

Organic &
Biomolecular
Chemistry

C—ON bond homolysis in Alkoxyamines. Part 12: Effect of the para-substituent in the 1-phenylethyl fragment.

SCHOLARONE™ Manuscripts

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

C—ON bond homolysis in Alkoxyamines. Part 12: Effect of the *para***-substituent in the 1-phenylethyl fragment.**

Gérard Audran,^a* Paul Brémond,^a* Jean-Patrick Joly,^a Sylvain. R. A. Marque,^{a,b}* and Toshihide Yamasaki*^a*

The application of alkoxyamines as initiators/controllers in Nitroxide Mediated Polymerization and as agents for Theranostics requires the development of switchable (from stable one to labile one) alkoxyamines. One way to achieve this is to tune the polarity of various groups carried by either the alkyl fragment or the nitroxyl fragment. Thus, the effect of protonation/deprotonation of the *para*-functionalized aryl moiety carried by the alkyl fragment in diethyl (2,2-dimethyl-1-((1,1-dimethylethyl)(1-para-subsitutedphenylethoxy) amino)propyl) phosphonate is investigated. An increase in k_d is observed with increasing localized electrical effect, i.e., with the presence of electron widthdrawing groups at the *para* position of the phenyl ring. A striking effect of the intimate ion pair on k_d is also observed.

Introduction

During the last 30 years,¹ alkoxyamines have mainly been developed as initiator/controller agents for NMP. $2-7$ Recently, we proposed⁸ and highlighted⁹ the potential of alkoxyamines as agents for theranostics. Our concept (Figure 1) relies on a fast homolysis of the alkoxyamine C—ON bond which releases an alkyl radical (therapeutic agent) and a nitroxide (diagnostic agent). There are two key steps: release of an alkoxyamine, due to a specific biological activity followed by in situ chemical activation, *e.g.*, protonation.

Hence, the easy activation or pro-activation of the alkyl fragments carried by alkoxyamines is one of our goal in this field. The alkoxyamine potential for activation has been highlighted by protonation, oxidation or alkylation of a pyridyl moiety as alkyl fragment. 10 Interestingly, it was shown that alkoxyamine **1** (Figure 2) carrying a *para*-substituted aromatic ring was slightly sensitive to the polarity of the *para*substituent.¹¹ This sensitivity to the polarity of the *para*subtituent on the aryl group was also reported when C—ON bond was at a distance of 7 or 10 bonds for insulated systems (Figure 2) either by a carboxylic group in the case of alkoxyamines **2** ¹² or by a methylene group, in the case of alkoxyamines **3**. ¹³ Taking into account that the nitroxyl fragment based on **1**• is prone to enhancing the effect of polar subtituents on the alkyl fragment, the effect of the *para*-

substituents on the aryl group in alkoxyamines **4** (Figure 2) on the homolysis rate constant k_d is investigated both in *tert*butylbenzene (*t*-BuPh) as weakly polar organic solvent and in a water/methanol mixture. An increase in k_d is observed with the increasing polarity of the *para*-substituents, except for the ionic ones (NH₃⁺ and COO⁻) in an organic solvent for which, an effect due to the intimate ion pair is observed. These results are discussed using different Hammett constants.

L SOCIETY
Hemistry

Figure 1. Concept for the application of alkoxyamines as theranostic agents (Audran, G.; Brémond, P.; Marque, S. R. A. *Chem. Commun.* 2014, *50*, 59, 7921- 7928. Published by The Royal Society of Chemistry).

a.Aix-Marseille Université, CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20 France.

b.N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr.

Lavrentjeva 9, 630090 Novosibirsk, Russia

^{*} To whom the correspondence should be sent:

Electronic Supplementary Information (ESI) available: Characterization data $(^{1}H, ^{13}C)$ NMR spectra) of compounds **4b,d,e,g-j**, procedure for kinetic and pKa measurements. X-ray crystallographic data for (*RS/SR*)-**4b**, (*RR/SS*)-**4d**. (CIF), and (*RS/SR*)-**4h**. (CIF). See DOI: 10.1039/x0xx00000x

ARTICLE

Results

Preparation of 4b,d,e,g,h-j.

Alkoxyamines **4b,h-j** were prepared by coupling of the alkyl radical generated from the corresponding *para*-substituted styrene using Mn(salen) salt¹⁴ and 1• (Scheme 1a). Oxidation of **4b** by *meta*-chloroperbenzoic acid afforded **4g** (Scheme 1b). Preparation of **4d** was performed using the procedure developed by Matyjazewski¹⁵ using beforehand prepared methyl 4-(1-bromoethyl)benzoate (Scheme 1c).¹⁶ Acid **4e** was obtained by basic hydrolysis of **4d**.

Based on the attribution of $31P$ NMR shifts to the X-ray structures (**Figure 3**) of (*RS/SR*)-**4b**, of (*SS/RR*)-**4d**, and of (RS/SR) -**4h**[‡] the lower and the higher value of δ were ascribed to the *RS/SR* and *RR/SS* diastereoisomers of **4i,j**, respectively. Preparation of **4e,g** was performed from the pure diastereoisomers of **4d** and **4b**, respectively (Scheme 1). Alkoxyamines **4c** and **4f** were generated *in situ* from the pure

diastereoisomers of **4b** and **4e**, respectively. Protonation of **4b** was performed *in situ* either using trifluoroacetic acetic (TFA) in *t-*BuPh or by controlling the water/methanol solution pH. Deprotonation of **4e** was performed *in situ* either using 1,8 diazabicyclo[5.4.0]undec-7-ene (DBU) in *t*-BuPh or by controlling the water/methanol solution pH (Table 1). Formation of 4c and 4f was checked by ¹H NMR (vide infra). **Kinetic measurements.**

For all alkoxyamines, very nice growths of **1**• were observed by EPR both in *tert*-butylbenzene (*t*-BuPh) and in a water/methanol mixture as solvents (not shown). Nice decays were observed by $31P$ NMR (not shown).

