This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Palladium-Catalyzed Decarboxylative ortho-Aroylation of N-Acetyl-1, 2, 3, 4-Tetrahydroquinolines with α-Oxoarylacetic Acids

Lu Han1,2, Yahui Wang3, He Song1,2, Huatao Han1,2, Lulu Wang1,2, Wenyi Chu*1,2 and Zhizhong Sun*1,2

1School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
2Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, Harbin 150080, P. R. China
3Harbin Environmental Monitoring Central Station, Harbin 150076, P. R. China
(E-mail: wenyichu@hlju.edu.cn, sunzz@hlju.edu.cn)

Abstract

A mild, practical and efficient palladium-catalyzed decarboxylative ortho-arylation of N-acetyl-1, 2, 3, 4-tetrahydroquinolines with α-oxoarylacetic acids via C-H bond activation is described. This protocol provides efficient access to a series of C8- aroyl terahydroquinolines.

Introduction

Aryl ketones are important structural motifs in the synthesis of dyes, pesticides, medicine and other chemicals.1 The conventional route to synthesize aryl ketones is Friedel-Crafts acylation of aromatic compounds.2 The Friedel-Crafts acylation is limited to the electronic effect of aromatic substrates and requires harsh reaction conditions, even produces harmful substances. Some methods for synthesis of aryl ketones have been developed and made great progress.

In recent years, transition-metal-catalyzed decarboxylative cross-coupling reactions become an effective method to synthetize aryl ketones by C-C bond formations since these reactions need not use expensive organometallic reagents and do not generate toxic metal salt wastes.3 Moreover, the carboxylic acids as the raw materials are readily available and inexpensive. In these reactions, the carboxylic acids are catalyzed and cause decarboxylative...
cross-coupling reactions which have high selectivities and tolerance of functional groups. Since Myers et al. and Goossen et al. reported Pd-catalyzed decarboxylative couplings, a number of extensive studies have been carried out in this area. Recently, the novel decarboxylative acylations of aromatic C-H bonds with α-oxocarboxylic acids as acyl reagents are reported. For instance, Goossen et al. first reported the Pd/Cu-catalyzed decarboxylative acylation reaction of aryl bromides with α-keto carboxylate salts to afford diaryl ketones. Shortly thereafter, Ge and coworkers demonstrated the palladium-catalyzed decarboxylative ortho-acylation of acetanilides and phenylpyridines with α-oxocarboxylic acids. Wang and coworkers reported the palladium-catalyzed decarboxylative acylation of enamides with α-oxocarboxylic acids. Subsequently, Kim and coworkers reported the Pd-catalyzed decarboxylative acylation of o-methyl ketoximes, phenylacetamides and o-phenyl carbamates. Tan, Wang, Zhang and Lang respectively described the decarboxylative acylation of oximes, azoxybenzenes, 2-aryloxypyridines and benzofurans/benzothiophenes in the presence of palladium catalysis. At present, there were some studies on the acylation of indole as important bioactive natural products. These acylation of indole at C-2 position, C-3 position and C-7 position were reported. All these methods provided new ideas to synthesize bioactive aryl ketones.

1, 2, 3, 4-tetrahydroquinolines are fundamental building blocks for natural products, medicinally-relevant molecules and new organic functional materials. The compounds containing tetrahydroquinoline structural units display a variety of bioactivities, such as antiarrhythmia, antitumor, immune protection and antiparasite. Therefore, we choose N-acetyl-1, 2, 3, 4-tetrahydroquinolines as model substrates for optimizing the
decarboxylative ortho-arylation with α-oxoarylacetic acids. We hope that the protocol has a
broad substrate scope, simple reaction conditions and good yield.

Result and discussion

The decarboxylative coupling reaction of N-acetyl-1, 2, 3, 4-tetrahydroquinoline (1a) and
α-oxophenylacetic acid (2a) was investigated in the presence of 10 mol % Pd(TFA)₂ as
catalyst, (NH₄)₂S₂O₈ (3 equiv.) as the oxidant in diglyme at room temperature for 10 hours. To
our delight, the desired product (3a) could be obtained in 60% yield. Encouraged by the initial
result, we began to optimize the reaction conditions with respect to different palladium
catalysts, oxidants, solvents and reaction temperature. The selected results were summarized
in Table 1.

