ORGANIC CHEMISTRY

FRONTIERS

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard **Terms & Conditions** and the **Ethical guidelines** still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

ht

http://rsc.li/frontiers-organic

1 2

3 4

5 6 7

12 13

14 15

16 17

18

19

20

21

22

23 24

25

26 27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Journal Name

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

www.rsc.org/

Manganese-catalysed hydroperoxidation of carbon–carbon double bonds using molecular oxygen present in air and hydroxylamine under ambient conditions

Daisuke Yamamoto, Masayuki Soga, Hiromasa Ansai and Kazuishi Makino*

A highly efficient manganese-catalysed hydroperoxidation of carbon–carbon double bonds of enynes as well as styrene derivatives using *N*-hydroxyphthalimide, *N*-hydroxybenzotriazole or *N*-hydroxysuccinimide was developed. This reaction proceeded at room temperature through the direct incorporation of molecular oxygen present in air. The required catalytic loading of manganese (III) acetylacetonate is extremely low (generally 0.02–0.5 mol%, and a minimum of 0.001 mol%).

Introduction

Developing a new methodology for transition metal-catalysed oxidation reactions has been extensively studied in the recent decade, and molecular oxygen is essentially recognised as an ideal oxidant.¹ Despite developing several elegant oxidation processes involving molecular oxygen as a sole oxidant,² methodologies for directly incorporating molecular oxygen into organic substrates remains a major challenge in synthetic chemistry. The incorporation of an oxygen atom into substrates, such as C-H oxidation and epoxidation, has been observed in several biological processes,³ and aerobic epoxidation is used as an elegant strategy in organic chemistry.⁴ Recently, several aerobic difunctionalisations of carbon-carbon double bonds, $oxyazidation,^5$ such as oxytrifluoromethylation,⁶ $oxy sulfony lation, ^7 \ oxy sulfoxidation, ^8 \ oxy sulfurization ^9 \ and$ oxyphosphorylation, 10 were demonstrated. In addition, metalfree or transition metal-catalysed aerobic dioxygenation¹¹⁻¹³ of carbon-carbon double bonds using hydroxylamine derivatives, such N-hydroxyphthalimide (NHPI), as Nhydroxybenzotriazole (HOBt), N-hydroxysuccinimide (NHS) and hydroxamic acids, has witnessed significant progress (Scheme 1). The transition metal-catalysed oxidative Nhydroxypthalimidation using molecular oxygen was originally reported by Ozaki et al.^{13a} in 1989 as a side reaction occurring during the manganese (III) tetraphenylporphyrin chloridecatalysed epoxidation of carbon-carbon double bonds present in styrene, 2-norbornene or indene, which resulted in a mixture of β -keto-N-alkoxyphthalimides and β -hydroxy-N-

Scheme	1	Aerobic	hydroperoxidation	of	а	carbon-carbon	double	bond	with	N-
hydroxy	bhth	alimide.								

moderate alkoxyphthalimides in yield. Recently, Punniyamurthy *et al.*^{13b} demonstrated that 10 mol% Cu(OAc)₂·H₂O-catalysed direct dioxygenation of carboncarbon double bonds in styrene derivatives using NHPI and molecular oxygen in air at room temperature yields β -keto-Nalkoxyphthalimides in good yield (Scheme 1). Woerpel et al.^{13c} suggested that in addition to NHPI, HOBt added to a carboncarbon double bond in styrene derivatives or conjugated enynes in the presence of 5–20 mol% [Cu(MeCN)₄]ClO₄ under a pure O₂ atmosphere. Furthermore, Lei et al.^{13d,e} reported that using 10 mol% of CuCl or Co(OAc)₂·4H₂O promoted the oxidative addition of hydroxamic acids to styrene derivatives under a

Department of Pharmaceutical Sciences, Kitasato University, Shirokane, Minatoku, Tokyo 108-8641, Japan.

E-mail: makinok@pharm.kitasato-u.ac.jp

[†] Celebrating the 75th Birthday of Professor Barry Trost.