*k'*d,*RS/SR*/*k'*d,*RR/SS* ratii are never more than two-fold or less than half-fold, as already reported, and do not deserve further comments. For 1 eq. TFA and 1 eq. DBU, **4b** and **4e** were completely protonated and deprotonated, respectively, as shown by the absence of significant changes in k_d or E_a when the amounts of acid and base were increased (Table 1).

A weak 2-3-fold increase in k_d from *t*-BuPh to water/methanol was observed for 4a-e,g-j as already reported.¹⁷⁻¹⁹ More surprising is the 3-fold decrease in k_d observed for **4f** (Table 1). Although very different alkyl fragments are carried by the alkoxyamines, most of them exhibit the same solvent effect, meaning that the main effect of the solvent is the stabilization of the released nitroxide, which is **1**•, for all alkoxyamines.

Scheme 1. Preparation of (a) 4b,h-i: i) 4-X-vinylbenzene, Mn(salen), NaBH₄, *i-*PrOH; of (b) 4g: i) *m*CPBA, CH₂Cl₂; and of (c) 4d,e: i) MeOH, DCC, DMAP, CH₂Cl₂; ii) NBS, CH₂Cl₂, hv; iii) Methyl 4-(1-bromoethyl)benzoate, CuBr, Cu, PMDETA, benzene; iv) LiOH·H₂O, THF-H2O (1:1).

Figure 3. X-ray structures of (*RS/SR*)-4b (left), (*SS/RR*)-4d (middle), and (*RS/SR*)-4h (right).

ARTICLE

Table 1. Homolysis rate constant k_d of 4a-j in various conditions (solvent, temperature, and pH) and the subsequent E_a values as well as re-estimated k'_d values at 120 °C.

a t-BuPh: *tert*-butylbenzene. TFA: trifluoroacetic acid. DBU: 1,8-diazabicyclo[5.4.0]undec-7-ene. *^b* Given by eq. 2 and using *k*d values reported in the 4th and 5th columns. ^c Re-estimated *k*_d values at 120 °C using eq. 2 and *E*_a values reported in the 6th and 7th columns. ^{*d*} *E*_a = 124.5 kJ/mol for a mixture 1:1 of diastereoisomers. ^{*e*} trifluoroacetate as counter anion. ^{*f*} DBU—H⁺ as counter-cation. ^{*g*} T = 110 °C.

ARTICLE Journal Name

Figure 5. ¹H NMR for the aromatic zone in C₆D₆ of (a) (RR/SS)-4b (top) and (RR/SS)-4c (bottom, 1 eq. TFA); and of (b) 4e (top) and 4f (bottom, 1 eq. DBU). Stars are for the shifting peaks

Protonation and deprotonation.

The values of p*K*^a (Figure 4) were determined for **4b** and **4e** as already reported (not dependent on the diastereoisomer). 20.8 The p*K*^a values of 4.20 and 4.23 for the *RR/SS* and the *RS/SR* diastereoisomer of **4b**, respectively, are slightly lower than those for their parent aniline (p K_a = 4.6). The p K_a values of 6.02 and 6.19 for the *RR/SS* and the *RS/SR* diastereoisomers of **4e**, respectively, are much larger than those for their parent benzoic acid ($pK_a = 4.20$). The low pK_a for **4b** is due to the electron widthdrawing effect of the nitroxyl fragment. However, at this time, the best rationale to account for the high p*K*^a of the benzoic acid derivative would be to assume an effect of the water/methanol mixture on the pK_a values.

As mentioned above, one equivalent of both the acid (TFA) and the base (DBU) was strong enough to protonate **4b** into **4c** and to deprotonate 4e into 4f in *t*-BuPh, respectively. The 1 H NMR signal of the aromatic protons was used to monitor protonation of **4b** (Figure 5a) and deprotonation of **4e** (Figure 5b).

Hammett constants for structure-reactivity relationships (SRR).

SRR have been developed for both the nitroxyl and the alkyl fragments. For the latter, k_d depends on the radical stabilization effect – described by the Hammett-type constant σ_{RS}^{21} –, on the polar (electrical) effect – described by the Hammett constant $\sigma_1^{22-27,\#}$ –, and on the steric effect – described by the Charton's constant v^{28} To describe the stabilization effect of the released radical, the best would be to use σ_{RS} . However, knowledge of σ_{RS} relies on the determination of the Radical Stabilization Energy (RSE) as defined by Rüchardt, 29 which requires knowledge of the hydrogen hyperfine coupling constants $a_{H,\alpha}$ and $a_{H,\beta}$ at positions α and β in the considered radical. Unfortunately, only two a_H values have been reported for radicals in the series **a•** – **g**•, precluding the use of the σ_{RS} scale as well as of the σ_α • scale developed by Arnold.³⁰⁻³² Amongst the other scales available, such as σ_j •, 3^3 σ_{jj} •, 3^4 σ •, 3^5 $\sigma_{\rm C}$ •, $36,37$ ΔD^{38} which have been developed to describe the stabilization of benzylic type radicals, σ_{jj} • and ΔD – developed by Jiang³⁴ and Adam,³⁸ respectively – were selected since the values for 8 of the 10 investigated radicals were reported (Table 2).