Table 1 Optimization of reaction condition

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Oxidant (equiv.)</th>
<th>Solvents</th>
<th>Temperature(°C)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pd(TFA)₂</td>
<td>(NH₄)₂S₂O₈ (3)</td>
<td>Diglyme</td>
<td>rt</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>Pd(TFA)₂</td>
<td>(NH₄)₂S₂O₈ (3)</td>
<td>DCE</td>
<td>rt</td>
<td>92</td>
</tr>
<tr>
<td>3</td>
<td>Pd(TFA)₂</td>
<td>(NH₄)₂S₂O₈ (3)</td>
<td>1,4-dioxane</td>
<td>rt</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Pd(TFA)₂</td>
<td>(NH₄)₂S₂O₈ (3)</td>
<td>DCM</td>
<td>rt</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>Pd(OAc)₂</td>
<td>(NH₄)₂S₂O₈ (3)</td>
<td>DCE</td>
<td>rt</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>PdCl₂</td>
<td>(NH₄)₂S₂O₈ (3)</td>
<td>DCE</td>
<td>rt</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Pd(TFA)₂</td>
<td>K₂S₂O₈ (3)</td>
<td>DCE</td>
<td>rt</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>Pd(TFA)₂</td>
<td>Ag₂CO₃ (3)</td>
<td>DCE</td>
<td>rt</td>
<td>trace</td>
</tr>
<tr>
<td>9</td>
<td>Pd(TFA)₂</td>
<td>Ag₂O (3)</td>
<td>DCE</td>
<td>rt</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Pd(TFA)₂</td>
<td>Cu(OAc)₂ (3)</td>
<td>DCE</td>
<td>rt</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>Pd(TFA)₂</td>
<td>(NH₄)₂S₂O₈ (4)</td>
<td>DCE</td>
<td>rt</td>
<td>85</td>
</tr>
<tr>
<td>12</td>
<td>Pd(TFA)₂</td>
<td>(NH₄)₂S₂O₈ (2)</td>
<td>DCE</td>
<td>rt</td>
<td>40</td>
</tr>
<tr>
<td>13</td>
<td>Pd(TFA)₂</td>
<td>(NH₄)₂S₂O₈ (3)</td>
<td>DCE</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>Pd(TFA)₂</td>
<td>(NH₄)₂S₂O₈ (3)</td>
<td>DCE</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>15</td>
<td>Pd(TFA)₂</td>
<td>(NH₄)₂S₂O₈ (3)</td>
<td>DCE</td>
<td>rt</td>
<td>48</td>
</tr>
<tr>
<td>16</td>
<td>Pd(TFA)₂</td>
<td>(NH₄)₂S₂O₈ (3)</td>
<td>DCE</td>
<td>rt</td>
<td>90</td>
</tr>
</tbody>
</table>
Conditions: 1a (0.2 mmol), 2a (0.4 mmol), Pd catalyst (10 mol %), oxidant, 2 mL of solvent for 10 h. b Isolated yield by flash column chromatography. c Pd(TFA)₂ (5 mol %). d Pd(TFA)₂ (20 mol %).

After screening of solvents under same conditions, DCE was found to be the most effective solvent in this coupling reaction, and the desired product (3a) could be obtained in 92% yield (entries 1-4). Further studies showed that Pd(OAc)₂ and PdCl₂ did not display higher catalytic activity than Pd(TFA)₂ (entry 2 and entries 5-6). Other oxidants such as K₂S₂O₈, Ag₂CO₃, Ag₂O and Cu(OAc)₂ were less effective in comparison with (NH₄)₂S₂O₈ in the coupling reaction (entry 2 and entries 7-10). When the amount of oxidant was increased or decreased, the yield of product decreased slightly (entries 11-12). No desired product was obtained when the temperature was 0°C (entry 13). The higher temperature only afforded our desired product in 60% (entry 14). We found that the 5 mol % Pd catalyst could not promote the reaction more efficiently (entry 15). The yield of product was not increased when the amount of Pd(TFA)₂ was 20 mol % (entry 16). Based on the above experimental results, an optimized synthesis process for the decarboxylative coupling reaction of N-acetyl-1, 2, 3, 4-tetrahydroquinoline (1a) and α-oxophenylacetic acid (2a) is obtained. The optimal reaction conditions are N-acetyl-1, 2, 3, 4-tetrahydroquinolines as the substrates, α-oxoarylacetic acids as acylation reagents, 3 equiv. of (NH₄)₂S₂O₈ as oxidant, 10 mol % Pd(TFA)₂ as catalyst in DCE at room temperature.

Table 2 Scope of N-acetyl-1, 2, 3, 4-tetrahydroquinolines

<table>
<thead>
<tr>
<th>R</th>
<th>1a-g</th>
<th>2a</th>
<th>Pd(TFA)₂ 10 mol%</th>
<th>(NH₄)₂S₂O₈ (3 equiv.)</th>
<th>DCE, rt</th>
<th>3a-g</th>
</tr>
</thead>
</table>
To explore the substrate scope of this protocol, the optimized reaction conditions were applied to a series of N-acetyl-1, 2, 3, 4-tetrahydroquinolines. As shown in Table 2, N-acetyl-1, 2, 3, 4-tetrahydroquinolines 1b-1d with substituents (-CH₃, -F, -Cl) at the 6-position of aromatic ring were found to be favored in the decarboxylative acylation reaction to afford the desired products 3b-3d in high yields. About N-acetyl-1, 2, 3, 4-tetrahydroquinolines 1e-1g with substituents (-CH₃, -Cl, -CF₃) at the 7-position of aromatic ring, the corresponding product (3e) could be obtained in 80% yield, but 30 hours was needed to get product 3f in 70%, a trace amount of the desired product 3g was obtained. Therefore, the electron-donating groups are beneficial to the reaction compared with electron-withdrawing. Because of the steric hindrance, the effect of the substituents at the 7-position of aromatic ring was greater than the substituents at the 6-position of aromatic ring.