[‡] Electronic Supplementary Information (ESI) available: experimental procedures, and spectroscopic and analytical data for new compounds, See DOI: 10.1039/x0xx00000x

ARTICLE

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38 39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

pure O_2 atmosphere to selectively yield β -keto or β -hydroxy compounds. Xia's group^{13f} reported that the combination of 10 mol% CuBr₂ and 4.0 equivalent di-tert-butyl peroxide worked as a catalysis for direct dioxygenation of styrene derivatives in air to afford β-keto-N-alkoxyphthalimides in moderate to good yield. On the other hand, Tang et al.^{13g} have demonstrated that 10 mol% of FeCl₃ is an effective catalyst for the oxidative Nhydroxypthalimidation of styrene derivatives to afford β -keto-N-alkoxyphthalimides under a pure O_2 atmosphere. In the methodologies described above involving the direct incorporation of an oxygen atom into a carbon-carbon double bond using N-hydroxylamine derivatives, the existence of metal hydroperoxide 2 is suggested as an intermediate. However, the corresponding hydroperoxide could not be isolated in acceptable yields due to the instability of the intermediate metal hydroperoxide 2 in metal-catalysed dioxygenation reactions. More recently, Woerpel et al.^{13h} reported a 20 mol% of [Cu(MeCN)₄]ClO₄-catalysed hydroperoxidation of conjugated enynes using NHPI or HOBt under a pure O2 atmosphere to obtain propargyl hydroperoxides in good yields by lowering the reaction temperature to 0 °C. Furthermore, Punniyamurthy et al.¹³ⁱ also described the hydroperoxidation of styrene derivatives catalysed by 20 mol% Fe(NO₃)₃·9H₂O. While these pioneering research efforts provided new methods for incorporating oxygen atom(s) derived from gaseous dioxygen into organic substrates, several challenges still remain. In particular, developing highly active and robust catalysts capable of directly incorporating molecular oxygen present in air into organic substrates without cooling or heating conditions is in high demand.

Herein, we report a highly efficient manganese-catalysed hydroperoxidation of a carbon–carbon double bond using hydroxylamine and molecular oxygen in air (open flask) under ambient conditions.

Results and discussion

The reaction between 4-tert-butylstyrene 1a (1.0 equiv) and NHPI (1.0 equiv) in the presence of a metal complex in air at room temperature was initially investigated (Table 1). Using 1.0 mol% of Mn(acac)₃ in MeCN as a catalyst for 5 h offered a mixture of hydroperoxide 5a and β -keto-N-alkoxyphthalimide **3a** in good yield (61%, 5a : 3a = 4 : 1, entry 1). Decreasing the amount of Mn(acac)₃ to 0.02 mol% improved the yield and product ratio of hydroperoxide 5a and ketone 3a (92%, 5a : 3a = >20 : 1, entry 3). We interpreted this result as being indicative of the fact that the further decomposition of hydroperoxide 5a to ketone 3a and other side products by manganese complex was effectively suppressed due to reduced catalyst loading. To test the scalability of the hydroperoxidation reaction, a gramscale reaction was performed at 0.02 mol% catalyst loading in air (entry 4). The reaction proceeded in >99% yield at room temperature. Although a further reduction of catalyst loading to 0.001 mol% required a longer reaction time under air at room temperature the desirable hydroperoxide 5a was obtained in high yield at an excellent product ratio (84% yield, 5a : 3a =

 Table 1 Optimisation of manganese-catalysed aerobic hydroperoxidation of 4-tertbutylstyrene.^a