The localized electrical effect is due to the presence of electron widthdrawing (EWG) or electron donating (EDG) groups, which are either directly attached to the reactive centre (Figure 6a) or separated from it by a spacer (Figure 6b). The presence of a spacer can be disregarded, and the effect is described using $σ_L$, or the spacer is considered and, for 4a-g, the effect is described by $\sigma_{L,4-xC6H4}$ given by eq. 4.^{22,27}

$$
\sigma_{L,4-X C6 H4} = 0.138 \cdot \sigma_{L,X} + 0.137 \cdot \sigma_{R,X}^{0} + 0.120 \text{ (4)}
$$

For the series **4a-g**, the occurrence of the delocalization of the radical or of some partial charges at TS cannot be disregarded. Then, the impact of this effect also depends on the presence of EWG and EDG. These groups can be either attached to the reactive centre (Figure 6a) or separated from it by a spacer (Figure 6b). The presence of a spacer can be disregarded, and the delocalization effect is described by $\sigma_{R,X}$, or the spacer is considered, and, for $4a-g$, the effect is described by $\sigma_{R,4-\text{XCGH4}}$ given by eq. $5.22,27$

$$
\sigma_{R,4-XCGH4} = 0.180 \cdot \sigma_{L,X} + 0.111 \cdot \sigma_{R,X}^{0} - 0.0988
$$
 (5)

The Hammett constant $\sigma_{R,X}^0$ describes the normalized delocalized effect of an X group. Its values are in general similar to the values of $\sigma_{R,X}$, except for amino and some other groups. ^{22,}Ω

In general, the effect of a *para*-substituted aryl on the reactivity is investigated using the composite Hammett constant $\sigma_{p,X}$ given by eq. 6 which encompasses both the universal electrical effect ($\sigma_{L,X}$) and the resonance effect ($\sigma_{R,X}$).

Figure 6. Position of X (EWG or EDG) to the reactive centre.

(AL SOCIETY
Chemistry

ARTICLE

^a Given by eq. 4 unless otherwise mentioned. ^b See ref. 22 unless otherwise mentioned. ^c Given by eq. 5 unless otherwise mentioned. ^d Given in ref. 34 ^e See ref. 38. ^{*f*} For σ_R^0 see ref. Error! Bookmark not defined.. ^g Assuming $\sigma_{\rm{ij,NHC}}\bullet\approx\sigma_{\rm{ij,NMC}}\bullet=1$. See ref. 34. ^h Using F = 0.92 and eq. 9 in ref. 26. ^h Using eq. 6. ⁱ Given by eq. 6. ⁱ Given by eq. 6. ⁱ Not available.

Figure 7. (a) Plots log(k'_a/s⁻¹) vs σ_{LX} (blue line and \bullet) and log(k'_a/s⁻¹) vs $\sigma_{L4 \times 6\mu 4}$ (black line and \blacksquare) in t-BuPh . (b) Plots log(k'_a/s⁻¹) vs $\sigma_{R,X}$ (\bullet) and log(k'_a/s⁻¹) vs $\sigma_{$ and \blacksquare) and log(k'_d/s^{-1}) vs σ_p (red line and \star) in *t*-BuPh. Empty symbols are for outliers.

Figure 8. (a) Plots log(k'_d/s⁻¹) vs $\sigma_{\text{\tiny L,X}}$ (blue line and \bullet) and log(k'_d/s⁻¹) vs $\sigma_{\text{\tiny L+XCGHA}}$ (black line and \blacksquare) in water/methanol. (b) Plots log(k'_d/s⁻¹) vs $\sigma_{\text{\tiny R,XCGHA}}$ (\bullet) and log(k'_d (black line and \blacksquare) and log(k'_d/s^{-1}) vs σ_p (red line and \star) in water/methanol. Empty symbols are for outliers.

ARTICLE

All Hammett constants are listed in Table 2. As the ratio *k*'d(*RR/SS*)/*k*'d(*SR/RS*) is mainly in between 2 and 0.5 and often close to 1, k_d values for the two diastereoisomers were indistinctly reported on the same plots (Figure 7 and Figure 8). The trends in k_d are given using the averaged values of k_d for the two diastereoisomers. Beside the conventional 2-3-fold solvent effect already reported, some clear differences are observed for **4b** and **4f**.

$$
\sigma_{p,X} = \sigma_{L,X} + \sigma_{R,X} \tag{6}
$$

Discussion

A decade ago, SRR were developed to account for the various effects ruling k_d and due to both the nitroxyl³⁹ and the alkyl²¹ fragments. It was shown that k_d values depend on the stabilization of the released alkyl radical (σ_{RS}), the bulkiness (υ) and the polarity (σ_{L}) of the alkyl fragment, as given by eq. 7.

