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A Direct and Vicinal Functionalization of the 1-Methyl-2-quinolone 
Framework:  4-Alkoxylation and 3-Chlorination 
Feiyue Hao,a  Haruyasu Asahara*a,b and Nagatoshi Nishiwaki*a,b 

Bis(functionalization), 4-alkoxylation and 3-chlorination, of the 1-methyl-2-quinolone framework were achieved under mild 
conditions by the sequential treatment of 3-nitrated 1-methyl-2-quinolones with sodium alkoxide and N-chlorosuccinimide. 
Moreover, a succinimide group instead of an alkoxy group was introduced at the 4-position, affording a masked form of the 
4-amino-3-chloro-2-quinolone derivative. Furthermore, the prepared vicinally functionalized quinolones thus obtained 
were subjected to Suzuki-Miyaura coupling reaction, arylating the 3-position.   

Introduction 
The 1-methyl-2-quinolone (MeQone) framework is present in 
more than 300 quinoline alkaloids exhibiting versatile 
biological activities.1 In addition to the synthesis of naturally 
occurring MeQones, the synthesis of unnatural MeQone 
derivatives has attracted much attention as it allows access to 
new biologically active compounds,2 among which MeQone 
derivatives possessing a hydroxy/an alkoxy group at the 4-
position are important.3 Moreover, the enol partial structure is 
a useful scaffold for the modification of the MeQone 
framework.3 Despite their usefulness, 4-alkoxylated MeQones 
have not been prepared by the direct alkoxylation of MeQone 
because of the inertness caused by the aromaticity.4 Instead, 
an alkoxy group has been introduced into MeQone by the 
alkylation5 of 4-hydroxylated MeQones constructed from 
anthranilic acid derivatives6 or N-methylanilines.7 However, it 
is difficult to modify the MeQone framework because of the 
low availability of the corresponding starting materials. Hence, 
the development of a direct alkoxylation method for the 
MeQone framework is in high demand.  
We have shown that 1-methyl-3,6,8-trinitro-2-quinolone (TNQ) 
is highly reactive among MeQones to form either a C−C or C−N 
bond at the 4-position regioselectively or to undergo 
cycloaddition reaction readily.8-11 Inspired by these results, we 
envisioned that direct C−O bond formation at the 4-position of 
MeQone would be possible by the treatment of 3-nitrated 

MeQones including TNQ with an alkoxide ion. In this case, it is 
necessary to trap the anionic adduct intermediate by an 
electrophile because a heteronucleophile is easily eliminated 
even though it adds to TNQ.10 We focused on the halogenation 
because MeQones bearing both an alkoxy and a halo group 
serve as important precursors for various types of 
compounds.12,13   
Halogenation at the 3-position of the MeQone framework is 
usually achieved by the treatment of 4-hydroxylated MeQone 
with halogenating agents such as thionyl chloride,14 N-
bromosuccinimide (NBS),15 bromine,16 N-iodosuccinimide 
(NIS)13 and iodine.17 However, only a few examples of the 
halogenation of 4-alkoxylated MeQone have been 
reported,12,13 and there is no report on 3-chlorination. Hence, 
direct bis(functionalization), 4-alkoxylation and 3-halogenation, 
using 3-nitrated MeQones would afford a new synthetic 
intermediate for the construction of a new compound library 
of MeQone derivatives. 

Results and discussion 
To evaluate the potential for vicinal functionalization, TNQ was 
chosen as a model substrate. When TNQ was treated with 
sodium methoxide in methanol at room temperature, the 
color of the solution immediately became reddish yellow, and 
a yellow solid precipitated in the reaction mixture (Scheme 1). 
In the 1H NMR of solid 1a collected by filtration, two new 
singlet signals appeared at 3.15 and 5.96 ppm instead of the 
disappearance of the singlet at 9.26 ppm assigned to the 
proton at the 4-position of TNQ. This spectral change indicated 
that a methoxide ion was added to the 4-position of TNQ, as 
confirmed by the correlations of the methoxy group with H-4 
and H-5 in the 1H−1H NOESY 2D spectrum. Furthermore, a 
signal for C-4 was observed at 73 ppm in the 13C NMR 
spectrum, indicating the change from the sp2 carbon to the sp3 
carbon. Although 1a was confirmed to have a methoxylated 
structure, TNQ was reproduced by the treatment of 1a with 
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chromatography mass spectrum was measured on a JEOL JMS-
Q1050GC Ultra Quad GC/MS. 
