, J. Ethnopharmacol., 2009, **125**, 380.
- 10 C.Z. Wang, E. McEntee, S. Wicks, J.A. Wu, C.S. Yuan, Phytochemical and analytical studies of *Panax notoginseng* (Burk.), *J. Nat. Med.*, 2006, **60**, 97.
- 11 C.Q. Wang, X.H. Jia, S. Zhu, K. Komatsu, X. Wang, S.Q. Cai, A systematic study on the influencing parameters and improvement of quantitative analysis of multi-component with single marker method using notoginseng as research subject, *Talanta*, 2015, **134**, 587.
- 12 C.J.S. Lai, T. Tan, S.L. Zeng, L.R. Xu, L.W. Qi, E.H. Liu, P. Li, An enzymatic protocol for absolute quantification of analogues: application to specific protopanoxadiol-type ginsenosides, *Green Chem.*, 2015, 17, 2580.
- 13 C.J.S. Lai, T. Tan, S.L. Zeng, X. Dong, E.H. Liu, P. Li, Relative quantification of multi-components in *Panax* notoginseng (Sanqi) by high-performance liquid chromatography with mass spectrometry using mobile phase compensation, *J. Pharmaceut. Biomed.*, 2015, 102, 150.
- 14 R.W. Dixon, D.S. Peterson, Development and testing of a detection method for liquid chromatography based on aerosol charging, *Anal. Chem.*, 2002, **74**, 2930.
- 15 U. Holzgrabe, C.J. Nap, S. Almeling, Control of impurities in L-aspartic acid and L-alanine by high-performance liquid chromatography coupled with a corona charged aerosol detector, J. Chromatogra. A, 2010, 1217, 294.
- 16 Z. Long, Z.M Guo, X.D. Liu, Q. Zhang, X.g. Liu, Y. Jin, L.N Liang, H.S. Li, J. Wei, N.P. Wu, A sensitive non-derivatization method for apramycin and impurities analysis using hydrophilic interaction liquid chromatography and charged aerosol detection, *Talanta*, 2016, 146, 423.
- 17 I. Marquez-Sillero, S. Cardenas, M. Valcarcel, Determination of water-soluble vitamins in infant milk and dietary supplement using a liquid chromatography on-line coupled to a corona-charged aerosol detector, J. Chromatogr. A, 2013, 1313, 253.
- 18 M. Plaza, J. Kaiuki, C. Turner, Quantification of individual phenolic compounds' contribution to antioxidant capacity in apple: a novel analytical tool basedon liquid chromatography with diode array, electrochemical, and charged aerosol detection, J. Agric. Food Chem., 2014, 62,

409.