 $log(k_d/s^{-1}) = -14.33(\pm 0.54) + 15.06(\pm 1.17) \cdot \sigma_{RS} + 20.00(\pm 1.86) \cdot \sigma_L + 6.96(\pm 0.43) \cdot \upsilon$ (7)

It must be noted that all coefficients have a positive sign, meaning that k_d increases with increasing parameters. The polar effect is due to the difference in electronegativity χ between the oxygen and the carbon atoms in the C—ON bond, that is, an increase in χ of the C atom implies a destabilization of the alkoxyamine, leading to a smaller *E*^a , and, hence, to a higher k_d . The stabilization of the released alkyl radical stabilizes the late TS and, hence, decreases *E*^a , affording a higher k_d . Increasing the bulkiness of the alkyl fragment increases the internal strain in the alkoxyamine, destabilizing the starting material and leading to a smaller *E*^a and, hence, to a higher k_d . For the series 4b-j, it was assumed that the substitution at the *para* position of the aromatic ring did not generate larger steric strain than in **4a** and, consequently, all changes observed in k_d were due to the polar and stabilization effects.

The trends (Figure 9) observed with $\sigma_{ij,X}$ • and ΔD_X cannot account for the reactivity observed both in *t-*BuPh and water/methanol, that is, k'_d of **4b** should be larger than k'_d of **4a,d,e,g-j**, as given by $\sigma_{ii,X}$ • in sharp contrast with the experimental trend, or k'_d of **4g** should be larger than k'_d of **4ad,h-i** as given by ΔD_X . Moreover, the difference in $\sigma_{ii,X}$ • or ΔD_X observed between **4a** and **4b**, which is in sharp contrast with their very similar *k'*d, precludes any effect due to the stabilization of the released alkyl radical. There is a complete mismatch between the trend given by σ_{R} in *t*-BuPh and the experimental trend in k_d' which leads to discard this parameter to describe the effects involved in k'_d . All other trends given by σL,4-XC6H4, σL,X, σp,X, and σR,4-XC6H4 in *t-*BuPh would agree with

the experimental trend, provided the ionic species are removed. The likely occurrence of an intimate ion pair⁴⁰ is discussed later.

Consequently, plots of $log(k'_d/s^{-1})$ vs Hammett constants are expected to provide linear correlations (Figure 7), as given by eq. (8). Good correlations are observed for $\sigma_{L,4-\chi C6H4}$, $\sigma_{R,4-\chi C6H4}$ in *t*-BuPh whereas $\sigma_{L,X}$ and $\sigma_{p,X}$ afford poor correlations (good *R* 2 values but 11-12 outliers for 20 data, see Table 3 and Figure 7), and the data were too scattered to plot a correlation with $\sigma_{\text{R,X}}$ (Figure 7). Hence, the absence of outliers^{$\sqrt{ }$} – except the ionic species **4c** and **4f** when $\sigma_{L,4-\text{XCGH4}}$ is used instead of $\sigma_{R,4}$. X_{C6H4} – supports strongly the need to take the spacer into account (Figure 6b) to describe the effect of EWG (localized electrical effect). Moreover, the trend in $\sigma_{L,4-XCGH4}$ predicts (Figure 9) very close values of *k'*d (∆*E*^a ≈ 1 kJ/mol observed in Table 1 for $\Delta\sigma_{L,4-\text{XCGH4}}$ = 0.03 in Table 2 for Me, H, F, and OMe groups) for $4a,h-j$ whereas the trend in $\sigma_{R,4-XCGH4}$ predicts a larger change in *k'*_d (Δσ_{R,4-XC6H4}, = 0.33 for Me, H, F and OMe), knowing that the larger difference in E_a ($\Delta E_a \approx 8$ kJ/mol) is observed between **4a** and **4g** with a $\Delta\sigma_{R,4-XCGHA}$ = 0.14.

For all alkoxyamines, the largest discrepancies are observed for the ionic species, pointing to an effect due to the presence of intimate ion pairs. Indeed, it is known that an intimate ion pair, which is likely to be observed in a weakly ion pair dissociative solvent such as *t-*BuPh, cancels or dampers the effect expected from a positive or a negative charge, that is, $\frac{d}{dx}$ decrease in k_d with an anion⁴¹ such as COO^- as EDG and increase in k'_d with a cation⁴⁰ such as NH_3^* as EWG.

$$
\log(k_{\rm d}/\rm{s}^{-1}) = a + b \cdot \sigma \tag{8}
$$

Figure 9. Trends for k'_d expected from the Hammett-type constants.

ARTICLE

Table 3. Coefficients for eq. 8 in t-BuPh and its statistical outputs						
Eq.	abscissa	$y-$ intercept σ	$slope^{\alpha}$	N^b	R^{2c}	outliers
8a	σ _{L,4-} X C6H4	$-3.1(1)$	7.8(7)	16	0.89	$NH3+,COO$
8b	$\sigma_{L, X}$	$-2.2(1)$	1.3(2)	9	0.91	NH ₃ ⁺ ,COO ⁻ ,NH ₂ ,
8c	σ _{R.4-} xc _{6H4}	$-1.5(1)$	5.3(3)	11	0.97	COOH,F,OMe,H(RS/SR) $NH3+, COO-, F,H(RR/SS),$ NH ₂ (RR/SS), OMe(RR/SS)
8d	$\sigma_{p,X}$	$-2.3(1)$	1.3(1)	9	0.93	$NH3+,COO-,NH2,Me,$ OMe,F(RR/SS)

Table 4. Coefficients for eq. 8 in a water/methanol mixture and its statistical outputs

a In parentheses, error given on the last digit. *^b* Number of data. *^c* Square of the linear regression coefficient.

^{*a*} In parentheses, error given on the last digit. ^{*b*} Number of data. ^{*c*} Square of the linear regression coefficient

reverted solvent effect, i.e., for all other alkoxyamines k_d increases from *t-*BuPh to water/methanol.

Intimate ion pair effect.