Preparation of 3-nitrated quinolones 
1-Methyl-2-quinolone was prepared from quinoline by methylation 
with Me2SO4 followed by oxidation with K3[Fe(CN)6] under alkaline 
conditions. Nitration of 1-methyl-2-quinolone with fuming HNO3 
afforded TNQ in 86% total yield.23 
Other nitroquinolones 4, 5 and 12 were also prepared in a similar 
way. Dinitroquinolones were obtained when milder reaction 
conditions were used in the nitration step.9  
General procedure for synthesis of 1a and 1b 
To a solution of TNQ (500 mg, 1.70 mmol ) in MeOH (5.5 mL), was 
added a solution of NaOMe (119 mg, 2.21mmol) in MeOH (0.6 mL), 
and the resultant mixture was stirred at room temperature for 4 h. 
The precipitated solid was collected by filtration to afford 1a (474 
mg, 1.36 mmol, 81%) as a yellow powder. The reaction of TNQ with 
NaOEt was performed to prepare 1b in a similar way.  
(6,8-Dinitro-4-methoxy-1-methyl-2-oxo-1,2,3,4-
tetrahydroquinolin-3-yl)sodium (1a). Yellow powder (474 mg, 1.36 
mmol, 81%); mp 218−220 °C (dec.); 1H NMR (DMSO-d6, 400 MHz) δ 
= 2.97 (s, 3H), 3.15 (s, 3H), 5.96 (s, 1H), 8.55 (d, J = 2.4 Hz, 1H), 8.60 
(d, J = 2.4 Hz, 1H); 13C NMR (DMSO-d6, 100 MHz): δ = 33.6 (CH3), 
53.9 (CH3), 73.0 (CH), 106.6 (C), 121.1 (CH), 126.9 (CH), 129.8 (C), 
137.2 (C), 139.0 (C), 139.2 (C), 159.9 (C); IR: ν (cm-1) 1634, 1531, 
1520, 1335; HRMS (ESI): Calcd for C11H10N4NaO8 [(M+H)+]: 349.0391, 
found 349.0386. 
(6,8-Dinitro-4-ethoxy-1-methyl-2-oxo-1,2,3,4-tetrahydroquinolin-
3-yl)sodium (1b). Yellow powder (615 mg, 1.70 mmol, quant.); mp 
213−215 °C (dec.); 1H NMR (DMSO-d6, 400 MHz) δ = 1.02 (t, J = 6.8 
Hz, 3H), 2.97 (s, 3H), 3.47 (q, J = 6.8 Hz, 2H), 6.03 (s, 1H), 8.53 (d, J = 
2.8 Hz, 1H), 8.59 (d, J = 2.8 Hz, 1H); 13C NMR (DMSO-d6, 100 MHz) δ 
= 15.4 (CH3), 33.6 (CH3), 61.7 (CH2), 71.7 (CH), 107.1 (C), 121.0 (CH), 
126.7 (CH), 130.5 (C), 137.2 (C), 138.9 (C), 139.2 (C), 160.0 (C); IR: ν 
(cm-1) 1633, 1537, 1531, 1334; HRMS (ESI) Calcd for C12H12N4NaO8 

[(M+H)+]: 363.0547, found 363.0541. 
General procedure for synthesis of MeO-Cl-DNQ and EtO-Cl-DNQ 
To a solution of 1a (70 mg, 0.20 mmol) in MeCN (1.0 mL), NCS (32 
mg, 0.24 mmol) was added, and the resultant mixture was stirred at 
room temperature for 6 h. Then, the solvent was evaporated to 
afford a reaction mixture as a yellow residue, from which MeO-Cl-
DNQ was isolated through SiO2 column chromatography (eluted 
with CH2Cl2/hexane = 4/1), respectively. EtO-Cl-DNQ was prepared 
in a similar way.  
