# **RSC Advances**



This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.



www.rsc.org/advances

## **RSC Advances**



## COMMUNICATION

Nickel–platinum Nanoparticles Immobilized on Graphitic Carbon Nitride as Highly Efficient Catalyst for Hydrogen Release from Hydrous Hydrazine

Lixin Xu<sup>a</sup>, Na Liu<sup>a</sup>, Bing Hong<sup>a</sup>, Ping Cui<sup>a</sup>, Dang-guo Cheng<sup>b</sup>, Fengqiu Chen<sup>b</sup>, Yue An<sup>b</sup> and Chao

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Here we demonstrate that the combination of NiPt alloy nanoparticles with a graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) support facilitates H<sub>2</sub> production from hydrous hydrazine in an alkaline solution under moderate conditions. Of all the heterogeneous catalysts tested,  $Ni_{37}Pt_{63}/g-C_3N_4$  shows superior catalytic performance with a maximum initial turnover frequency (TOF) of 570 h<sup>-1</sup> at 323 K.

Wan<sup>a,\*</sup>

In light of the upcoming energy crisis and the increasingly severity of environmental pollution it is desirable to use sustainable, renewable and clean energies<sup>1</sup>. Hydrogen, whose only byproduct is water, is an environmentally attractive and ideal energy carrier, especially for electricity generation in lowtemperature fuel cells<sup>2-5</sup>. However, despite the numerous studies conducted over several decades, the hydrogen economy has not been fulfilled due to the challenges in safely and efficiently storing hydrogen<sup>6-9</sup>. Chemical hydrogen storage is a promising solution because it can be conveniently transported and has a considerable hydrogen content<sup>10-15</sup>. Hydrous hydrazine, such as hydrazine monohydrate (H<sub>2</sub>NNH<sub>2</sub>•H<sub>2</sub>O), is considered a promising candidate for storing hydrogen. It is advantageous due to its high hydrogen storage capacity (8.0 wt%), easy recharging as a liquid (the current infrastructure for liquid fuel cells can be utilized), and its environment-friendliness, i.e. the only byproduct is nitrogen via a complete decomposition reaction:  $H_2NNH_2 \rightarrow N_2(g)+2H_2(g)^{16-21}$ . Nevertheless, to efficiently liberate hydrogen, the undesired reaction  $3H_2NNH_2 \rightarrow 4NH_3(g) + N_2(g)$  must be avoided<sup>22-27</sup>. To solve this problem, one must develop highly efficient, selective, and economic catalysts for producing hydrogen from hydrous hydrazine in practical applications.

See DOI: 10.1039/x0xx00000x

For implementing this target, much attention has been devoted to synthesize metal catalysts for improving the hydrogen release from  $H_2NNH_2 \cdot H_2O$ , among which noble metals, e.g., Pt, Pd, Rh, or their bimetallic alloy catalysts<sup>28-34</sup> have proved to be efficient. In light of this, many studies have been devoted to developing monometallic and polymetallic nanoparticles (NPs), where materials such as  $Al_2O_3$ ,  $CeO_2$ , graphene oxide, carbon black, etc. act as the support<sup>35-44</sup> and metals such as  $Pt^{45-50}$ ,  $Pd^{33,51}$ , and other elements<sup>19-21,52,53</sup> are the active ingredients. In particular, binary NiPt alloy NPs are efficient catalysts for hydrous hydrazine decomposition in alkaline solutions. The dispersion of the metal NPs throughout the solution significantly influences the performance of the catalysts<sup>45-49</sup>; therefore, to improve their activity one must reduce the clustering of NPs via the use of proper supports.

Recently, graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) has received a great deal of attention as a metal-free candidate to supplement traditional carbon materials due to its many appealing properties: low cost, semiconductivity, high chemical and physical stability, basicity, energy-storage capacity, and nontoxicity<sup>54,55</sup>. g-C<sub>3</sub>N<sub>4</sub> has been comprehensively investigated for use in gas storage, fuel cells, photocatalysis, and heterogeneous catalysis<sup>54-57</sup>. It has emerged as one of the more promising supports for metal NPs because the nitrogen-rich structure of its amine-bridged heptazine units provides many adsorption sites for grafting metal ions on its surface<sup>58</sup>. Furthermore, to the best of our knowledge, no NPs have yet been immobilized on g-C<sub>3</sub>N<sub>4</sub> supports for the catalyzing H<sub>2</sub>NNH<sub>2</sub>•H<sub>2</sub>O dehydrogenation . Here we present the first instance of NiPt alloy nanoparticles (NPs) supported on g-C<sub>3</sub>N<sub>4</sub> and show their excellent catalytic performance in the dehydrogenation of  $H_2 NNH_2 \bullet H_2 O$  under moderate conditions.