As mentioned above, an intimate ion pair may strikingly modify the reactivity expected in an organic solvent and, consequently, should be very sensitive to a dissociative solvent such as a binary mixture of water and methanol. $10,17,18$ The comments concerning the trends (Figure 9) given by $\sigma_{L,X}$, $\sigma_{R,X}$, and $\sigma_{p,x}$ done in *t*-BuPh (vide supra) hold for the experiments performed in water/methanol as solvent. Interestingly, contrary to experiments performed in *t-*BuPh, **4f** is included in the trends given by $\sigma_{L,4-\text{XCGH4}}$ and $\sigma_{R,4-\text{XCGH4}}$ whereas NH₃⁺ is again excluded. As in *t-*BuPh, correlations (eq. 8) between log(k_d /s⁻¹) and σ -values (Figure 8 and Table 4) were found in water/methanol. Except for σ_{RX} , which shows a scattered plot, all other correlations are of very good quality, provided some outliers are removed (Table 4 and Figure 8). Interestingly, **4f** is included in the correlations based on $\sigma_{L,4-XCBH4}$ and $\sigma_{R,4-XCBH4}$ as expected, that is, the ratio $k'_{d,4e}/k'_{d,4f}$ increased from 1.02 in t-BuPh to 4.7 in water/methanol, highlighting nicely the effect of the intimate ion pair in *t-*BuPh and completely dissociated ion pair in water/methanol. That is, the counter-cation being in the vicinity of the carboxylate function balances the effect of the negative charge on the strength of the C—ON bond in **4f**, affording k_d values very close to those of 4e in *t*-BuPh, whereas when the intimate ion pair is dissociated in the water/methanol mixture, a stronger effect of the negative charge is observed, affording a lower k_d for 4f than for 4e, as expected. Moreover, this intimate ion pair in **4f** leads to a

Surprisingly, the effect of the intimate ion pair is not observed with **4c**, as the ratio $k'_{d,4b}/k'_{d,4c}$ is very close to 1 in both solvents. In fact, the complete dissociation of the intimate ion pair – affording a strinking increase in k_d – is counterbalanced by the solvation , and hence the stabilization, of the alkoxyamine – affording a striking decrease in k_d . This is why the effect of the intimate ion pair is not apparent when the solvent is changed.

Conclusion

In this work, we confirm the efficiency of the polar effect to afford a 10-fold increase in k_d values from **4a** to **4g** whatever the solvent. The polar effect is nicely described by the universal electrical Hammett constant $σ_{L.4-XCGH4}$.

In the last few years, we have promoted the activation of the alkoxyamine C—ON bond homolysis by the protonation of the pyridine ring in the alkyl fragment, i.e., increasing the polarity. With this work, we highlight the de-activation of the alkoxyamine C—ON bond homolysis by de-protonation of the carboxylic fonction of the alkyl fragment, i.e., increasing the electron donating effect. However, we show that the impact of the polarity is dramatically related to the occurrence of solvent-dependent intimate ion pair and on the type of function, impeding any possibility to foresee the impact of this effect.

Experimental section.

Solvents and reactants for the preparation of alkoxyamines **4** were used as received. Alkoxyamine **4a**, ⁴² methyl 4-

ARTICLE Journal Name

ethylbenzoate,⁴³ and methyl 4-(1-bromoethyl)benzoate⁴⁴ were prepared according to the literature*.* Routine reaction monitoring was performed using silica gel 60 F_{254} TLC plates; spots were visualized upon exposure to UV light and a phosphomolybdic acid solution in EtOH, followed by heating. Purifications were performed on chromatography columns with silica gel grade 60 (230–400 mesh). 1 H, 13 C, and 31 P NMR spectra were recorded in CDCl $_3$ on a 300 or 400 MHz spectrometer. Chemical shifts (δ) in ppm were reported using residual nondeuterated solvents as internal reference for 1 H and 13 C-NMR spectra, and 85% H_3 PO₄ for 31 P-NMR spectra. **General procedure for the preparation of 4b,h-j.**

To a stirred solution of salen ligand (0.05 eq.) in *i*-PrOH was added MnCl₂ (0.05 eq.) in an open flask. After 30 minutes of stirring at room temperature, a solution of **1•** (1 eq.) and *para*substitued-styrene (1.5 eq.) in *i*-PrOH was added first, then solid NaBH₄ (4 eq.) in small portions. The resulting suspension was stirred at room temperature for 1.5-4h. It was then diluted with EtOAc and 1 M aq. HCl was carefully added. Solid NaHCO₃ was then added until neutralization. The layers were separated, and the organic phase was washed with water, brine and dried over Na₂SO₄. After concentration under reduced pressure, the residue was purified by column chromatography to afford the corresponding alkoxyamines **4b**,**h** - **j.**

Diethyl (1-((1-(4-aminophenyl)ethoxy)(*tert***-butyl)amino)-2,2 dimethylpropyl)phosphonate (***RR/SS***-4b and** *RS/SR***-4b)**