3-Chloro-4-methoxy-1-methyl-6,8-dinitroquinolin-2(1H)-one 
(MeO-Cl-DNQ). Yellow powder (53 mg, 0.17 mmol, 85%); Rf = 0.21 
(CH2Cl2/hexane = 4/1); mp 170−171 °C; 1H NMR (CDCl3, 400 MHz) δ 
= 3.54 (s, 3H), 4.35 (s, 3H), 8.73 (d, J = 2.4 Hz, 1H), 8.99 (d, J = 2.4 Hz, 
1H); 13C NMR (CDCl3, 100 MHz) δ = 35.7 (CH3), 62.1 (CH3), 116.0 (C), 
121.2 (C), 122.4 (CH), 122.7 (CH), 135.2 (C), 139.0 (C), 140.8 (C), 
157.9 (C), 160.0 (C); IR: ν (cm-1) 1667, 1537, 1531, 1358, 1307; MS 
(EI): 315 (M++2, 21), 313 (M+, 66), 283 (100), 149 (67); HRMS (ESI) 
Calcd for C11H9ClN3O6 [(M+H)+]: 314.0174, found 314.0165. 
3-Chloro-4-ethoxy-1-methyl-6,8-dinitroquinolin-2(1H)-one (EtO-Cl-
DNQ). Yellow powder (46 mg, 0.14 mmol, 73%); Rf = 0.21 
(CH2Cl2/hexane = 4/1); mp 161−163 °C; 1H NMR (CDCl3, 400 MHz) δ 
= 1.59 (t, J = 6.8 Hz, 3H), 3.54 (s, 3H), 4.62 (q, J = 6.8 Hz, 2H), 8.72 (d, 
J = 2.8 Hz, 1H), 8.99 (d, J = 2.8 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 

= 15.7 (CH3), 35.7 (CH3), 71.2 (CH2), 116.4 (C), 121.7 (C), 122.3 (CH), 
122.7 (CH), 135.2 (C), 139.0 (C), 140.8 (C), 157.2 (C), 160.0 (C); IR: ν 
(cm-1) 1682, 1537, 1531, 1352, 1335; HRMS (ESI) Calcd for 
C12H10ClN3O6 [(M-H)-]: 326.0185, found 326.0201. 
General procedure for one-pot method of synthesis of RO-Cl-DNQ  
To a solution of Na (7 mg, 0.31 mmol) in alcohol (0.3 mL), TNQ (70 
mg, 0.24 mmol) was added, and the resultant mixture was stirred at 
room temperature for 4 h. Then, a solution of NCS (38 mg, 0.29 
mmol) in MeCN (1.0 mL) was added, and the resultant mixture was 
stirred at room temperature for further 6 h. Then, the solvent was 
evaporated to afford a reaction mixture as a yellow residue, from 
which RO-Cl-DNQ was isolated through SiO2 column 
chromatography (eluted with CH2Cl2/hexane = 4/1).   
4-Butoxy-3-chloro-1-methyl-6,8-dinitroquinolin-2(1H)-one (BuO-
Cl-DNQ). Yellow powder (35 mg, 0.10 mmol, 42%); Rf = 0.25 
(CH2Cl2/hexane = 4/1); mp 135−136 °C; 1H NMR (CDCl3, 400 MHz) δ 
= 1.05 (t, J = 7.6 Hz, 3H), 1.59 (tq, J = 7.6, 7.6 Hz, 2H), 1.94 (tt, J = 6.8, 
6.8 Hz, 2H), 3.54 (s, 3H), 4.53 (t, J = 6.8 Hz, 2H), 8.72 (d, J = 2.8 Hz, 
1H), 8.98 (d, J = 2.8 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ = 13.7 
(CH3), 19.0 (CH2), 32.1 (CH2), 35.7 (CH3), 75.1 (CH2), 116.3 (C), 121.6 
(C), 122.3 (CH), 122.7 (CH), 135.2 (C), 139.0 (C), 140.8 (C), 157.4 (C), 
160.1 (C); IR: ν (cm-1) 1682, 1537, 1531, 1354; HRMS (ESI) Calcd for 
C14H15ClN3O6 [(M+H)+]: 356.0644, found 356.0639. 