1a	NHPI (1.0 equ Mn(acac) ₃ (x m solvent (0.5 M) rt, time open flask to ai	iv) ol%) #Bu r	OOH + ONPhth t-Bu	\bigcirc	O ONPhth 3a
Mn(acac)	₃ (mol%)	Solvent	Time (h)	Yield ^b (%	%) (5a : 3a) ^c
1.0 0.1		MeCN MeCN	5 16	61 90	(4:1) (4:1)
0.02		MeCN	24	92	(>20 : 1)
0.02		MeCN	72	>99%	(>20:1)
0.01		MeCN	31	83	(>20 : 1)
0.001		MeCN	46	84	(>20 : 1)
0.01		EtCN	24	5	(17:1)
0.01		CH_2Cl_2	24	7	(>20 : 1)
0.01		benzene	24	Trace	9 -
0.01		THF	24	11	(>20:1)
0.01		DMF	24	Trac	.e -
0.01		DMSO	24	Trac	e -
0.01		MeOH	24	Trac	:e -
none		MeCN	24	no r	eaction
	1a Mn(acac) 1.0 0.1 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.01	NHPI (1.0 equ Mn(acac) ₃ (x m solvent (0.5 M) rt, time open flask to ai Mn(acac) ₃ (mol%) 1.0 0.1 0.02 0.02 0.01 0.001 0.01	NHPI (1.0 equiv) Mn(acac) ₃ (x mol%) solvent (0.5 M) rt, time <i>k</i> Bu open flask to air Mn(acac) ₃ (mol%) Solvent 1a 0 1a MeCN 0.01 MeCN 0.02 MeCN 0.01 MeCN 0.02 MeCN 0.01 MeCN 0.01 MeCN 0.01 MeCN 0.01 EtCN 0.01 CH₂Cl₂ 0.01 THF 0.01 DMF 0.01 DMF 0.01 DMSO 0.01 MeOH	$\begin{array}{c} \begin{array}{c} & \text{NHFI (1.0 equiv)} & \text{OOH} \\ \hline \text{Mn(acac)_3 (x mol%)} & \text{solvent (0.5 M)} \\ \hline \text{solvent (0.5 M)} & \text{rt, time} & tBu \\ \text{open flask to air} & \text{Sa} \end{array} \\ \hline \begin{array}{c} \text{Mn(acac)_3 (mol%)} & \text{Solvent} & \text{Time (h)} \end{array} \\ \hline \begin{array}{c} 1.0 & \text{MeCN} & 5 \\ 0.1 & \text{MeCN} & 16 \\ 0.02 & \text{MeCN} & 72 \\ 0.01 & \text{MeCN} & 31 \\ 0.001 & \text{MeCN} & 31 \\ 0.001 & \text{MeCN} & 46 \\ 0.01 & \text{EtCN} & 24 \\ 0.01 & \text{CH}_2\text{Cl}_2 & 24 \\ 0.01 & \text{CH}_2\text{Cl}_2 & 24 \\ 0.01 & \text{DMF} & 24 \\ 0.01 & \text{DMF} & 24 \\ 0.01 & \text{DMF} & 24 \\ 0.01 & \text{MeCH} & 24 \\ 0.01 & \text{MeCH} & 24 \\ 0.01 & \text{MeCH} & 24 \\ \end{array} $	NHPI (1.0 equiv) OOH Mn(acac) ₃ (x mol%) OOH solvent (0.5 M) rt, time + EBu open flask to air + Sa + ONPhth t-Bu + Sa 1a open flask to air 5a 01 01 10 Vield ^b (5) 1a open flask to air 5a 61 01 Vield ^b (5) 1.0 MeCN 5 61 00 00 002 MeCN 16 90 0.02 MeCN 24 92 0.02 MeCN 31 83 0.001 MeCN 46 84 0.01 EtCN 24 5 0.01 CH ₂ Cl ₂ 24 7 0.01 benzene 24 Trace 0.01 DMF 24 Trace 0.01 DMF 24 Trace 0.01 DMF 24 Trace 0.01 DMF 24 Trace 0.01 DMF 24 Trace 0.01 DMF 24 Trace 0.01 DMFO 24

 a Reaction conditions: **1a** (0.50 mmol), metal salt (0.001–1.0 mol%), O₂ in air at room temperature. b Isolated yield. c The ratio was determined by 1 H NMR analysis of crude sample. d The reaction was conducted at 1.04 g (6.50 mmol) scale of **1a**.

 Table 2
 Styrene derivatives as potential substrates for aerobic hydroperoxidation styrene derivatives.

^a Mn(acac)₃ (0.02 mol%). ^b Mn(acac)₃ (0.2 mol%). ^c Mn(acac)₃ (0.5 mol%). ^d The diastereomeric ratio (dr) was determined by ¹H-NMR analysis of crude sample.

Journal Name

Journal Name

>20 : 1, entry 6). A series of solvents were screened, and it was observed that MeCN was essential for this reaction, while EtCN, CH_2Cl_2 , benzene, THF, DMF, DMSO and MeOH afforded poor yields (entries 7–13).¹⁴

Using these optimal reaction conditions, potential substrates for this manganese-catalysed aerobic hydroperoxidation reaction were evaluated (Table 2). The reaction with styrene 1b offered the hydroperoxide 5b in 64% yield. Styrenes substituted with a methyl group at the 4- or 3-position 1c and 1d was transformed into the corresponding hydroperoxides 5c and 5d, respectively, in excellent yield without the oxidation of the methyl group at the benzylic position. The reaction of the styrene derivatives bearing a 4-fluoro, 4-chloro or 4-bromo moiety on the aromatic ring produced the corresponding hydroperoxide 5e, 5f or 5g, respectively, in high yield (88%-94%). The electron-rich styrene derivative 1h with a methoxy group at 4-position was effective under these oxidation conditions to provide the hydroperoxide 5h in good yield (60%). Sterically hindered α -methylstyrene **1i** could be efficiently oxidised in >99% yield. In addition, β -substituted styrenes 1j and 1k were transformed to the corresponding

^a Styrene derivatives **1a**, **b**, **i** and **j** (0.50 mmol). ^b The diastereomeric ratio (dr) was determined by ¹H-NMR analysis of crude sample.