g-C<sub>3</sub>N<sub>4</sub> was prepared via thermal condensation of melamine powder<sup>54</sup>. Melamine powder (5 g) was put in a covered alumina crucible, heated to 823 K at a rate of 5 K•min<sup>-1</sup> and maintained at 823 K for 4 h in a nitrogen flow (30 mL•min<sup>-1</sup>). The final yellow product was collected and ground into powder with an agate mortar.

For the preparation of NiPt/g-C<sub>3</sub>N<sub>4</sub> catalysts with variable Ni/Pt ratios (1:0, 1:4, 2:3, 3:2, 4:1, 0:1), 0.2 g of g-C<sub>3</sub>N<sub>4</sub> was impregnated by

<sup>&</sup>lt;sup>a.</sup> College of Chemistry and Chemical Engineering, Anhui University of Technology, 59 Hudong Road, Ma'anshan 243002, China

<sup>&</sup>lt;sup>b.</sup> College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China E-mail:wanchao1219@hotmail.com

Electronic Supplementary Information (ESI) available.

#### COMMUNICATION



Scheme 1 Schematic illustration of the synthesis of the NiPt/g-C<sub>3</sub>N<sub>4</sub> catalysts.

a mixed solution containing 0.4 mmol of metal ions with variable molar ratios of Ni<sup>2+</sup> and Pt<sup>4+</sup>, and the solution was diluted with distilled water to 20 mL. After stirring for 24 h at 298 K, a solution containing sodium borohydride (NaBH<sub>4</sub>) and sodium hydroxide (NaOH) was added to the above-mentioned mixture while stirring vigorously at 273 K. The catalysts were extracted by centrifugation, washed with ethanol, and dried in vacuum at 373 K for 12 h.

The synthesis of the NiPt/g-C<sub>3</sub>N<sub>4</sub> is displayed in Scheme 1. The NiPt/g-C<sub>3</sub>N<sub>4</sub> catalysts were reproducibly prepared by this simple impregnation method, followed by reduction by the NaBH<sub>4</sub> and NaOH solution at 273 K<sup>49</sup>. After centrifugation and washing with copious amounts of water, NiPt/g-C<sub>3</sub>N<sub>4</sub> was obtained, characterized using various techniques, and was used for the dehydrogenation of hydrous hydrazine. The molar ratio of the NiPt NPs in the catalysts was modified by tuning the initial composition of NiCl<sub>2</sub> and H<sub>2</sub>PtCl<sub>6</sub>, and determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES). As shown in Table S1 (electronic supporting

**Table. 1** Comparison of the decomposition of hydrous hydrazineover different catalysts in this study and previous reports.

| Catalyst                                                                         | Т (К) | TOF<br>(h <sup>−1</sup> ) | E <sub>a</sub><br>(kJ/mol) | Reference |
|----------------------------------------------------------------------------------|-------|---------------------------|----------------------------|-----------|
| Ni <sub>37</sub> Pt <sub>63</sub> /g-C <sub>3</sub> N <sub>4</sub>               | 323   | 570                       | 36.6                       | This work |
| Ni <sub>0.99</sub> Pt <sub>0.01</sub>                                            | 323   | 12                        | 49.95                      | 59        |
| $Ni_{0.9}Pt_{0.1}/Ce_2O_3$                                                       | 298   | 28.1                      | 42.3                       | 36        |
| Ni <sub>84</sub> Pt <sub>16</sub> /graphene                                      | 323   | 415                       | 40                         | 44        |
| Ni <sub>88</sub> Pt <sub>12</sub> @MIL-101                                       | 323   | 375.1                     | 51.29                      | 43        |
| Ni₃Pt7/graphene                                                                  | 323   | 416                       | 49.36                      | 45        |
| Ni <sub>60</sub> Pt <sub>40</sub> /CeO <sub>2</sub>                              | 303   | 293                       | 58.2                       | 39        |
| Ni <sub>64.1</sub> Mo <sub>11.5</sub> B <sub>24.4</sub> -<br>La(OH) <sub>3</sub> | 323   | 30                        | 55.1                       | 19        |
| Ni-Al <sub>2</sub> O <sub>3</sub> -HT                                            | 303   | 3.9                       | 49.3                       | 17        |
| Nilr <sub>0.059</sub> /Al <sub>2</sub> O <sub>3</sub>                            | 303   | 12.4                      | 38.6                       | 24        |
| NiPt <sub>0.057</sub> /Al <sub>2</sub> O <sub>3</sub>                            | 303   | 16.5                      | 34                         | 30        |
| Ni <sub>30</sub> Fe <sub>30</sub> Pd <sub>40</sub> NPs                           | 323   | 21.5                      | 40.0                       | 33        |
| Ni <sub>85</sub> Ir <sub>15</sub> @MIL-101                                       | 323   | 464                       | 66.9                       | 53        |
| Rh <sub>58</sub> Ni <sub>42</sub> @MIL-101                                       | 323   | 344                       | 33                         | 44        |
| Ni <sub>3</sub> Rh <sub>7</sub> /NPC-900                                         | 323   | 156                       | /                          | 40        |
| Pt <sub>0.6</sub> Ni <sub>0.4</sub> /PDA-rGO                                     | 323   | 2056                      | 33.39                      | 48        |