3-Chloro-4-isobutoxy-1-methyl-6,8-dinitroquinolin-2(1H)-one (i-
BuO-Cl-DNQ). Yellow powder (38 mg, 0.11 mmol, 46%); Rf = 0.30 
(CH2Cl2/hexane = 4/1); mp 146−147 °C; 1H NMR (CDCl3, 400 MHz) δ 
= 1.16 (d, J = 6.4 Hz, 6H), 2.28 (m, 1H), 3.54 (s, 3H), 4.29 (d, J = 6.4 
Hz, 2H), 8.72 (d, J = 2.4 Hz, 1H), 9.01 (d, J = 2.4 Hz, 1H); 13C NMR 
(CDCl3, 100 MHz) δ = 19.0 (CH3), 29.4 (CH), 35.6 (CH3), 81.3 (CH2), 
116.2 (C), 121.5 (C), 122.2 (CH), 122.6 (CH), 135.3 (C), 139.0 (C), 
140.8 (C), 157.4 (C), 160.1 (C); IR: ν (cm-1) 1674, 1537,1531, 1354; 
HRMS (ESI) Calcd for C14H15ClN3O6 [(M+H)+]: 356.0644, found 
356.0639. 
3-Chloro-4-isopropoxy-1-methyl-6,8-dinitroquinolin-2(1H)-one (i-
PrO-Cl-DNQ). Yellow powder (37 mg, 0.11 mmol, 45%); Rf = 0.25 
(CH2Cl2/hexane = 4/1); mp 168−170 °C; 1H NMR (CDCl3, 400 MHz) δ 
= 1.50 (d, J = 6.0 Hz, 6H), 3.55 (s, 3H), 5.28 (septet, J = 6.0 Hz, 1H), 
8.72 (d, J = 2.4 Hz, 1H), 9.02 (d, J = 2.4 Hz, 1H); 13C NMR (CDCl3, 100 
MHz) δ = 22.7 (CH3), 35.7 (CH3), 78.7 (CH), 116.9 (C), 122.2 (CH), 
122.7 (C), 123.0 (CH), 135.2 (C), 139.0 (C), 140.7 (C), 156.5 (C), 160.0 
(C); IR: ν (cm-1) 1678, 1537, 1531, 1346; HRMS (ESI) Calcd for 
C13H11ClN3O6 [(M-H)-]: 340.0342, found 340.0348. 
3-Chloro-6,8-dinitro-1-methyl-4-(2-phenylethoxy)quinolin-2(1H)-
one (PhetO-Cl-DNQ). Yellow powder (53 mg, 0.13 mmol, 55%); Rf = 
0.22 (CH2Cl2/hexane = 4/1); mp 142−144 °C; 1H NMR (CDCl3, 400 
MHz) δ = 3.23 (t, J = 6.4 Hz, 2H), 3.51 (s, 3H), 4.82 (t, J = 6.4 Hz, 2H), 
7.21−7.34 (m, 5H),  8.65 (d, J = 2.8 Hz, 1H), 8.73 (d, J = 2.8 Hz, 1H); 
13C NMR (CDCl3, 100 MHz): δ = 35.7 (CH3), 36.5 (CH2), 75.3 (CH2), 
115.7 (C), 121.4 (CH), 122.2 (C), 122.8 (CH), 127.1 (CH), 128.8 (CH), 
128.9 (CH), 135.1 (C), 136.6(C), 138.9 (C), 140.7 (C), 157.0 (C), 160.0 
(C); IR: ν (cm-1) 1681, 1537, 1531, 1352, 1301; HRMS (ESI) Calcd for 
C18H13ClN3O6 [(M-H)-]: 402.0498, found 402.0512. 