Furthermore, we investigated the hydroperoxidation of the conjugated enyne and dienes (Scheme 2).¹⁵ Treatment of enyne **6** with 0.02 mol% of Mn(acac)₃ in air at room temperature for 3 h offered the hydroperoxide **7** in 81% yield, while the carbon-carbon triple bond remained intact under these oxidation conditions. The conjugated dienes **8a** and **8b** were also viable substrates. The dioxygenation of 2,5-dimethyl-2,4-hexadiene **8a** in the presence of 0.2 mol% of Mn(acac)₃ provided the 1,4-dioxygenated product **9a** in 79% yield as a single *E*-isomer. On the other hand, when 2,3-dimethyl-1,3-butadiene **8b** was used

 a Styrene derivatives **1a**, **b**, **i** and **j** (0.50 mmol). b The diastereomeric ratio (dr) was determined by $^1\text{H-NMR}$ analysis of crude sample.

J. Name., 2013, 00, 1-3 | 3

ARTICLE

Chemistry Frontiers Accepted Mar

ARTICLE

as a substrate, the 1,2-dioxygenated product 9b and the 1,4dioxygenated product 9c were obtained in 61% and 24% yield (as a geometric mixture of 3 : 1), respectively.

Subsequently, we evaluated the incorporation of molecular oxygen into a carbon-carbon double bond using HOBt or NHS instead of NHPI (Tables 3 and 4). The oxidative addition of HOBt to styrene **1b** in the presence of 0.2 mol% of Mn(acac)₃ occurred at room temperature in air to offer the hydroperoxide 10b in excellent yield (90%). On the other hand, the reaction of 4-substituted styrene derivatives, such as 4-tert-butylstyrene 1a, resulted in moderate yield (52%). Both α - and β -alkylsubstituted styrene derivatives 1i and 1j performed well as substrates providing the corresponding hydroperoxides 10i and 10j in 96% and 89% yield (anti : syn = 5 : 1), respectively. In addition, the oxidative addition of NHS to styrene derivatives, such as 1a, 1b, 1i and 1j, led to similar results yielding the corresponding hydroperoxides **11a**, **11b**, **11i** and **11j**.

Moreover, the manganese-catalysed oxidative addition of HOBt or NHS to conjugated enyne 6 and diene 8a was also examined (Scheme 3). The dioxygenation of both enyne 6 and diene 8a using HOBt under air proceeded at low catalyst loading to afford the hydroperoxides 12 and 14, respectively, in high yields compared to the reaction using NHS.

Conclusions

To summarise our study, we have developed a manganesecatalysed aerobic hydroperoxidation method for conjugated alkenes. Notably, the unprecedentedly low catalyst loading of Mn(acac)₃ promoted the oxidative addition of NHPI, HOBt or NHS to conjugated alkenes through the direct incorporation of molecular oxygen from air (pure oxygen is not required) without any other additives. Considering the desirable features, such as the simplicity of operation, inexpensive catalyst, a wide range of substrates and mild reaction conditions, this novel reaction provides an attractive synthetic approach to produce hydroperoxides. The investigation of reaction mechanism involved in the manganese-catalysed aerobic hydroperoxidation reactions is currently ongoing in our laboratory.

Experimental

Representative procedure for the manganese-catalyzed hydroperoxidation with NHPI

To a stirred solution of 4-tert-butylstyrene (80.1 mg, 0.500 mmol) and N-hydroxyphthalimide (81.6 mg, 0.500 mmol) in MeCN (0.9 mL) at room temperature was added a solution of Mn(acac)₃ in MeCN (100 µL, 0.10 µmol, 1.0 mM in MeCN) under air (open flask). The solution was stirred for 24 h at room temperature and quenched with saturated aqueous NaCl solution (0.5 mL). The resulting mixture was extracted with ethyl acetate (3 x 1.0 mL). The combined organic phases were washed with brine (1.0 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The obtained crude material was purified by column chromatography (silica gel, hexane : EtOAc = 3 : 1) to afford **5a** (163 mg, 0.459 mmol, 92%).