Fig. 1 Time course plots for the decomposition of hydrous hydrazine over NiPt/g-C<sub>3</sub>N<sub>4</sub> with NaOH (0.5 M) at 323K (catalyst=0.100 g; N<sub>2</sub>H<sub>4</sub>•H<sub>2</sub>O =0.1 mL).

information; ESI), the Ni/g-C<sub>3</sub>N<sub>4</sub>, Ni<sub>24</sub>Pt<sub>76</sub>/g-C<sub>3</sub>N<sub>4</sub>, Ni<sub>37</sub>Pt<sub>63</sub>/g-C<sub>3</sub>N<sub>4</sub>, Ni<sub>58</sub>Pt<sub>42</sub>/g-C<sub>3</sub>N<sub>4</sub>, Ni<sub>82</sub>Pt<sub>18</sub>/g-C<sub>3</sub>N<sub>4</sub>, and Pt/g-C<sub>3</sub>N<sub>4</sub> catalysts were synthesized using metal precursors at Ni/Pt molar ratios of 1:0, 1:4, 2:3, 3:2, 4:1, and 0:1, respectively. The catalytic reactions were performed in alkaline solutions of hydrazine at 323 K, as shown in Fig. 1 and Table S2 (ESI). The performances of the catalysts were distinctly improved when Pt was alloyed to Ni. Ni<sub>37</sub>Pt<sub>63</sub>/g-C<sub>3</sub>N<sub>4</sub> showed the best catalytic performance and a maximum turnover frequency (TOF) of 570 h<sup>-1</sup> at 323 K, which is much higher than most of literature values for NiPt catalysts (Table 1)45-49. The 100% hydrogen selectivity of the decomposition reaction of hydrous hydrazine over Ni<sub>37</sub>Pt<sub>63</sub>/g-C<sub>3</sub>N<sub>4</sub> was verified using mass spectrometry (Fig. S1, ESI). Pt/g-C<sub>3</sub>N<sub>4</sub> was nearly catalytically inactive, but catalytic activity increased by alloying and increasing the composition of Ni, which highlights the existence of synergistic effects on the molecular level from alloying NiPt NPs.

The dehydrogenation of hydrous hydrazine catalyzed by the Ni<sub>37</sub>Pt<sub>63</sub>/g-C<sub>3</sub>N<sub>4</sub> was conducted at different temperatures (298–343 K) to acquire the activation energy (E<sub>a</sub>) of this reaction. The values of the rate constant (k) were acquired from the slope of the linear part of the graph of dehydrogenation reaction versus time, at different temperatures (T) in Fig. 2(a). The Arrhenius plot (In k vs. 1/T) for this catalyst is displayed in Fig. 2(b). E<sub>a</sub> is determined to be 36.6 kJ/mol, which is smaller than most of literature value for this reaction over NiPt catalysts (Table 1). Furthermore, the recyclability of the  $Ni_{37}Pt_{63}/g-C_3N_4$  catalyst was investigated during the decomposition of hydrazine hydrate at 323K (Fig. S2, ESI). After the four times cycle run, the catalytic activity of catalyst decreased slightly and hydrogen selectivity remained stable. As shown in Fig. S3, the reason for the decrease in the dehydrogenation performance can be attributed to agglomeration of the particles, which is consistent with the literature findings<sup>47,49</sup>.