Salen ligand (46 mg, 0.17 mmol, 0.05 eq.), MnCl₂ (21 mg, 0.17 mmol, 0.05 eq.), **1•** (1.0 g, 3.4 mmol, 1.0 eq.), 4-vinylaniline (0.61 g, 5.1 mmol, 1.5 eq.) and NaBH₄ (0.52 g, 13.6 mmol, 4.0 eq.). Solvent was evaporated to give the crude product as a 1:1 mixture of diastereoisomers $(^{31}P\text{-NMR}$ ratio). The diastereomers were separated by automatic flash column chromatography (gradient of acetone in DCM) to afford (*RR/SS*)-**4b** (0.31 g, 23%) and *RS/SR*-**4b** (0.32 g, 24%). The sample for X-ray crystallography of (*RS/SR*)-**4b** was recrystallized from pentane/EtOAc. (*RR/SS*)-**4b**; Pale yellow solid; m.p.: 110 °C (decomp.); R $_{\rm f}$ = 0.46 (DCM/Acetone 7:3); $^{\rm 1}$ H NMR (400 MHz, CDCl³) *δ*: 7.11 (d, *J* = 8.3 Hz, 2H), 6.64 (d, *J* = 8.3 Hz, 2H), 4.91 (q, *J* = 6.5 Hz, 1H), 3.92-4.40 (m, 4H), 3.34 (d, *J*H-P = 25.3 Hz, 1H), 1.57 (d, *J* = 6.8 Hz, 3H), 1.33 (t, *J* = 6.8 Hz, 3H), 1.32 (t, J = 7.0 Hz, 3 H), 1.24 (s, 9H), 0.85 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ: 145.2, 135.0, 128.3, 114.3, 84.0, 69.8 (d, J_{C-P} $= 138.6$ Hz), 61.3 (d, $J_{C-P} = 6.6$ Hz), 60.8, 58.5 (d, $J_{C-P} = 7.2$ Hz), 35.3 (d, *J*_{C-P} = 5.5 Hz), 30.0 (d, *J*_{C-P} = 6.1 Hz), 28.3, 23.2, 16.5 (d, *J*C-P = 6.1 Hz),16.1 (d, *J*C-P = 6.6 Hz); ³¹P NMR (162 MHz, CDCl³) *δ:* 25.97; HRMS *m/z* (ESI) Calcd for C₂₁H₃₉N₂O₄P [M+H]⁺ 415.2720, Found: 415.2723; (*RS/SR*)-**4b**; pale yellow crystal; m.p.: 130 °C (decomp.); $R_f = 0.31$ (DCM/Acetone 7:3); ¹H NMR (400 MHz, CDCl³) δ: 7.27 (d, *J* = 8.3 Hz, 2H), 6.62 (d, *J* = 8.3 Hz, 2H), 5.16 (q, *J* = 6.5 Hz, 1H), 3.21 - 4.07 (m, 4H), 3.39 (d, J_{H-P} = 26.1 Hz, 1H), 1.52 (d, *J* = 6.5 Hz, 3H), 1.25 (t, *J* = 7.0 Hz, 3H), 1.20 (s, 9H), 1.19 (s, 9H), 0.93 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 145.7, 133.1, 129.0, 114.4, 77.8, 70.1 (d, *J_{C-P}* = 139.7 Hz), 61.6 (d, J_{C-P} = 6.1 Hz), 60.9, 58.4 (d, J_{C-P} = 7.7 Hz), 35.2 (d, J_{C-P} = 5.0 Hz), 30.5 (d, *J*_{C-P} = 6.1 Hz), 28.1, 20.7, 16.3 (d, *J*_{C-P} = 6.1 Hz), 16.1

(d, J_{C-P} = 6.6 Hz); ³¹P NMR (162 MHz, CDCl₃) *δ*: 24.63; HRMS *m/z* (ESI) Calcd for $C_{21}H_{39}N_2O_4P$ [M+H]⁺ 415.2720, Found: 415.2722. **Methyl 4-(1-((***tert***-butyl(1-(diethoxyphosphoryl)-2,2-**