- 19 M. Poplawska, A. Blazewicz, K. Bukowinska, Z. Fijalek, Application of high-performance liquid chromatography with charged aerosol detection for universal quantitation of undeclared phosphodiesterase-5 inhibitors in herbal dietary supplements, J. Pharm.Biomed. Anal., 2013, 84, 232.
- 20 L.M. Nair, J.O. Werling, Aerosol based detectors for the investigation of phos-pholipid hydrolysis in a pharmaceutical suspension formulation, *J. Pharm.Biomed. Anal.*, 2009, **49**, 95.
- 21 M. Poplawska, A. Blazewicz, P. Zolek, Z. Fijalek, Determination of flibanserinand tadalafil in supplements for women sexual desire enhancement usinghigh-performance liquid chromatography with tandem mass spectrometer, diode array detector and charged aerosol detector, *J. Pharm. Biomed. Anal.*, 2014, 94, 45.
- 22 Q. Zhou, M.T. Chen, L.H. Zhu, H.Q. Tang, Determination of perfluorinated carboxylic acids in water using liquid chromatography coupled to a corona-charged aerosol detector, *Talanta*, 2015, **136**, 35.
- 23 L. Wang, W.S. He, H.X. Yan, Y. Jiang, K.S. Bi, P.F. Tu, Performance evaluation of charged aerosol and evaporative light scattering detection for the determination of ginsenosides by LC, *Chromatographia*, 2009, **70**, 603.
- 24 C.C. Bai, S.Y. Han, X.Y. Chai, Y. Jiang, P. Li, P.F. Tu, Sensitive determination of saponins in Radix et rhizoma notoginseng by charged aerosol detector coupled with HPLC, *J. Liq. Chromatogr. R. T.*, 2008, **32**, 242.
- 25 A. Stojanovic, M. Lammerhofer, D. Kogelnig, S. Schiesel, M. Sturm, M. Galanski, R. Krachler, B. Keppler, W. Lindner, Analysis of quaternary ammonium phosphonium ionic liquids by reversed-phase high-performance liquidchromatography with charged aerosol detection and unified calibration, *J. Chromatogr. A*, 2008, **1209**, 179.
- 26 P.H. Gamache, R.S. McCarthy, S.M. Freeto, D.J. Asa, M.J. Woodcock, K. Laws, R.O.Cole, HPLC analysis of non-volatile analytes using charged aerosol detection, *LC-GC Eur.*, 2005, 18, 345.
- 27 S. Matsuyama, Y. Orihara, S. Kinugasa, H. Ohtani, Effects of densities of brominated flame retardants on the detection response for HPLC analysis with acorona-charged aerosol detector, *Anal. Sci.*, 2015, **31**, 61.
- 28 L.E. Magnusson, D.S. Risley, J.A. Koropchak, Aerosol-based detectors for liquid chromatography, *J.Chromatogr. A.*, 2015, 1421, 68.
- 29 S. Almeling, D. Ilko, U. Holzgrabe, Charged Aerosol detection in pharmaceutical analysis, J. Pharm.Biomed. Anal., 2012, 69, 50.
- 30 S.P. Li, C.F. Qiao, Y.W. Chen, J. Zhao, X.M. Cui, Q.W. Zhang, X.M. Liu, D.J. Hu, A novel strategy with standardized reference extract qualification and single compound quantitative evaluation for quality control of *Panax notoginseng* used as a functional food, *J. Chromatogr. A*, 2013, **1331**, 302.

- 31 C.Y. Liu, J.G. Song, P.F. Li, H.S. Yu, F.X. Jin, Ginsenoside contents in three different ginseng. *Journal of Dalian Polytechnic University*, 2011, **30**, 79-82.
- 32 E.C.Y. Chan, S.L. Yap, A.J. Lau, Ultra-performance liquid chromatography/time-of-flight mass spectrometry based metabolomics of raw and steamed *Panax notoginseng*, *Rapid Commun. Mass SP.*, 2007, 21, 519.
- 33 H.H. Kwok, G.L. Guo, J.K. Lau, Y.K. Cheng, J.R. Wang, Z.H. Jiang, M.H. Keung, N.K. Mak, P.Y.K. Yue, R.N.S. Wong, Stereoisomers ginsenosides-20(S)-Rg₃ and -20(R)-Rg₃ differentially induce angiogenesis through peroxisome proliferator-activated receptor-gamma, *Biochem. Pharmacol.*, 2012, 83, 893.
- 34 R. Wu, Q. Ru, L. Chen, B. Ma, C. Li, Stereospecificity of ginsenoside Rg3 in the promotion of cellular immunity in hepatoma H22-bearing mice, *J. Food Sci.*, 2014, **79**, H1430.
- 35 J.G. Lee, Y.Y. Lee, S.Y. Kim, J.S. Pyo, H. S. Yun-Choi, J.H. Park, Platelet antiaggregating activity of ginsenosides isolated from processed ginseng, *Pharmazie*, 2009, **64**, 602.
- 36 H.K. Ju, J.G. Lee, M.K. Park, S.J. Park, C.H. Lee, J.H. Park, C.H. Lee, J. H. Park, S.W. Kwon, Metabolomic investigation of the anti-platelet aggregation activity of ginsenoside Rk₁ reveals attenuated 12-HETE production, *J. Proteome Res.*, 2012, **11**, 4939.
- 37 J.S. Kim, E.J. Joo, J. Chun, Y.W. Ha, J.H. Lee, Y. Han, Y.S. Kim, Induction of apoptosis by ginsenoside Rk1 in SK-MEL-2-human melanoma, *Arch. Pharm. Res.*, 2012, 35, 717.
- 38 Y.S. Maeng, S. Maharjan, J.H. Kim, J.H. Park, Y.Y. Suk, Y.M. Kim, et al. Rk₁, a ginsenoside, is a new blocker of vascular leakage acting through actin structure remodeling, *PLOS ONE*, 2013, 8, Article number e68659.
- 39 J. Sun, G. Sun, X. Meng, H. Wang, M. Wang, M. Qin, B. Ma, Y. Luo, Y. Yu, R. Chen, Q. Ai, X. Sun, Ginsenoside RK₃ prevents hypoxia-reoxygenation induced apoptosis in H9c2 cardiomyocytes via AKT and MAPK pathway, *Evid.-Based Compl. Alt.*, 2013, Article number 690190.
- 40 N.I. Baek, D.S. Kim, Y. H. Lee, J. D. Park, C.B. Lee, S.I. Kim, Ginsenoside Rh₄, a genuine dammarane glycoside from Korean red ginseng, *Planta Med.*, 1996, **62**, 86.
- 41 S.J. Kim, A.K. Kim, Anti-breast cancer activity of Fine Black ginseng (*Panax ginseng Meyer*) and ginsenoside Rg5, *J. Ginseng Res.*, 2015, **39**, 125e134.
- 41 D.F. Toh, L.S. New, H.L. Koh, E.C.Y. Chan, Ultra-high performance liquid chromatography/time-of-flight mass spectrometry (UHPLC/TOFMS) for time-dependent profiling of raw and steamed *Panax notoginseng*, J. Pharm.Biomed. Anal., 2010, 52, 43.
- 43 D.Wang, P.Y. Liao, H.T. Zhu, K.K. Chen, M. Xu, Y.J. Zhang, C.R. Yang, The processing of *Panax notoginseng* and the transformation of its saponin components, *Food Chem.*, 2012, 132, 1808.