The X-ray diffraction (XRD) patterns of the g-C<sub>3</sub>N<sub>4</sub>, Ni/g-C<sub>3</sub>N<sub>4</sub>, Pt/g-C<sub>3</sub>N<sub>4</sub>, Ni<sub>24</sub>Pt<sub>76</sub>/g-C<sub>3</sub>N<sub>4</sub>, Ni<sub>37</sub>Pt<sub>63</sub>/g-C<sub>3</sub>N<sub>4</sub>, Ni<sub>58</sub>Pt<sub>42</sub>/g-C<sub>3</sub>N<sub>4</sub> and

Journal Name



**Fig. 2** (a) Time course plots for hydrogen generation by the decomposition of hydrous hydrazine by  $Ni_{37}Pt_{63}/g-C_3N_4$  at, 298 K, 313K, 323K, 333K and 343K. (b) Plot of ln k *versus* 1/T during the hydrous hydrazine decomposition over  $Ni_{37}Pt_{63}/g-C_3N_4$  at different temperatures (catalyst=0.100 g;  $N_2H_4 \bullet H_2O = 0.1$  mL).

Ni<sub>82</sub>Pt<sub>18</sub>/g-C<sub>3</sub>N<sub>4</sub> are shown in Fig.S4 (ESI). A distinct peak centered at  $2\theta$  = 27.5° is attributed to the XRD pattern of the g-C<sub>3</sub>N<sub>4</sub><sup>57</sup>. The XRD patterns of the Ni/g-C<sub>3</sub>N<sub>4</sub> and Pt/g-C<sub>3</sub>N<sub>4</sub> catalysts (Fig. S4 (b) and (c), ESI) are consistent with the literature values (JCPDS, PDF 65-0380 for Ni and PDF 65-2868 for Pt), and confirm the presence of pure Ni and Pt NPs<sup>36</sup>. No peaks characteristic of pure Ni and Pt were observed in the XRD patterns of NiPt/g-C<sub>3</sub>N<sub>4</sub> with different Ni/Pt molar ratios (Fig. S4 (d-g), ESI); this reveals the existence of a bimetallic phase rather than a mixture of monometallic Ni and Pt NPs<sup>34-36,43,45-49</sup>. As seen in the literature<sup>34-36,45-49</sup>, the diffraction peaks of all the NiPt nanocatalysts are partially shifted compared to those of pure Ni and Pt NPs; this highlights that an alloy has formed by expanding the Ni crystal lattice through the substitution of larger Pt atoms for the smaller Ni atoms. Additionally, the morphologies of the assynthesized Ni<sub>37</sub>Pt<sub>63</sub>/g-C<sub>3</sub>N<sub>4</sub> catalysts were observed using transmission electron microscopy (TEM). The high-resolution TEM (HRTEM) image in Fig. 3(a-d) demonstrates the crystalline nature of the Ni<sub>37</sub>Pt<sub>63</sub> NPs. The lattice spacing is calculated to be 0.210 nm, which lies between the (111) plane of face-centered cubic (fcc) Ni

COMMUNICATION



Fig. 3 (a-d) TEM images of  $Ni_{37}Pt_{63}/g-C_3N_4$  with different magnification.

(0.204 nm) and fcc Pt (0.227 nm), further demonstrating the formation of an alloy structure of NiPt NPs<sup>34-36,43,45-49</sup>. Fig. S5 (ESI) shows that the NiPt NPs have a narrow size distribution with a mean particle size of  $3.2 \pm 0.2$  nm.