3-Chloro-1-methyl-6,8-dinitro-4-(prop-2-enyloxy)quinolin-2(1H)-
one  (AllylO-Cl-DNQ). Yellow powder (41 mg, 0.12 mmol, 51%); Rf = 
0.22 (CH2Cl2/hexane = 4/1); mp 130−131 °C; 1H NMR (CDCl3, 400 
MHz) δ = 3.54 (s, 3H), 5.04 (dt, J = 6.0, 1.2 Hz, 2H), 5.43 (dd, J = 1.2, 
10.4 Hz, 1H), 5.52 (ddt, J = 16.8, 1.2, 1.2 Hz, 1H), 6.13 (ddt, J = 10.4, 
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16.8, 6.0 Hz, 1H), 8.72 (d, J = 2.8 Hz, 1H), 9.00 (d, J = 2.8 Hz, 1H); 13C 
NMR (CDCl3, 100 MHz) δ = 35.7 (CH3), 75.4 (CH2), 117.1 (C), 121.4 
(CH2), 121.8 (C), 122.3 (CH), 122.9 (CH), 131.2 (CH), 135.2 (C), 139.0 
(C), 140.8 (C), 157.0 (C), 159.9 (C); IR: ν (cm-1) 1674, 1536, 1530, 
1350; HRMS (ESI) Calcd for C13H9ClN3O6 [(M-H)-]: 338.0185, found 
338.0178. 
3-Chloro-1-methyl-4-(prop-2-ynyloxy)-6,8-dinitroquinolin-2(1H)-
one  (PrgO-Cl-DNQ). Yellow powder (23 mg, 0.07 mmol, 29%); Rf = 
0.20 (CH2Cl2/hexane = 4/1); mp 153−155 °C; 1H NMR (CDCl3, 400 
MHz) δ = 2.61 (t, J = 2.4 Hz, 1H), 3.56 (s, 3H), 5.23 (d, J = 2.4 Hz, 2H), 
8.74 (d, J = 2.8 Hz, 1H), 9.12 (d, J = 2.8 Hz, 1H); 13C NMR (CDCl3, 100 
MHz) δ = 35.8 (CH3), 61.5 (CH2), 76.4 (CH), 78.7 (C), 118.4 (C), 121.9 
(C), 122.5 (CH), 123.6 (CH), 135.0 (C), 139.0 (C), 140.8 (C), 156.4 (C), 
159.7 (C); IR: ν (cm-1) 1682, 1537, 1531 1352; HRMS (ESI) Calcd for 
C13H7ClN3O6 [(M-H)-]: 336.0029, found 336.0038. 
3-Bromo-4-methoxy-1-methyl-6,8-dinitroquinolin-2(1H)-one 
(MeO-Br-DNQ). Yellow solid (43 mg, 62%) Rf = 0.21 
(CH2Cl2/hexane = 4/1); mp 155−157 °C; 1H NMR (CDCl3, 400 
MHz) δ = 3.55 (s, 3H), 4.28 (s, 3H), 8.75 (d, J = 2.4 Hz, 1H), 8.97 
(d, J = 2.4 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ = 35.9 (CH3), 
62.1 (CH3), 108.7 (C), 121.4 (C), 122.5 (CH), 122.6 (CH), 135.9 
(C), 139.1 (C), 140.8 (C), 160.1 (C), 160.6 (C); IR: ν (cm-1) 1667, 
1537, 1531, 1358; HRMS (ESI) Calcd for C11H7BrN3O6 [(M-H)-]: 
355.9524, found 355.9538. 
4-Methoxy-1-methyl-3,6,8-trinitroquinolin-2(1H)-one (3). 
Yellow solid, Rf = 0.21 (CH2Cl2/hexane = 4/1); m.p. 204−207 °C; 
1H NMR (DMSO-d6, 400 MHz) δ = 3.43 (s, 3H), 4.25 (s, 3H), 9.01 
(d, J = 2.8 Hz, 1H), 9.13 (d, J = 2.8 Hz, 1H); 13C NMR (DMSO-d6, 
100 MHz) δ = 34.8 (CH3), 60.4 (CH3), 118.9 (C), 124.0 (CH), 
124.6 (CH), 129.0 (C), 136.1 (C), 138.8 (C), 140.8 (C), 152.7 (C), 
156.8 (C); IR: ν (cm-1) 1672, 1537, 1531, 1352; HRMS (ESI) Calcd 
for C11H9N4O8 [(M+H)+]: 325.0415, found 325.0401. 