Table 3 Scope of α-oxoarylacetic acids

<table>
<thead>
<tr>
<th>Reaction conditions: 1a-g (0.2 mmol), 2a (0.4 mmol), Pd(TFA)$_2$ (10 mol %), (NH$_4$)$_2$S$_2$O$_8$ (0.6 mmol), 2 mL of DCE, room temperature, 10 h.</th>
<th>Isolated yield by flash column chromatography.</th>
</tr>
</thead>
</table>

3a	92%
3b	95%
3c	85%
3d	89%
3e	80%
3f	70%
3g	trace

Table 3 Scope of α-oxoarylacetic acids

- Reaction conditions: 1a-g (0.2 mmol), 2a (0.4 mmol), Pd(TFA)$_2$ (10 mol %), (NH$_4$)$_2$S$_2$O$_8$ (0.6 mmol), 2 mL of DCE, room temperature, 10 h. Isolated yield by flash column chromatography.
To further explore the substrate scope and limitations of this process, different α-oxoarylacetic acids were used as acylation reagents, as shown in Table 3. The α-oxoarylacetic acids with either electron-donating or electron-withdrawing group at the para- or meta-position were well tolerated under the optimal reaction conditions (3h-3o). Meanwhile, α-oxoarylacetic acids with a naphthyl moiety also participated in the acylation process to provide the products in good yields (3p-3q). Notably, 2-(thiophen-2-yl)-α-oxoacetic acid and the 2-(furan-2-yl)-α-oxoacetic acid as the decarboylative acylation reagents gave products in low yield (3r) or no product (3s).
The reaction mechanism was discussed and hypothesized. When one equivalent of 2, 2, 6, 6-tetramethylpiperidine-1-oyl (TEMPO; a radical trapping regent) was added to the reaction, the desired product 3a was not detected. The reaction rate was accelerated under a fluorescent bulb (18 W). So the reaction should have free radicals to participate. On the basis of previous reports17, a plausible reaction mechanism is outlined in Scheme 1. First, a coordination of 1a to the Pd(II) catalyst and the subsequent cyclopalladation at the C-8 position provides the palladacycle A via C-H activation. On the other hand, the acid 2a generates a radical intermediate B by (NH\textsubscript{4})\textsubscript{2}S\textsubscript{2}O\textsubscript{8}. Subsequently, the palladacycle A reacts with B to afford the intermediate C which forms acyl-Pd intermediate C by oxidative addition. Finally, 8-acylated N-acetyl-1, 2, 3, 4-tetrahydroquinoline 3a is formed by reductive elimination, and meanwhile the Pd(II) species is regenerated to complete the catalytic cycle.

Conclusion

In conclusion, we have developed an efficient palladium-catalyzed decarboxylative ortho-acylation of N-acetyl-1, 2, 3, 4-tetrahydroquinolines with α-oxoarylacetic acids. The reaction tolerates various functional groups with good to excellent yields. This novel method
provides an approach to access important aryl ketones derivatives.

Experimental

General information

Unless otherwise stated, all commercial reagents and solvents were used without additional purification. Analytical thin layer chromatography (TLC) was performed on Haiyang pre-coated silica gel GF₂₅₄ plates. Visualization on TLC was achieved by the use of UV light (254 nm). Column chromatography was undertaken on silica gel (230-400 mesh) using a proper eluent system. ¹H NMR was recorded on Bruker Avance 400 Spectrometer (400 MHz). ¹³C NMR was recorded on Bruker Avance 400 Spectrometer (100 MHz). All ¹H NMR and ¹³C NMR chemical shifts are referenced to the residual ¹H and ¹³C solvent (relative to TMS) and are reported in units of ppm. Melting points were measured with a Shenguang Melting Point apparatus. N-acetyl-1, 2, 3, 4-tetrahydroquinolines¹⁸ and the α-oxoarylacetic acids¹⁹ were prepared according to the relevant literature procedures. The other chemicals or reagents were obtained from commercial sources and used directly.