Fig. 1. Typical HPLC-CAD chromatograms of blank (A), reference standard solution (B), sample solutions of raw notoginseng (40 head, Yunnan) (C), steamed notoginseng (100°C, 3hrs) (D), and autoclaved notoginseng (120°C, 18hrs) (E), and typical HPLC-UV chromatogram of reference standard solution (F). The peak numbers denoted in reference standard solution (B) and (F) are: 1, R₁; 2, Rg₁; 3, Re; 4, Rf; 5, Rb₁; 6, 20(S)-Rg₂; 7, 20(S)-Rh₁; 8, 20(R)-Rg₂; 9, 20(R)-Rh₁; 10, Rb₂; 11, Rb₃; 12, F₁; 13, Rd; 14, F₂; 15, 20(S)-Rg₃; 16, 20(R)-Rg₃; 17, 20(S)-PPT; 18, Compound K; 19, 20(S)-Rh₂; 20, 20(R)-Rh₂; 21, 20(S)-PPD; 22, 20(R)-PPD. The peak numbers denoted in sample solution (C), (D) and (E) are: 1, 20-*O*-glucoginsenoside R_f; 2, R₃; 3, R₁; 4, Rg₁; 5, Re; 6, malonyl-ginsenoside Rg₁; 7, yesanchinoside D; 8, R₄; 9, Fa; 10, 20(S)-R₂; 11, Rb₁; 12, 20(S)-Rg₂; 13, 20(S)-Rh₁; 14, F₁; 15, Rd; 16, gypenoside XVII; 17, 20(S)-25-OH Rh₁; 18, 20(R)-25-OH Rh₁; 19, 20(S)-Rh₂; 22, 20(R)-Rh₁; 23, 25-OH Rg₃; 24, gypenoside LXXV; 25, gypenoside LXXV isomer; 26, T₅; 27, U; 28, T₅ isomer; 29, F₄; 30, RK₃; 31, Rh₄; 32, 20(S)-Rg₃; 33, 20(R)-Rg₃; 34, Unknown 1[#]; 35, Unknown 2[#]; 36, RK₁; 37, Rg₅; 38, 20(S)-Rh₂; 39, 20(R)-Rh₂; 40, RK₂; 41, Rh₃. The peak numbers denoted in sample solutions are the same as in Table 2a and 2b.

Fig. 2. Saponins observed by LC-ESI-QTOFMS in raw and processed *P. notoginseng*. Unless being specified, the default chirality of the saponins is 20(S) form. The saponins in bold are characteristic for processed samples. Glc, β -D-glucopyranosyl; Rha, rhamnose; Ara(p), α -L-Arabinose in pyranose form; Ara(f), α -L-Arabinose in furanose form; Xyl, xylose; Man, mannose.