dimethylpropyl)amino)oxy)ethyl)benzoate (*RS/SR***-4d and** *RR/SS***-4d).**

To a degassed solution of CuBr (1.18 g, 8.3 mmol) and Cu (1.05 g, 16.5 mmol) in benzene, *N*,*N*,*N'*,*N''*,*N''*- Pentamethyldiethylenetriamine (1.72 mL, 8.3 mmol) was added dropwise, and the solution was kept under argon bubbling for another 30 min. Then, a degassed benzene solution of **1•** (4.42 g, 16.5 mmol) and methyl 4-(1 bromoethyl)benzoate (4.01 g, 16.5 mmol) was added, and the mixture was stirred for 3 h at room temperature under argon. Then, Et_2O , water and NH₄OH was added and the mixture was washed with Et₂O. The organic layer was washed with H₂O and brine, dried with MgSO₄, and the solvent was evaporated to yield a crude product as a 2:1 mixture of diastereoisomers $\binom{31}{1}$ P NMR ratio). The diastereoisomers were separated by flash column chromatography (petroleum ether/EtOAc, 9:1) to afford (*RS/SR*)-**4d** (2.81 g, 41%) and (*RR/SS*)-**4d** (0.87 g, 13%). The sample for X-ray crystallography of (*RR/SS*)-**4d** was recrystalized from pentane. (RS/SR)-4d; Colorless oil; R_f = 0.37 (Pentane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) δ : 7.97 (d, J = 8.4 Hz, 2H), 7.52 (d, *J* = 8.3 Hz, 2H), 5.29 (q, *J* = 6.6 Hz, 1H), 3.91 (s, 3H), 3.42 (d, *J*_{H-P}=26.3 Hz, 1H), 3.18 - 3.53 and 3.79 - 4.04 (m, 4H), 1.55 (d, *J* = 6.6 Hz, 3H), 1.24 (t, *J* = 7.1 Hz, 3H), 1.22 (s, 9H), 1.21 (s, 9H), 0.91 (t, J = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ: 166.8, 148.4, 129.1, 128.9, 127.4, 77.8, 69.6 (d, J_{C-P} = 139.8 Hz), 61.3 (d, *J_{C-P}* = 6.1 Hz), 61.1, 58.6 (d, *J_{C-P}* = 7.7 Hz), 51.7, 35.1 (d, *J*_{C-P} = 5.0 Hz), 30.5 (d, *J*_{C-P} = 6.1 Hz), 28.0, 21.1, 16.1 (d, J_{C-P} = 6.1 Hz), 16.0 (d, J_{C-P} = 6.6 Hz); ³¹P NMR (162 MHz, CDCl₃) δ : 24.53; HRMS m/z (ESI) Calcd for C₂₃H₄₁NO₆P [M+H]⁺ 458.2666, Found: 458.2665. (*RR/SS*)-**4d**; White solid; m.p.: 82- 84 °C; R_f = 0.29 (Pentane/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃) ^δ: 7.98 (d, *J* = 8.3 Hz, 2H), 7.36 (d, *J* = 8.2 Hz, 2H), 5.04 (q, *J* = 6.7 Hz, 1H), 3.92 - 4.43 (m, 4H), 3.89 (s, 3H), 3.34 (d, J_{H-P} = 26.0 Hz, 1H), 1.59 (d, *J* = 6.8 Hz, 3H), 1.35 (d, *J* = 7.2 Hz, 3H), 1.31 (t, *J* = 7.2 Hz, 3H), 1.23 (s, 9H), 0.83 (s, 9H); 13 C NMR (75 MHz, CDCl₃) δ: 166.8, 150.4, 129.3, 128.7, 126.8, 84.8, 69.5 (d, *J*_{C-P} = 138.6 Hz), 61.4 (d, *J*_{C-P} = 6.6 Hz), 61.1, 58.8 (d, *J*_{C-P} = 7.7 Hz), 51.8, 35.4 (d, J_{C-P} = 5.5 Hz), 29.9 (d, J_{C-P} = 6.1 Hz), 28.4, 23.9, 16.6 (d, J_{C-P} = 5.5 Hz), 16.1 (d, J_{C-P} = 6.6 Hz); ³¹P NMR (162 MHz, CDCl₃) δ : 25.67; HRMS m/z (ESI) Calcd for C₂₃H₄₁NO₆P [M+H]⁺ 458.2666, Found: 458.2666.

4-(1-((tert-Butyl(1-(diethoxyphosphoryl)-2,2-

dimethylpropyl)amino)oxy)ethyl)benzoic acid (RS/SR-4e).

To a solution of (*RS/SR*)-4d (0.92 g, 2.0 mmol) in THF-H₂O (1:1, 15 mL) was added LiOH \cdot H₂O (0.42 g, 10.0 mmol) at room temperature. The mixture was stirred at rt for 5 h and then it acidified with 1M HCl. The mixture was diluted with water and extracted with DCM. The combined organic phase was dried with $MgSO₄$ and the solvent was evaporated. The crude product was purified by column chromatography (DCM: MeOH = 95: 5) to afford (*RS/SR*)-**4e** (0.82g, 87%). White solid; m.p.: 64-65 °C; R_f = 0.37 (DCM/MeOH 9:1); ¹H NMR (400 MHz, CDCl₃) ^δ: 8.01 (d, *J* = 8.2 Hz, 2 H), 7.53 (d, *J* = 8.2 Hz, 2H), 5.30 (q, *J* = 6.7 Hz, 1H), 3.48 (d, J_{H-P}=26.7 Hz, 1 H), 3.32 - 4.17 (m, 4H), 1.58

Journal Name ARTICLE ARTICLE

(d, *J* = 6.5 Hz, 3H), 1.25 - 1.30 (m, 12H), 1.24 (s, 26H), 0.95 (t, *J* = 7.0 Hz, 3H); 13 C NMR (7,5 MHz CDCl₃) δ : 169.3, 148.3, 129.6, 129.4, 127.2, 78.0, 69.8 (d, *J_{C-P}* = 140.3 Hz), 61.9 (d, *J_{C-P}* = 6.6 Hz), 61.2, 59.3 (d, *J_{C-P}* = 7.7 Hz), 35.2 (d, *J_{C-P}* = 5.0 Hz), 30.5 (d, *J_{C-}P* = 5.0 Hz), 30.5 (d, *J_C* $_{P}$ = 6.1 Hz), 28.1, 21.3, 16.0 (d, *J*_{C-P} = 5.5 Hz), 15.9 (d, *J*_{C-P} = 6.6 Hz); ³¹P-NMR (162 MHz, CDCl₃) *δ*: 24.80; HRMS *m/z* (ESI) Calcd for C₂₂H₃₉NO₆P [M+H]⁺ 444.2510, Found: 444.2507.

4-(1-((tert-Butyl(1-(diethoxyphosphoryl)-2,2-

dimethylpropyl)amino)oxy)ethyl)benzoic acid (RR/SS-4e).