General procedure for the preparation of 3a-s

A 10 mL vial was charged with N-acetyl-1, 2, 3, 4-tetrahydroquinolines (1a, 0.2 mmol), α-oxocarboxylic acids (2a, 0.4 mmol), Pd(TFA)₂ (0.01 mmol), (NH₄)₂S₂O₈ (0.6 mmol) and DCE (2 mL). The reaction vial was then capped and stirred at room temperature for 10 h (monitored by TLC). The reaction mixture was washed by sodium carbonate solution (5%, 20 mL) and the aqueous layer was extracted with ethyl acetate (3×20 mL). Then the combined organic phase was dried over Na₂SO₄. Removal of the solvent under reduced pressure gave a crude product which was purified on silica gel (petroleum ether/ethyl acetate) to afford the
products.

1-(8-benzyol-3,4-dihydroquinolin-1(2H)-yl)ethan-1-one (3a). Yellow liquid. Yield: 92%.

\[^1H \text{NMR (400 MHz, DMSO-d}_6\] δ 7.62-7.56 (m, 3H), 7.47 (dd, \(J = 8.8, 6.8 \text{ Hz, 3H}), 7.43-7.37 (m, 1H), 7.22 (d, \(J = 1.4 \text{ Hz, 1H}), 3.54 (t, \(J = 6.4 \text{ Hz, 2H}), 2.78 (t, \(J = 6.6 \text{ Hz, 2H}), 1.96 (t, \(J = 6.5 \text{ Hz, 2H}), 1.69 (s, 3H). \]

\[^{13}C \text{ NMR (100 MHz, Chloroform-d)} \] δ 194.8, 170.0, 137.5, 136.0, 134.6, 133.4, 132.3, 131.0, 130.2, 128.9, 128.6, 128.0, 127.4, 46.1, 27.0, 24.5, 22.4. HRMS (EI) calcd for C\(_{18}\)H\(_{17}\)NO\(_2\) [M]\(^+\): 280.1338. Found: 280.1342.

1-(8-benzyol-6-methyl-3,4-dihydroquinolin-1(2H)-yl)ethan-1-one (3b). A yellow solid.

Yield: 95%. m.p. 106-108°C.

\[^1H \text{NMR (400 MHz, Chloroform-d)} \] δ 7.83 (t, \(J = 7.2 \text{ Hz, 2H}), 7.59 (dd, \(J = 8.0, 3.0 \text{ Hz, 2H}), 7.52 (d, \(J = 10.3, 6.9 \text{ Hz, 2H}), 7.04 (d, \(J = 7.8 \text{ Hz, 1H}), 3.66 (t, \(J = 7.0 \text{ Hz, 2H}), 2.75 (t, \(J = 6.9 \text{ Hz, 2H}), 2.30 (s, 3H), 2.08 (t, 2H), 1.94 (s, 3H). \]

\[^{13}C \text{ NMR (100 MHz, Chloroform-d)} \] δ 195.0 169.9, 139.6, 137.8, 133.2, 132.1, 130.1, 128.9, 128.5, 128.0, 126.9, 126.1, 45.7, 29.8, 27.0, 24.2, 22.4. FT-IR (KBr disc): 1674, 1390 cm\(^{-1}\). UV-vis spectra absorption peak: 206, 241 nm. HRMS (EI) calcd for C\(_{19}\)H\(_{19}\)NO\(_2\) [M]\(^+\): 294.1495. Found: 294.1489. Anal. Calcd. for C\(_{19}\)H\(_{19}\)NO\(_2\): Elemental Analysis: C, 77.79; H, 6.53; N, 4.77.

Found: C, 77.75, H, 6.58; N, 4.76.

1-(8-benzyol-6-fluoro-3,4-dihydroquinolin-1(2H)-yl)ethan-1-one (3c). A light yellow solid.

Yield: 85%. m.p. 103-105°C.

\[^1H \text{NMR (400 MHz, Chloroform-d)} \] δ 7.82 (d, \(J = 7.6 \text{ Hz, 2H}), 7.56 (d, \(J = 19.7, 7.4 \text{ Hz, 3H}), 7.00 (d, \(J = 8.4 \text{ Hz, 2H}), 3.67 (t, \(J = 6.4 \text{ Hz, 2H}), 2.83 (t, \(J = 6.9 \text{ Hz, 2H}), 2.09-2.04 (t, 2H), 1.94 (s, 3H). \]

\[^{13}C \text{ NMR (101 MHz, Chloroform-d)} \] δ 193.3, 169.9, 136.8, 132.6, 130.1, 128.9, 128.7, 128.1, 117.3, 117.0, 114.4, 114.2, 45.9, 27.1, 24.3,
22.2. FT-IR (KBr disc): 1671, 1393 cm\(^{-1}\). UV-vis spectra absorption peak: 207, 244 nm.

1-(8-benzoyl-6-chloro-3,4-dihydroquinolin-1(2H)-yl)ethan-1-one (3d). A pale yellow solid.