The elemental chemical states of the Ni<sub>37</sub>Pt<sub>63</sub>/g-C<sub>3</sub>N<sub>4</sub> were elucidated using X-ray photoelectron spectroscopy (XPS). The highresolution XPS spectra for C 1s, N 1s, Ni 2p, and Pt 4f in Ni<sub>37</sub>Pt<sub>63</sub>/g-C<sub>3</sub>N<sub>4</sub> are shown in Fig. S6 (ESI). The XPS spectra of C 1s are centered at 287.8 and 284.6 eV. The first peak at 287.8 eV is attributed to the  $sp^2$ -hybridized carbon atoms in the aromatic rings of g-C<sub>3</sub>N<sub>4</sub>, while the other peak at 284.6 eV is assigned to fortuitous carbon impurities. The N 1s spectrum of Ni<sub>37</sub>Pt<sub>63</sub>/g-C<sub>3</sub>N<sub>4</sub> shows two distinct peaks at binding energies of 399.8 and 398.1 eV that are attributed to amino groups (C–N–H) and the sp<sup>2</sup>-hybridized nitrogen atoms of triazine (C=N-C) units, respectively. These assignments are in good agreement with the reported values for g-C<sub>3</sub>N<sub>4</sub><sup>57</sup>. Furthermore, the XPS results (Fig. S6, ESI) of Ni<sub>37</sub>Pt<sub>63</sub>/g-C<sub>3</sub>N<sub>4</sub> demonstrate the presence of metallic Ni<sup>0</sup> with Ni  $2p_{3/2}$  at 855.2 eV and Ni  $2p_{1/2}$  at 872.7 eV, as well as metallic  $Pt^0$  with  $Pt 4f_{7/2}$  71.5 eV and  $Pt 4f_{5/2}$  74.7 eV<sup>34-36,43,45-49</sup>. The binding energies for Ni 2p and Pt 4f in Ni<sub>37</sub>Pt<sub>63</sub> NPs were different from those of pure Ni and Pt NPs; thus, the XPS results confirm the alloy structure of  $Ni_{37}Pt_{63}$  NPs in  $Ni_{37}Pt_{63}/g-C_3N_4$ . The formation of oxidized Ni centered at 861.1 and 879.3 eV is a result of the reported sample preparation process for XPS measurements<sup>43,46,49</sup>. The results obtained from XRD, HRTEM, and XPS all demonstrate that NiPt NPs form an alloy when deposited on the surface of g-C<sub>3</sub>N<sub>4</sub>.

In conclusion, well-dispersed NiPt NPs have been successfully immobilized on g-C<sub>3</sub>N<sub>4</sub> using a simple co-reduction method, which catalyze the dehydrogenation of hydrous hydrazine in an alkaline solution. The dehydrogenation performance of the catalysts depends on the composition of NiPt in the as-synthesized catalysts, indicating a synergistic molecular-scale alloy effect in bimetallic NiPt NPs. The Ni<sub>37</sub>Pt<sub>63</sub>/g-C<sub>3</sub>N<sub>4</sub> catalysts demonstrate 100% hydrogen selectivity and

#### COMMUNICATION

remarkable catalytic performance with a maximum TOF value of 570  $h^{-1}$  at 323 K, which is much higher than most of literature values for NiPt catalysts (Table 1). Designing and developing these high-performance catalysts using g-C\_3N\_4 as a support may accelerate the use of hydrous hydrazine as a hydrogen storage material.

#### Acknowledgements

Financial supports from National Natural Science Foundation of China (21376005, 21476001) and the Program for Zhejiang Leading Team of S&T Innovation (2013TD07) are gratefully appreciated.