Gram-scale synthesis

To a stirred solution of 4-tert-butylstyrene (1.04 g, 6.50 mmol) and N-hydroxyphthalimide (1.06 g, 6.50 mmol) in MeCN (13.0 mL) at room temperature was added a solution of Mn(acac)₃ in MeCN (1.0 mL, 1.3 µmol, 1.3 mM in MeCN) under air (open flask). The solution was stirred for 72 h at room temperature and quenched with saturated aqueous NaCl solution (10 mL). The resulting mixture was extracted with ethyl acetate (3 x 14 mL). The combined organic phases were washed with brine (14 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The obtained crude material was purified by column chromatography (silica gel, hexane : EtOAc = 3 : 1) to afford **5a** (2.31 g, 6.50 mmol, >99% yield).

2-(2-(4-(tert-Butyl)phenyl)-2-hydroperoxyethoxy) isoindoline-1,3dione (5a)

Colorless oil; ¹H NMR (400 MHz, CDCl₃) & 9.37 (OOH), 7.89-7.84 (m, 2H, Ar-H), 7.80-7.75 (m, 2H, Ar-H), 7.39 (d, J = 8.8 Hz, 2H, Ar-H), 7.33 (d, J = 8.8 Hz, 2H, Ar-H), 5.40 (dd, J = 7.7, 3.8 Hz, 1H, CHOOH), 4.55 (dd, J = 11.6, 3.8 Hz, 1H, CH(OOH)CH₂O), 4.50 (dd, J = 11.6, 7.7 Hz 1H, , CH(OOH)CH₂O), 1.30 (s, 9H, Ar- C_4H_9 ; ¹³C NMR (100 MHz, CDCl₃) δ : 163.8, 152.0, 134.7, 132.6, 128.7, 126.9, 125.7, 123.8, 85.3, 78.9, 34.6, 31.2; IR (neat) 3402, 3098, 3062, 3032, 2962, 2359, 2248, 1789, 1730, 1466, 1375, 1186, 1132, 1081, 1018, 997, 877, 701 cm⁻¹; HRMS (FAB, NBA) m/z calcd for C₂₀H₂₁NNaO₅ [M+Na]⁺ 378.1317, found 378.1319.

Acknowledgements

This work was partially supported by a Grant-in-Aid for Young Scientists B (15K18837) from JSPS and a Kitasato University Research Grant for Young Researchers. We thank Dr. K. Nagai and Ms. M. Sato of Kitasato University for instrumental analyses.

Notes and references

- 1 For selected reviews, see: (a) T. Punniyamurthy, S. Velusamy and J. Iqbal, Chem. Rev., 2005, 105, 2329; (b) J. Piera and J.-E. Bäckvall, Angew. Chem. Int. Ed., 2008, 47, 3506; (c) Z. Shi, C. Zhang, C. Tang and N. Jiao, Chem. Soc. Rev., 2012, 41, 3381.
- 2 For a selected review for aerobic oxidation of alcohols, see: B. L. Ryland and S. S. Stahl, Angew. Chem. Int. Ed., 2014, 53, 8824.
- 3 (a) M. Sono, M. P. Roach, E. D. Coulter and J. H. Dawson, Chem. Rev., 1996, 96, 2841; (b) F. van Rantwijk and R. A. Sheldon, Curr. Opin. Biotechnol., 2000, 11, 554; (c) J. T. Groves, Proc. Natl. Acad. Sci. USA, 2003, 100, 3569; (d) F.P.Guengerich, J.Biochem.Mol.Toxicol., 2007, 21, 163.
- (a) T. Mukaiyama, T. Yamada, T. Nagata and K. Imagawa, Chem. Lett., 1993, 22, 327; (b) T. Mukaiyama and T. Yamada, Bull. Chem. Soc. Jpn., 1995, 68, 17; (c) S. Koya, Y. Nishioka, H. Mizoguchi, T. Uchida and T. Katsuki, Angew. Chem. Int. Ed., 2012, 51, 8243; (d) T. Uchida and T. Katsuki, J. Synth. Org. Chem., Jpn., 2013, 71, 1126; (e) H. Kawai, S. Okusu, Z. Yuan, E. Tokunaga, A. Yamano, M. Shiro and N. Shibata, Angew. Chem. Int. Ed., 2013, 52, 2221; (f) R. Irie, T. Uchida and K. Matsumoto, Chem. Lett., 2015, 44, 1268.
- 5 X. Sun, X. Li, S. Song, Y. Zhu, Y.-F. Liang and N. Jiao, J. Am. Chem. Soc., 2015, 137, 6059.
- (a) C.-P. Zhang, Z.-L. Wang, Q.-Y. Chen, C.-T. Zhang, Y.-C. Gu 6 and J.-C. Xiao, Chem. Commun., 2011, 47, 6632; (b) A. Deb, S.