Yield: 89%. m.p. 118-120\(^\circ\)C. \(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 7.85-7.80 (m, 2H), 7.62-7.49 (m, 3H), 7.45 (t, \(J = 7.6\) Hz, 2H), 3.68 (t, \(J = 6.4\) Hz, 2H), 2.81 (t, \(J = 6.8\) Hz, 2H), 2.06 (t, \(J = 6.5\) Hz, 2H), 1.95 (s, 3H). FT-IR (KBr disc): 1670, 1323 cm\(^{-1}\). UV-vis spectra absorption peak: 206, 241 nm. HRMS (EI) calcd for C\(_{18}\)H\(_{16}\)ClNO\(_2\) [M]\(^+\): 313.0949. Found: 313.0951. Anal. Calcd. for C\(_{18}\)H\(_{16}\)ClNO\(_2\): Elemental Analysis: C, 68.90; H, 5.14; Cl, 11.30; N, 4.46. Found: C, 68.92, H, 5.16; Cl 11.20, N, 4.70.

1-(8-benzoyl-7-methyl-3,4-dihydroquinolin-1(2H)-yl)ethan-1-one (3e). A yellow solid.

Yield: 80%. m.p. 101-103\(^\circ\)C. \(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 7.81 (d, \(J = 7.7\) Hz, 2H), 7.59 (d, \(J = 7.6\) Hz, 1H), 7.52 (d, \(J = 8.4\) Hz, 2H), 7.09 (d, 2H), 3.63 (t, \(J = 6.6\) Hz, 2H), 2.78 (t, \(J = 6.9\) Hz, 2H), 2.30 (s, 3H), 2.03 (t, \(J = 6.5\) Hz, 2H), 1.90 (s, 3H). \(^{13}\)C NMR (100 MHz, Chloroform-\(d\)) \(\delta\) 194.9, 170.0, 137.6, 134.3, 133.3, 133.2, 132.2, 131.5, 130.0, 128.9, 128.6, 128.5, 46.0, 26.8, 24.5, 22.2, 20.9. FT-IR (KBr disc): 1657, 1313 cm\(^{-1}\). UV-vis spectra absorption peak: 206, 243 nm. HRMS (EI) calcd for C\(_{18}\)H\(_{16}\)NO\(_2\) [M]\(^+\): 294.1495. Found: 294.1487. Anal. Calcd. for C\(_{18}\)H\(_{16}\)NO\(_2\): Elemental Analysis: C, 77.79; H, 6.53; N, 4.77. Found: C, 77.82, H, 6.47; N, 4.80.

1-(8-benzoyl-7-chloro-3,4-dihydroquinolin-1(2H)-yl)ethan-1-one (3f). A white solid. Yield: 70%. m.p. 127-129\(^\circ\)C. \(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 7.96 (d, \(J = 8.4\) Hz, 1H),
7.14-7.06 (m, 4H), 5.95 (dd, J = 8.3, 6.6 Hz, 2H), 4.21 (t, J = 6.3 Hz, 2H), 2.79 (dd, J = 6.7, 5.8 Hz, 2H), 2.58 (t, J = 4.5 Hz, 2H), 2.27 (s, 3H). 1C NMR (100 MHz, Chloroform-d) δ 193.3, 170.0, 136.8, 136.1, 135.3, 132.7, 130.5, 130.2, 129.0, 128.7, 128.2, 127.2, 46.0, 27.0, 24.3, 22.4. FT-IR (KBr disc): 1659, 1396 cm$^{-1}$. UV-vis spectra absorption peak: 204, 243 nm.

HRMS (EI) calcld for C$_{18}$H$_{16}$ClNO$_2$ [M]$^+$: 313.0949. Found: 313.0954. Anal. Calcd. for C$_{18}$H$_{16}$ClNO$_2$: Elemental Analysis: C, 68.90; H, 5.14; Cl, 11.30; N, 4.46. Found: C, 68.88, H, 5.13; Cl 11.27, N, 4.52.

1G(8G(4Gmethylbenzoyl)G3,4GdihydroquinolinG1(2H)Gyl)ethanG1Gone (3h). A yellow solid.

Yield: 92%. m.p. 118-120ºC. 1H NMR (400 MHz, Chloroform-d) δ 7.76 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 8.2 Hz, 2H), 7.23 (d, J = 9.4 Hz, 2H), 7.14 (d, J = 7.6 Hz, 1H), 3.71 (t, J = 6.4 Hz, 2H), 2.83 (t, J = 5.5 Hz, 2H), 2.40 (s, 3H), 2.07 (t, J = 6.5 Hz, 2H), 1.98 (s, 3H). 1C NMR (100 MHz, Chloroform-d) δ 194.5, 169.9, 144.3, 143.0, 134.2, 130.7, 130.5, 130.4, 128.8, 127.2, 126.4, 124.5, 46.1, 27.0, 24.6, 22.4, 21.8. FT-IR (KBr disc): 1665, 1328 cm$^{-1}$. UV-vis spectra absorption peak: 204, 240 nm.