#### Notes and references

- 1 M. S. Dresselhaus and I. L. Thomas, Nature, 2001, 414, 332-337.
- 2 A. Züttel, A. Borgschulte and L. Schlapbach, Hydrogen as a Future Energy Carrier, Wiley-VCH, Weinheim, 2008.
- 3 D. A. J. Rand and R. M. Dell, Hydrogen Energy: Challenges and Prospects, RSC, Cambridge, 2008.
- 4 J. Graetz, Chem. Soc. Rev., 2009, 38, 73-82.
- 5 M. Nielsen, E. Alberico, W. Baumann, H.-J. Drexler, H. Junge, S. Gladiali and M. Beller, *Nature*, 2013, **495**, 85-89.
- 6 N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe and O. M. Yaghi, *Science*, 2003, **300**, 1127-1129.
- 7 S. Satyapal, J. Petrovic, C. Read, G. Thomas and G. Ordaz, *Catal. Today*, 2007, **120**, 246-256.
- 8 M. Yadav and Q. Xu, Energy Environ. Sci., 2012, 5, 9698-9725.
- 9 A. W. C. Van de Berg and C. O. Areán, *Chem. Commun.*, 2008, 668-681.
- 10 C. W. Hamilton, R. T. Baker, A. Staubitzc and I. Manners, *Chem. Soc. Rev.*, 2009, **38**, 279-293.
- 11 U. Eberle, M. Felderhoff and F. Schuth, *Angew. Chem. Int. Ed.*, 2009, **48**, 6608-6630.
- 12 L. Schlapbach and A. Züttel, Nature, 2001, 414, 353–358.
- 13 J. Yang, A. Sudik, C. Wolverton and D. J. Siegel, *Chem. Soc. Rev.*, 2010, **39**, 656-675.
- 14 S. I. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel and C. M. Jensen, *Chem. Rev.*, 2007, **107**, 4111-4132.
- 15 Q. L. Zhu and Q. Xu, Energy Environ. Sci., 2015, 8, 478-512.
- 16 D. G. Tong, D. M. Tang, W. Chu, G. F. Gu and P. Wu, *J. Mater. Chem. A*, 2013, **1**, 6425–6432.
- 17 L. He, Y. Q. Huang, A. Q. Wang, X. D. Wang, X. W. Chen, J. J. Delgado and T. Zhang, *Angew. Chem.*, Int. Ed., 2012, **51**, 6191– 6194.
- 18 M. Y. Zheng, X. W. Chen, R. H. Cheng, N. Li, J. Sun, X. D. Wang and T. Zhang, *Catal. Commun.*, 2006, 7, 187–191.
- 19 J. J. Zhang, Q. Kang, Z. Q. Yang, H. B. Dai, D. W. Zhuang and P. Wang, J. Mater. Chem. A, 2013, 1, 11623–11628.
- 20 S. K. Singh, A. K. Singh, K. Aranishi and Q. Xu, J. Am. Chem. Soc., 2011, 133, 19638–19641.
- 21 H. L. Wang, J. M. Yan, S. J. Li, X. W. Zhang and Q. Jiang, *J. Mater. Chem. A*, 2015, **3**, 121–124.
- 22 J. Wang, Y. Li and Y. Zhang, *Adv. Funct. Mater.*, 2014, **24**, 7073–7077.

- 23 X. W. Chen, T. Zhang, M. Y. Zheng, Z. L. Wu, W. C. Wu and C. Li, *J. Catal.*, 2004, **224**, 473–478.
- 24 L. He, Y. Q. Huang, X. Y. Liu, L. Li, A. Q. Wang, X. D. Wang, C. Y. Mou and T. Zhang, *Appl. Catal. B: Environ.*, 2014, **147**, 779–788.
- 25 D. G. Tong, X. L. Zeng, W. Chu, D. Wang and P. Wu, *Mater. Res. Bull.*, 2010, **45**, 442–447.
- 26 J. B. Yoo, H. S. Kim, S. H. Kang, B. Lee and N. H. Hur, *J. Mater. Chem. A*, 2014, **2**, 18929–18937.
- 27 S. K. Singh, X. B. Zhang and Q. Xu, J. Am. Chem. Soc., 2009, **131**, 9894–9895.
- 28 Z. J. Zhang, Z. H. Lu, H. L. Tan, X. S. Chen and Q. L. Yao, *J. Mater. Chem. A*, 2015, **3**, 23520–23529.
- 30 L. He, Y. Q. Huang, A. Q. Wang, Y. Liu, X. Y. Liu, X. W. Chen, J. J. Delgado, X. D. Wang and T. Zhang, *J. Catal.*, 2013, **298**, 1-9.
- 31 S. K. Singh and Q. Xu, J. Am. Chem. Soc., 2009, 131(50), 18032– 18033.
- 32 J. Wang, W. Li, Y. R. Wen, L. Gu and Y. Zhang, *Adv. Energy Mater.*, 2015, 1401879.
- 33 D. Bhattacharjee and S. Dasgupta, J. Mater. Chem. A, 2015, **3**, 24371–24378.
- 34 A. K. Singh and Q. Xu, Int. J. Hydrogen Energy, 2014, 39, 9128-9134.
- 35 Y. Y. Jiang, Q. Kang, J. J. Zhang, H. B. Dai and P. Wang, J. Power Sources, 2015, 273, 554–560.
- 36 H. L. Wang, J. M. Yan, Z. L. Wang, S. II O and Q. Jiang, J. Mater. Chem. A, 2013, 1, 14957–14962.
- 37 J. Lin, J. Chen and W. P. Su, Adv. Synth. Catal., 2013, 355, 41–46.
- 38 B. Q. Xia, N. Cao, H. M. Dai, J. Su, X. J. Wu, W. Luo and G. Z. Cheng, ChemCatChem, 2014, 6, 2549–2552.
- 39 Y.Y. Jiang, H.B. Dai, Y.J. Zhong, D.M. Chen, and P. Wang, *Chem. Eur. J.*, 2015, **21**, 15439 15445.
- 40 B. Q. Xia, K. Chen, W. Luo and G. Z. Cheng, *Nano Res.*, 2015, **8**, 3472–3479.
- 41 J. Wang, X. B. Zhang, Z. L. Wang, L. M. Wang and Y. Zhang, *Energy Environ. Sci.*, 2012, **5**, 6885–6888.
- 42 J. K. Sun and Q. Xu, ChemCatChem, 2015, 7, 526–531.
- 43 N. Cao, L. Yang, H. M. Dai, T. Liu, J. Su, X. J. Wu, W. Luo and G. Z. Cheng, *Inorg. Chem.*, 2014, **53**, 10122–10128.
- 44 P. P. Zhao, N. Cao, W. Luo and G. Z. Cheng, J. Mater. Chem. A, 2015, 3, 12468-12475.
- 45 N. Cao, L. Yang, C. Du, J. Su, W. Luo and G. Z. Cheng, J. Mater. Chem. A, 2014, 2, 14344–14347.
- 46 N. Cao, J. Su, W. Luo and G. Z. Cheng, Int. J. Hydrogen Energy, 2014, 39, 9726-9734.
- 47 Y. S. Du, J. Su, W. Luo and G. Z. Cheng, *ACS Appl. Mater. Interfaces*, 2015, **7**, 1031–1034.
- 48 F. Z. Song, Q. L. Zhu and Q. Xu, J. Mater. Chem. A, 2015, 3, 23090-23094.
- 49 L. Wen, X. Q. Du, J. Su, W. Luo, P. Cai and G. Z. Cheng, *Dalton Trans.*, 2015, **44**, 6212–6218.
- 50 S. K. Singh and Q. Xu, Inorg. Chem., 2010, 49(13), 6148-6152.
- 51 D. Bhattacharjee, K. Mandal and S. Dasgupta, J. Power Sources, 2015, 287, 96-99.
- 52 W. Gao, C. M. Li, H. Chen, M. Wu, S. He, M. Wei, D. G. Evansa and X. Duan, *Green Chem.*, 2014, **16**, 1560–1568.
- 53 P. P. Zhao, N. Cao, J. Su, W. Luo and G. Z. Cheng, ACS Sustainable Chem. Eng., 2015, **3**, 1086–1093.