20(S)-protopanaxadiol (20(S)-PPD, R₁=R₂=H)

20(R)-protopanaxadiol (20(R)-PPD, R₁=R₂=H)

Compound (PPD type)	R ₁	R ₂	Molecular formula
Notoginsenoside R ₄	-Glc-Glc (2-1)	-Glc-Glc-Xyl (6-1; 6-1)	$C_{59}H_{100}O_{27}$
Notoginsenoside Fa	-Glc-Glc-Xyl (2-1; 2-1)	-Glc-Glc (6-1)	$C_{59}H_{100}O_{27}$
Ginsenoside Rb ₁	-Glc-Glc (2-1)	-Glc-Glc (6-1)	$C_{54}H_{92}O_{23}$
Ginsenoside Rd	-Glc-Glc (2-1)	-Glc	$C_{48}H_{82}O_{18}\\$
Gypenoside XVII	-Glc	-Glc-Glc (6-1)	$C_{48}H_{82}O_{18}$
Gypenoside LXXV	-Н	-Glc-Glc (6-1)	$C_{42}H_{72}O_{13}$
20(S)/(R)-Ginsenoside Rg ₃	-Glc-Glc (2-1)	-H	$C_{42}H_{72}O_{13}$
20(S)/(R)-Ginsenoside Rh ₂	-Glc	-H	C ₃₆ H ₆₂ O ₈

20(S)-protopanaxatriol (20(S)-PPT, $R_1=R_2=H$)

20(R)-protopanaxatriol (20(R)-PPT, R₁=R₂=H)

Compound (PPT type)	R ₁	R ₂	Molecular formula
20-O-Glucoginsenoside R _f	-Glc-Glc (2-1)	-Glc	$C_{48}H_{82}O_{19}$
Notoginsenoside R ₃	-Glc	-Glc-Glc (6-1)	$C_{48}H_{82}O_{19}$
Ginsenoside R ₁	-Glc-Xyl (2-1)	-Glc	$C_{47}H_{80}O_{18}$
Ginsenoside Rg ₁	-Glc	-Glc	$C_{42}H_{72}O_{14}$
Ginsenoside Re	-Glc-Rha (2-1)	-Glc	$C_{48}H_{82}O_{18}$
Malonyl-ginsenoside Rg ₁	-Glc ⁶ -Malonyl-Glc	-Glc	C ₄₅ H ₇₄ O ₁₇
Yesanchinoside D	-Glc-COCH ₃	-Glc	C45H74O15
20(S)-Notoginsenoside R ₂	-Glc-Xyl (6-1)	-H	C ₄₁ H ₇₀ O ₁₃
20(S)-Ginsenoside Rg ₂	-Glc-Rha (2-)	-H	$C_{42}H_{72}O_{13}$
20(S)-Ginsenoside Rh ₁	-Glc	-H	$C_{36}H_{62}O_9$
Ginsenoside F ₁	-H	-Glc	$C_{36}H_{62}O_9$
20(S)/(R)-Ginsenoside Rh ₁ (Man as glycosyl substituents)	-Man	-H	$C_{36}H_{62}O_9$
20(R)- Ginsenoside Rg2	-Glc-Rha (2-1)	-H	$C_{42}H_{72}O_{13}$
20(R)- Ginsenoside Rh1	-Glc	-H	C ₃₆ H ₆₂ O ₉
Notoginsenoside U	-H	-Glc-Glc (6-1)	$C_{42}H_{72}O_{14}$

(trans C-20 dehydrated PPD type)							
Ginsenoside Rg ₅ Ginsenoside Rh ₃	-Glc-Glc (2-1) -Glc	$\begin{array}{c} C_{42}H_{70}O_{12} \\ C_{36}H_{60}O_{7} \end{array}$					

20(S)/(R)-dammarane-3β, 12β, 20, 25-tetrol (25-OH PPD, R₁=R₂=H)

Compound(25-OH PPD)	R_1	R_2	Molecular formula
25-OH Ginsenoside Rg ₃	-Glc-Glc	-H	$C_{42}H_{74}O_{14}$

Compound(25-OH PPT)	R_1	R_2	Molecular formula
25-OH Ginsenoside Rh ₁	-Glc	-H	$C_{36}H_{64}O_{10}$

Structure-based impacts of saponins on CAD response factors are discovered, and in-depth analysis of saponins in Panax notoginseng is implemented.

Page 42 of 42