(4-Methoxy-1,8-dimethyl-6-nitro-2-oxo-1,2,3,4-
tetrahydroquinolin-3-yl)sodium (6). Yellow powder (423 mg, 1.33 
mmol, 79%); mp 214−216 °C (dec.); 1H NMR (DMSO-d6, 400 MHz) δ 
= 2.47 (s, 3H), 3.14 (s, 3H), 3.28 (s, 3H), 5.73 (s, 1H), 8.02 (d, J = 2.8 
Hz, 1H), 8.06 (d, J = 2.8 Hz, 1H); 13C NMR (DMSO-d6, 100 MHz) δ = 
21.3 (CH3), 35.9 (CH3), 53.8 (CH3), 74.0 (CH), 107.5 (C), 121.5 (CH), 
126.9 (CH), 127.2 (C), 127.9 (C), 140.8 (C), 146.4 (C), 162.6 (C); IR: ν 
(cm-1) 1634, 1520, 1514, 1337. Satisfactory analytical data were not 
given despite several attempts.  
(4-Methoxy-1-methyl-6-nitro-2-oxo-1,2,3,4-tetrahydroquinolin-3-
yl)sodium (7). Yellow powder (382 mg, 1.26 mmol, 75%); mp 217−
220 °C (dec.); 1H NMR (DMSO-d6, 400 MHz) δ = 3.10 (s, 3H), 3.28 (s, 
3H), 5.87 (s, 1H), 7.15 (d, J = 9.2 Hz, 1H), 8.17 (dd, J = 2.4, 9.2 Hz, 1H), 
8.23 (d, J = 2.4 Hz, 1H); 13C NMR (DMSO-d6, 100 MHz) δ = 29.1 (CH3), 
53.6 (CH3), 73.7 (CH), 107.6 (C), 113.7 (CH), 123.2 (C), 124.2 (CH), 
124.3 (CH), 139.9 (C), 145.5 (C), 159.4 (C); IR: ν (cm-1) 1682, 1537, 
1520, 1344. Satisfactory analytical data were not given despite 
several attempts. 
3-Chloro-1,8-dimethyl-4-methoxy-6-nitroquinolin-2(1H)-one (8). 
Yellow powder (53.6 mg, 0.19 mmol, 95%); Rf = 0.28 (CH2Cl2); mp 
185−188 °C; 1H NMR (CDCl3, 400 MHz) δ = 2.80 (s, 3H), 3.88 (s, 3H), 
4.23 (s, 3H), 8.22 (d, J = 2.4 Hz, 1H), 8.66 (d, J = 2.4 Hz, 1H); 13C NMR 
(CDCl3, 100 MHz) δ = 24.1 (CH3), 37.9 (CH3), 61.6 (CH3), 115.1 (C), 
118.0 (CH), 119.6 (C), 126.8 (C), 129.4 (CH), 142.4 (C), 143.3 (C), 

159.1 (C), 161.7 (C); IR: ν (cm-1) 1659, 1597, 1522, 1341; HRMS (ESI) 
Calcd for C12H12ClN2O4 [(M+H)+]: 283.0480, found 283.0482. 
3-Chloro-4-methoxy-1-methyl-6-nitroquinolin-2(1H)-one (9). 
Yellow powder (39 mg, 0.15 mmol, 73%); Rf = 0.27 (CH2Cl2); mp 197
−199 °C; 1H NMR (CDCl3, 400 MHz) δ = 3.82 (s, 3H), 4.27 (s, 3H), 7.47 
(d, J = 9.6 Hz, 1H), 8.43 (dd, J = 2.4, 9.6 Hz, 1H), 8.83 (d, J = 2.4 Hz, 
1H); 13C NMR (CDCl3, 100 MHz) δ = 31.3 (CH3), 61.7 (CH3), 115.0 (CH), 
115.7 (C), 117.7 (C), 120.2 (CH), 125.8 (CH), 141.6 (C), 142.7 (C), 
158.8 (C), 159.9 (C); IR: ν (cm-1) 1651, 1537, 1524, 1347; HRMS (ESI) 
Calcd for C11H10ClN2O4 [(M+H)+]: 269.0324, found269.0322. 