1-(8-(4-methoxybenzoyl)-3,4-dihydroquinolin-1(2H)-yl)ethan-1-one (3i). A light solid.

Yield: 85%. m.p. 122-124ºC. 1H NMR (400 MHz, Chloroform-d) δ 7.90-7.83 (m, 2H), 7.64-7.57 (m, 1H), 7.35 (d, J = 14.9, 7.3 Hz, 1H), 7.25-7.21 (m, 1H), 7.13 (t, J = 7.5 Hz, 1H), 3.86 (s, 3H), 3.73 (t, J = 6.4 Hz, 2H), 2.83 (t, J = 6.8 Hz, 2H), 2.07 (t, J = 6.6 Hz, 2H), 2.02 (s, 3H). 1C NMR (100 MHz, Chloroform-d) δ 193.7, 169.8, 138.7, 135.2, 132.5, 131.5, 130.6, 128.2, 127.2, 126.4, 124.4, 113.4, 55.5, 46.1, 29.8, 26.9, 22.3. FT-IR (KBr disc): 1663, 1394

1-(8-(4-fluorobenzoyl)-3,4-dihydroquinolin-1(2H)-yl)ethan-1-one (3j). A white solid. Yield: 90%. m.p. 129-131°C. 1H NMR (400 MHz, Chloroform-d) δ 7.93-7.87 (m, 2H), 7.20 (dd, J = 7.6, 1.8 Hz, 1H), 7.15 (d, J = 7.4 Hz, 1H), 7.13-7.07 (m, 3H), 3.73 (t, J = 6.4 Hz, 2H), 2.85 (t, J = 6.7 Hz, 2H), 2.10 (m, 2H), 2.03 (s, 3H). 13C NMR (100 MHz, Chloroform-d) δ 193.4, 170.0, 138.7, 135.3, 134.3, 133.4, 133.4, 131.7, 131.1, 129.0, 128.4, 126.9, 124.5, 46.2, 27.0, 24.4, 22.5. FT-IR (KBr disc): 1668, 1328 cm$^{-1}$. UV-vis spectra absorption peak: 206, 241 nm.

1-(8-(4-chlorobenzoyl)-3,4-dihydroquinolin-1(2H)-yl)ethan-1-one (3k). A yellow solid. Yield: 88%. m.p. 152-154°C. 1H NMR (400 MHz, Chloroform-d) δ 7.81 (d, J = 8.1 Hz, 2H), 7.41 (d, J = 7.8 Hz, 3H), 7.17 (dd, J = 16.7, 7.3 Hz, 2H), 3.73 (t, J = 6.4 Hz, 2H), 2.85 (t, J = 6.8 Hz, 2H), 2.08 (t, J = 6.5 Hz, 2H), 2.02 (s, 3H). 13C NMR (100 MHz, Chloroform-d) δ 193.4, 170.0, 138.7, 135.3, 134.3, 133.4, 133.4, 131.7, 131.1, 129.0, 128.4, 126.9, 124.5, 46.2, 27.0, 24.4, 22.5. FT-IR (KBr disc): 1673, 1394 cm$^{-1}$. UV-vis spectra absorption peak: 206, 240 nm.

HRMS (EI) calcld for C$_{19}$H$_{16}$ClNO$_2$ [M]$^+$: 313.0949. Found: 313.0952. Anal. Calcd. for C$_{19}$H$_{16}$ClNO$_2$: Elemental Analysis: C, 68.90; H, 5.14; Cl, 11.30; N, 4.46. Found: C, 68.89, H, 5.15; Cl 11.32, N, 4.44.

1-(8-(4-bromobenzoyl)-3,4-dihydroquinolin-1(2H)-yl)ethan-1-one (3l). A yellow solid.
Yield: 87%. m.p. 144-146°C. 1H NMR (400 MHz, Chloroform-d) δ 7.74 (d, $J = 8.3$ Hz, 2H), 7.57 (d, $J = 8.3$ Hz, 2H), 7.22-7.08 (m, 3H), 3.72 (t, $J = 6.4$ Hz, 2H), 2.84 (t, $J = 6.8$ Hz, 2H), 2.07 (t, $J = 6.5$ Hz, 2H), 2.01 (s, 3H). 13C NMR (100 MHz, Chloroform-d) δ 193.6, 169.9, 136.1, 135.7, 134.2, 133.4, 131.8, 131.3, 131.2, 130.3, 126.9, 124.5, 46.2, 27.0, 24.4, 22.5.