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

37

38

39

40

41

42

43

44

- Manna, A. Modak, T. Patra, S. Maity and D. Maiti, *Angew. Chem. Int. Ed.*, 2013, **52**, 9747; (c) Y. Yang, Y. Liu, Y. Jiang, Y. Zhang and D. Vicic, *J. Org. Chem.*, 2015, **80**, 6639; (d) C. Liu, Q. Lu, Z. Huang, J. Zhang, F. Liao, P. Peng and A. Lei, *Org. Lett.*, 2015, **17**, 6034.
- 7 (a) Q. Lu, J. Zhang, F. Wei, Y. Qi, H. Wang, Z. Liu and A. Lei, Angew. Chem. Int. Ed., 2013, **52**, 7156; (b) W. Wei, C. Liu, D. Yang, J. Wen, J. You, Y. Suo and H. Wang, Chem. Commun., 2013, **49**, 10239.
 - 8 T. Keshari, V. K. Yadav, V. P. Srivastava and L. D. S. Yadav, Green Chem., 2014, **16**, 3986.
 - 9 S.-F. Zhou, X. Pan, Z.-H. Zhou, A. Shoberu and J.-P. Zou, J. Org. Chem., 2015, **80**, 3682.
- 10 (a) W. Wei and J.-X. Ji, Angew. Chem. Int. Ed., 2011, **50**, 9097;
 (b) T. Taniguchi, A. Idota, S. Yokoyama and H. Ishibashi, Tetrahedron Lett., 2011, **52**, 4768.
- 11 For metal-free aerobic dioxygenation of a carbon-carbon double bond using hydroxamic acids, see: (a) V. A. Schmidt and E. J. Alexanian, *Angew. Chem. Int. Ed.*, 2010, **49**, 4491; (b) B. C. Giglio, V. A. Schmidt and E. J. Alexanian *J. Am. Chem. Soc.*, 2011, **133**, 13320; (c) V. A. Schmidt and E. J. Alexanian, *Chem. Sci.*, 2012, **3**, 1672.
- 12 For metal-free aerobic dioxygenation of 2-norbornene using NHPI, see: Y. Ishii, *J. Mol. Catal. A: Chemical*, 1997, **117**, 1231.
- 24 13 For transition metal-catalysed aerobic dioxygenation of a 25 carbon-carbon double bond using NHPI, HOBt, NHS, or 26 hydroxamic acids, see: (a) S. Ozaki, T. Hamaguchi, K. Tsuchida, Y. Kimata and M. Masui, J. Chem. Soc. Perkin Trans. 27 2, 1989, 951; (b) R. Bag, D. Sar and T. Punniyamurthy, Org. 28 Lett., 2015, 17, 2010; (c) A. A. Andia, M. R. Miner and K. A. 29 Woerpel, Org. Lett., 2015, 17, 2704; (d) Q. Lu, Z. Liu, Y. Luo, 30 G. Zhang, Z. Huang, H. Wang, C. Liu, J. T. Miller and A. Lei, 31 Org. Lett., 2015, 17, 3402; (e) Q. Lu, P. Peng, Y. Luo, Y. Zhao, 32 M. Zhou and A. Lei, Chem. Eur. J., 2015, 21, 18580; (f) X.-F. Xia, S.-L. Zhu, Z. Gu, H. Wang, W. Li, X. Liu and Y.-M. Liang, J. 33 Org. Chem., 2015, 80, 5572; (g) J.-Z. Zhang and Y. Tang, Adv. 34 Synth. Catal., 2016, 358, 752; (h) M. R. Miner and K. A. 35 Woerpel, Eur. J. Org. Chem., 2016, 1860; (i) R. Bag, D. Sar and 36 T. Punniyamurthy, Org. Biomol. Chem., 2016, 14, 3246.
 - 14 The solvent effects suggest the ligation of less hindered acetonitrile to manganese complex plays an important role for the progress of this hydroperoxidation reaction of carbon–carbon double bond. On the other hand, the sterically hindered propionitrile could not be less effective rather than acetonitrile.
 - 15 The oxidation of the conjugated enyne and dienes catalysed by 20 mol% of [Cu(MeCN)₄]ClO₄ under a pure O₂ atmosphere was reported by Woerpel *et al.*, see ref 13(c) and 13(h).