3-Chloro-1-methyl-6-nitro-4-(2,5-dioxopyrrolidino)quinolin-
2(1H)-one (11). Yellow powder (2.7 mg, 0.01 mmol, 4%); Rf = 
0.48 (CH2Cl2/MeOH = 20/1); mp 283−285 °C; 1H NMR (DMSO-
d6, 400 MHz) δ = 2.98−3.19 (m, 4H), 3.83 (s, 3H), 7.92 (d, J = 9.2 
Hz, 1H), 8.50 (dd, J = 2.8, 9.2 Hz, 1H), 8.64 (d, J = 2.8 Hz, 1H); 
13C NMR (DMSO-d6, 100 MHz) δ = 29.5 (CH2), 31.8 (CH3), 116.8 
(C), 117.4 (CH), 120.7 (CH), 126.2 (CH), 127.7 (C), 137.4 (C), 
141.7 (C), 142.7 (C), 157.0 (C), 175.4 (C); IR: ν (cm-1) 1651, 
1537, 1520, 1337; HRMS (ESI) Calcd for C14H11ClN3O5 [(M+H)+]: 
336.0382, found 336.0387. 
Synthesis of 4-methoxy-1,8-dimethyl-5-nitroquinolin-2(1H)-
one (13) 
To a solution of 12 (25 mg, 0.10 mmol) in MeOH (0.5 mL), was 
added MeONa (7 mg, 0.13 mmol), and the resultant mixture 
was stirred at room temperature for 4 h. Then, the solvent was 
evaporated to afford a mixture as a yellow residue, from which 
13 was isolated as a yellow powder by SiO2 column 
chromatography (eluted with CH2Cl2, 16.8 mg, 0.07 mmol, 
72%); Rf = 0.10 (CH2Cl2); mp 134−136 °C; 1H NMR (DMSO-d6, 
400 MHz) δ = 2.73 (s, 3H), 3.76 (s, 3H), 3.94 (s, 3H), 6.76 (d, J = 
9.6 Hz, 1H), 8.06 (s, 1H), 8.12 (d, J = 9.6 Hz, 1H); 13C NMR 
(DMSO-d6, 100 MHz) δ = 23.0 (CH3), 35.7 (CH3), 63.9 (CH3), 
116.6 (C), 121.8 (CH), 122.2 (C), 130.0 (CH), 133.5 (CH), 135.6 
(C), 145.6 (C), 149.4 (C), 162.7 (C); IR: ν (cm-1) 1667, 1566, 1556, 
1339; HRMS (ESI) Calcd for C12H12N2O4Na [(M+Na)+]: 271.0689, 
found 271.0693. 
Synthesis of 3-chloro-3,4-dihydro-4-methoxy-1-methyl-6,8-
dinitroquinolin-2(1H)-one (15) 
   To a solution of 1a (100 mg, 0.29 mmol) in CH2Cl2 (2.0 mL), 
was added NCS (46 mg, 0.34 mmol), and the resultant mixture 
was stirred at room temperature for 0.5 h. Then, the solvent 
was evaporated to afford a mixture as a yellow residue, from 
which 15 was isolated as a yellow powder by silica gel column 
chromatography (eluted with CH2Cl2/hexane = 2/1, 46.4 mg, 
0.13 mmol, 45%); Rf = 0.15 (CH2Cl2/hexane = 2/1); mp 158−
160 °C; 1H NMR (CDCl3, 400 MHz) δ = 3.32 (s, 3H), 3.89 (s, 3H), 
4.97 (s, H), 8.47 (d, J = 2.4 Hz, 1H), 8.68 (d, J = 2.4 Hz, 1H); 13C 
NMR (CDCl3, 100 MHz) δ = 36.0 (CH3), 62.4 (CH3), 81.6 (CH), 
97.9 (C), 122.5 (CH), 124.6 (CH), 128.4 (C), 137.2 (C), 139.6 (C), 
143.3 (C), 158.3 (C); IR: ν (cm-1) 1682, 1573, 1537, 1344; HRMS 
(ESI) Calcd for C11H10ClN4O8 [(M+H)+]: 361.0182, found 
361.0186. 
Synthesis of 2,5-dioxopyrrolidino substituted MeQone 2  
To a solution of TNQ (70 mg, 0.24 mmol) in MeCN (0.5 ml), was 
added NCS (38 mg, 0.29 mmol) and Na-SI (29 mg, 0.24 mmol), and 
the resultant mixture was stirred at room temperature for 6 h. 