FT-IR (KBr disc): 1673, 1327 cm$^{-1}$. UV-vis spectra absorption peak: 209, 245 nm. HRMS (EI) calcd for C$_{18}$H$_{16}$BrNO$_2$: [M]$^+$: 358.0443. Found: 358.0450. Anal. Calcd. for C$_{18}$H$_{16}$BrNO$_2$: Elemental Analysis: C, 60.35; H, 4.50; Br, 22.30; N, 3.90. Found: C, 60.39; H, 4.47; Br, 22.28; N, 3.91.

1-(8-(4-nitrobenzoyl)-3,4-dihydroquinolin-1(2H)-yl)ethan-1-one (3m). A yellow solid.

Yield: 82%. m.p. 172-174°C. 1H NMR (400 MHz, Chloroform-d) δ 8.28 (d, $J = 8.2$ Hz, 2H), 8.04 (d, $J = 8.4$ Hz, 2H), 7.32 (d, $J = 6.8$ Hz, 1H), 7.16 (d, $J = 7.1$ Hz, 2H), 3.75 (t, $J = 6.3$ Hz, 2H), 2.88 (t, $J = 6.7$ Hz, 2H), 2.12-2.08 (t, 2H), 2.04 (s, 3H). 13C NMR (100 MHz, Chloroform-d) δ 192.5, 170.1, 149.9, 142.6, 135.5, 133.66, 133.3, 131.7, 131.2, 126.5, 124.6, 123.3, 46.3, 27.0, 24.3, 22.6. FT-IR (KBr disc): 1681, 1395 cm$^{-1}$. UV-vis spectra absorption peak: 206, 262 nm. HRMS (EI) calcd for C$_{18}$H$_{16}$N$_2$O$_4$: [M]$^+$: 325.1189. Found: 325.1193. Anal. Calcd. for C$_{18}$H$_{16}$N$_2$O$_4$: Elemental Analysis: C, 66.66; H, 4.97; N, 8.64. Found: C, 66.70; H, 4.95; N, 8.62.

1-(8-(3-methylbenzoyl)-3,4-dihydroquinolin-1(2H)-yl)ethan-1-one (3n). A light yellow solid. Yield: 93%. m.p. 91-93°C. 1H NMR (400 MHz, Chloroform-d) δ 7.62 (d, $J = 7.0$ Hz, 1H), 7.41 (d, $J = 11.9$ Hz, 1H), 7.34 (q, $J = 7.4$ Hz, 4H), 7.15 (d, $J = 7.6$ Hz, 1H), 3.69 (t, $J = 6.4$ Hz, 2H), 2.83 (t, $J = 6.7$ Hz, 2H), 2.39 (s, 3H), 2.07 (t, $J = 6.6$ Hz, 2H), 1.97 (s, 3H). 13C NMR (100 MHz, Chloroform-d) δ 195.0, 170.0, 137.7, 137.4, 134.8, 134.3, 133.4, 133.2,
130.9, 130.6, 127.9, 127.5, 127.4, 124.5, 46.1, 27.0, 24.5, 22.4, 21.5. FT-IR (KBr disc): 1666, 1392 cm$^{-1}$. UV-vis spectra absorption peak: 206, 241 nm. HRMS (EI) calcd for C$_{10}$H$_{19}$NO$_2$ [M]$^+$: 294.1495. Found: 294.1498. Anal. Calcd. for C$_{10}$H$_{19}$NO$_2$: Elemental Analysis: C, 77.79; H, 6.53; N, 4.77. Found: C, 77.75, H, 6.54; N, 4.80.

1-(8-(3-nitrobenzoyl)-3,4-dihydroquinolin-1(2H)-yl)ethan-1-one (3o). A yellow solid. Yield: 89%. m.p. 148-150°C. 1H NMR (400 MHz, Chloroform-$_d$) δ 8.67 (t, $J = 1.9$ Hz, 1H), 8.41-8.37 (m, 1H), 8.27 (dt, $J = 7.7$, 1.4 Hz, 1H), 7.65 (t, $J = 7.9$ Hz, 1H), 7.35 – 7.32 (m, 1H), 7.20-7.16 (m, 2H), 3.76 (t, $J = 6.3$ Hz, 2H), 2.89 (t, $J = 6.7$ Hz, 2H), 2.13-2.08 (m, 2H), 2.02 (s, 3H). 13C NMR (100 MHz, Chloroform-$_d$) δ 191.8, 170.0, 148.1, 139.0, 136.0, 135.6, 133.4,133.3, 131.7, 129.3, 126.7, 126.6, 125.1, 124.7, 46.3, 27.0, 24.3, 22.6. FT-IR (KBr disc): 1670, 1345 cm$^{-1}$. UV-vis spectra absorption peak: 206, 241 nm. HRMS (EI) calcd for C$_{18}$H$_{16}$N$_2$O$_4$ [M]$^+$: 325.1189. Found: 325.1195. Anal. Calcd. for C$_{18}$H$_{16}$N$_2$O$_4$: Elemental Analysis: C, 66.66; H, 4.97; N, 8.64. Found: C, 66.63, H, 4.98; N, 8.66.