Journal Name

- 54 Y. T. Gong, M. M. Li, H. R. Li and Y. Wang, *Green Chem.*, 2015, **17**, 715-736.
- 55 J. J. Zhu, P. Xiao, H. L. Li and S. A. C. Carabineiro, *ACS Appl. Mater. Interfaces*, 2014, **6**, 16449–16465.
- 56 S. M. Yin, J. Y. Han, T. H. Zhou and R. Xu, *Catal. Sci. Technol.*, 2015, **5**, 5048–5061.
- 57 X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen and M. Antonietti, *Nat. Mater.*, 2009, **8**, 76-80.
- 58 T. Yuan, H. F. Gong, K. Kailasam, Y. X. Zhao, A. Thomas and J. J. Zhu, *J. Catal.*, 2015, **326**, 38–42.
- 59 S. K. Singh, Z. H. Lu and Q. Xu, *Eur. J. Inorg. Chem.*, 2011, **14**, 2232–2237.

# Nickel–platinum Nanoparticles Immobilized on Graphitic Carbon Nitride as Highly Efficient Catalyst for Hydrogen Release from

# **Hydrous Hydrazine**

Lixin Xu<sup>a</sup>, Na Liu<sup>a</sup>, Bing Hong<sup>a</sup>, Ping Cui<sup>a</sup>, Dang-guo Cheng<sup>b</sup>, Fengqiu Chen<sup>b</sup>, Yue An<sup>b</sup>,

Chao Wan<sup>a,\*</sup>

<sup>a</sup> College of Chemistry and Chemical Engineering, Anhui University of Technology, 59 Hudong

Road, Ma'anshan 243002, China

<sup>b</sup> College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road,



Hangzhou 310027, China

E-mail address: wanchao1219@hotmail.com (Chao Wan)

<sup>\*</sup> Corresponding author. Tel.: +86 555 2311807; Fax: +86 555 2311822.