Then, the solvent was evaporated to afford a reaction mixture as a 
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yellow residue, from which 2 was isolated through SiO2 column 
chromatography (eluted with CH2Cl2) as a yellow solid (59 mg, 
0.15 mmol, 65%). Rf = 0.10 (CH2Cl2); mp 294−297 °C; 1H NMR 
(DMSO-d6, 400 MHz) δ = 3.05−3.23 (m, 4H), 3.52 (s, 3H), 8.98 (d, J 
= 2.4 Hz, 1H), 9.04 (d, J = 2.4 Hz, 1H); 13C NMR (DMSO-d6, 100 MHz) 
δ = 29.6 (CH2), 36.4 (CH3), 120.2 (C), 123.4 (CH), 124.1 (CH), 128.9 
(C), 135.5 (C), 137.3 (C), 139.0 (C), 141.3 (C), 157.8 (C), 175.3 (C); 
IR: ν (cm-1) 1682, 1537, 1531, 1385, 1336; HRMS (ESI) Calcd for 
C14H10ClN4O7 [(M+H)+]: 381.0233, found 381.0238. 
Hydrazinolysis of 2 
To a solution of 2 (50 mg, 0.13 mmol) in MeOH (2.0 mL), 
NH2NH2•H2O (18 mg, 0.36 mmol) was added, and the resultant 
mixture was heated at 70 °C for 3 h. Then, the solvent was 
evaporated to afford a reaction mixture as a yellow solid. After the 
solid was washed by water (5 mL × 1), NH2-Cl-DNQ was isolated 
through filtration as a yellow solid (20 mg, 0.07 mmol, 51%); Rf = 
0.36 (CH2Cl2/MeOH = 10/1); mp > 300 °C; 1H NMR (DMSO-d6, 400 
MHz) δ = 3.29 (s, 3H), 7.54 (br s, 2H), 8.89 (d, J = 2.0 Hz, 1H), 9.35 
(d, J = 2.0 Hz, 1H); 13C NMR (DMSO-d6, 400 MHz) δ = 35.1 (CH3), 
99.8 (C), 117.2 (C), 122.5 (CH), 123.2 (CH), 136.5 (C), 138.5 (C), 
139.7 (C), 147.1 (C), 158.2 (C); IR: ν (cm-1) 1651, 1537, 1531, 1331, 
1300; HRMS (ESI) Calcd for C10H8ClN4O5 [(M+H)+]: m/z=299.0178, 
found m/z= 299.0172. 
Suzuki-Miyaura coupling reaction of MeO-Cl-DNQ  
To a solution of MeO-Cl-DNQ (60 mg, 0.19 mmol) in 1,4-dioxane 
(1.0 mL), were added p-MeC6H4B(OH)2 (39 mg, 0.29 mmol), 
Pd(PPh3)2Cl2 (14 mg, 0.02 mmol) and Cs2CO3 (94 mg, 0.29 mmol), 
and the resultant mixture was heated at 100 °C for 1 d. Then, the 
solvent was evaporated to afford a reaction mixture as a yellow 
residue, from which arylated product 16 was isolated by SiO2 
column chromatography (eluted with CH2Cl2/hexane = 4/1) as a 
yellow solid (38 mg, 0.10 mmol, 54%); Rf = 0.22 (CH2Cl2/hexane = 
4/1); mp 172−175 °C; 1H NMR (CDCl3, 400 MHz) δ = 2.42 (s, 3H), 
3.49 (s, 3H), 3.59 (s, 3H), 7.29 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 8.0 Hz, 
2H), 8.71 (d, J = 2.4 Hz, 1H), 9.05 (d, J = 2.4 Hz, 1H); 13C NMR (CDCl3, 
100 MHz) δ = 21.4 (CH3), 35.0 (CH3), 61.5 (CH3),  119.9 (C), 121.9 
(CH), 122.0 (C), 123.2 (CH), 128.4 (C), 129.2 (CH), 130.4 (CH), 136.5 
(C), 138.5 (C), 139.0 (C), 140.3 (C), 158.2 (C), 163.8 (C);  IR: ν (cm-1) 
1667, 1537, 1531, 1360, 1332; HRMS (ESI) Calcd for C18H16N3O6 

[(M+H)+]: 370.1034, found 370.1037. 
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