1-(8-(1-naphthoyl)-3,4-dihydroquinolin-1(2H)-yl)ethan-1-one (3p). A pink solid. Yield: 95%. m.p. 133-135°C. 1H NMR (400 MHz, DMSO-$_d_6$) δ 8.33-8.28 (m, 1H), 8.09 (d, $J = 8.1$ Hz, 1H), 8.02-7.98 (m, 1H), 7.58-7.48 (m, 3H), 7.44 (dd, $J = 7.6$, 3.2 Hz, 3H), 7.29 (t, $J = 7.6$ Hz, 1H), 3.15 (t, $J = 6.5$ Hz, 2H), 2.70 (t, $J = 6.6$ Hz, 2H), 1.87-1.82 (m, 2H), 1.29 (s, 3H). 13C NMR (100 MHz, DMSO-$_d_6$) δ 194.7, 169.9, 136.4, 135.5, 135.3, 134.5, 133.3, 131.8, 131.41, 130.1, 128.5, 128.2, 127.1, 126.8, 126.2, 126.0, 124.9, 124.3, 44.7, 26.1, 24.0, 21.5. FT-IR (KBr disc): 1666, 1329 cm$^{-1}$. UV-vis spectra absorption peak: 217, 240 nm. HRMS (EI) calcd for C$_{22}$H$_{16}$NO$_2$ [M]$^+$: 330.1495. Found: 330.1498. Anal. Calcd. for C$_{22}$H$_{16}$NO$_2$: Elemental Analysis: C, 80.22; H, 5.81; N, 4.25. Found: C, 80.27, H, 5.79; N, 4.22.
1-(8-(2-naphthoyl)-3,4-dihydroquinolin-1(2H)-yl)ethan-1-one (3q). A white solid. Yield: 90%. m.p. 152-154°C. 1H NMR (400 MHz, DMSO-d_6) δ 8.18 (s, 1H), 8.10 (d, J = 8.0 Hz, 1H), 8.03-7.99 (m, 2H), 7.76 (dd, J = 8.5, 1.7 Hz, 1H), 7.62 (dt, J = 26.4, 7.2 Hz, 3H), 7.45 (d, J = 7.3 Hz, 1H), 7.36-7.25 (m, 2H), 3.55 (t, J = 6.4 Hz, 2H), 2.82 (t, J = 6.7 Hz, 2H), 2.00 (t, J = 6.5 Hz, 2H), 1.62 (s, 3H). 13C NMR (100 MHz, DMSO-d_6) δ 193.2, 169.4, 135.9, 134.5, 134.4, 133.7, 133.7, 131.8, 131.1, 130.4, 129.2, 128.1, 127.6, 127.4, 126.7, 126.6, 125.3, 124.5, 45.2, 26.3, 23.9, 21.9. FT-IR (KBr disc): 1657, 1398 cm$^{-1}$. UV-vis spectra absorption peak: 216, 241 nm. HRMS (El) calcd for C$_{22}$H$_{19}$NO$_2$ [M$^+$]: 330.1495. Found: 330.1489. Anal. Calcd. for C$_{22}$H$_{19}$NO$_2$: Elemental Analysis: C, 80.22; H, 5.81; N, 4.25. Found: C, 80.19, H, 5.82; N, 4.27.

Acknowledgements

This work was supported by Fund of Natural Science Foundation of Heilongjiang Province of China (No. B201207).

Notes and references

4 (a) A. G. Myers, D. Tanaka and M. R. Mannion, J. Am. Chem. Soc., 2002, 124, 11250-11251; (b)

Palladium-Catalyzed Decarboxylative ortho-Aroylation of N-Acetyl-1, 2, 3, 4-Tetrahydroquinolines with α-Oxoarylacetic Acids

Lu Han¹,², Yahui Wang³, He Song¹,², Huatao Han¹,², Lulu Wang¹,², Wenyi Chu*¹,² and Zhizhong Sun*¹,²

¹School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
²Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, Harbin 150080, P. R. China
³Harbin Environmental Monitoring Central Station, Harbin 150076, P. R. China

(E-mail: wenyichu@hlju.edu.cn, sunzz@hlju.edu.cn)

A mild, practical and efficient palladium-catalyzed decarboxylative ortho-arylation of N-acetyl-1, 2, 3, 4-tetrahydroquinolines with α-oxoarylacetic acids via C-H bond activation is described. This protocol provides efficient access to a series of C8- aroyl terahydroquinolines.