The same procedure as for (*RS/SR*)-**4e** was applied to (*RR/SS*)- **4d** (0.46 g, 1.0 mmol) with LiOH·H₂O (0.21 g, 5.0 mmol) to yield (RR/SS)-4e (0.35 g, 79%). White solid; m.p.: 65-66 °C; R_f = 0.41 (DCM/MeOH 9:1); ¹H NMR (400 MHz, CDCl₃) δ : 8.06 (d, J = 8.2) Hz, 2H), 7.40 (d, *J* = 8.2 Hz, 2H), 5.07 (q, *J* = 6.7 Hz, 1H), 3.93 - 4.49 (m, 4H), 3.38 (d, J_{H-P} = 26.3 Hz, 1H), 1.62 (d, J = 6.7 Hz, 3H), 1.38 (t, *J* = 7.1 Hz, 3H), 1.33 (t, *J* = 7.1 Hz, 3H), 1.25 (s, 9H), 0.86 (s, 9H); 13 C NMR (75 MHz, CDCl₃) δ : 169.7, 150.6, 129.9, 129.2, 126.9, 85.3, 69.8 (d, *J_{C-P}* = 139.2 Hz), 62.1 (d, *J_{C-P}* = 6.1 Hz), 61.3, 59.4 (d, *J*_{C-P} = 7.7 Hz), 35.7 (d, *J*_{C-P} = 6.1 Hz), 30.1 (d, *J*_{C-P} = 5.5 Hz), 28.6, 24.1, 16.7 (d, *J_{C-P}* = 5.5 Hz), 16.2 (d, *J_{C-P}* = 7.2 Hz); ³¹P NMR (162 MHz, CDCl₃) δ : 25.64; HRMS *m/z* (ESI) Calcd for $C_{22}H_{39}NO_6P$ [M+H]⁺ 444.2510, Found: 444.2505.

*Diethyl (1-((1-(4-nitrophenyl)ethoxy)(tert-butyl)amino)-2,2 dimethylpropyl)phosphonate (RR/SS***-4g).**

To a stirred solution of (*RR/SS*)-**4b** (1.97 g, 4.8 mmol) in DCM (40 mL) , *m*-CPBA $(3.19 \text{ g}, 14.3 \text{ mmol}, 77%)$ was added at 0° C. After stirring at 0° C for 1 h, the mixture was washed with NaHCO₃ and brine. Then it was dried over $Na₂SO₄$ and evaporated. The residue was purified on a chromatography column, eluted with DCM to afford (*RR/SS*)-**4g** 1.12 g (53%). Brown solid; m.p.: 68-70 °C; R $_{\rm f}$ = 0.42 (DCM/Acetone 9:1); $^{\rm 1}$ H NMR (400 MHz, CDCl₃) δ: 8.19 (d, J = 8.7 Hz, 2H), 7.48 (d, J = 8.7 Hz, 2H), 5.11 (q, J = 6.6 Hz, 1H), 3.95 - 4.44 (m, 4H), 3.37 (d, J_{H-P} = 26.2 Hz, 1H), 1.62 (d, *J* = 6.7 Hz, 3H), 1.37 (t, *J* = 7.2 Hz, 3H), 1.34 (t, J = 7.2 Hz, 3H), 1.25 (s, 9H), 0.86 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ: 152.5, 146.8, 127.6, 123.3, 84.2, 69.4 (d, J_{C-P} = 139.2 Hz), 61.4 (d, *J_{C-P}* = 6.1 Hz), 61.2, 59.0 (d, *J_{C-P}* = 7.2 Hz), 35.4 (d, J_{C-P} = 5.0 Hz), 29.9 (d, J_{C-P} = 5.5 Hz), 28.3, 23.8, 16.6 (d, *J*_{C-P} = 5.5 Hz), 16.1 (d, *J*_{C-P} = 6.6 Hz); ³¹P NMR (162 MHz, CDCl₃) *δ*: 25.35; HRMS *m/z* (ESI) Calcd for C₂₁H₃₈N₂O₆P [M+H]⁺ 445.2462, Found: 445.2460.

Diethyl (1-((1-(4-nitrophenyl)ethoxy)(tert-butyl)amino)-2,2 dimethylpropyl)phosphonate (RS/SR-4g).

The same procedure as for (*RR/SS*)-**4g** was applied to (*RS/SR*)- **4b** (1.64 g, 4.0 mmol) with *m*CPBA (77%, 2.66 g, 11.9 mmol) to yield (*RS/SR*)-4g (1.12 g, 64%). Brown solid; m.p.: 72-74 °C; R_f = 0.54 (DCM/Acetone 9:1); ¹H NMR (400 MHz CDCl₃) δ : 8.17 (d*, J* = 8.7 Hz, 2H), 7.62 (d, *J* = 8.7 Hz, 2H), 5.33 (q, *J* = 7.0 Hz, 1H), 3.44 (d, *J*H-P = 26.5 Hz, 1H), 3.28 - 4.07 (m, 4H), 1.57 (d, *J* = 6.5 Hz, 3H), 1.25 (t, *J* = 7.1 Hz, 3H), 1.23 (s, 9H), 1.21 (s, 9H), 0.96 (t, J = 7.1 Hz, 3H); 13 C NMR (75 MHz, CDCl₃) δ : 150.7, 146.9, 128.1, 123.0, 77.4, 69.4 (d, *J_{C-P}* = 139.2 Hz), 61.2, 61.1 (d, *J_{C-P}* = 6.6 Hz), 58.8 (d, J_{C-P} = 7.7 Hz), 35.1 (d, J_{C-P} = 4.4 Hz), 30.5 (d, J_{C-P} = 6.1 Hz), 27.9, 21.2, 16.1 (d, J_{C-P} = 6.1 Hz), 15.9 (d, J_{C-P} = 7.2 Hz); ³¹P NMR (162 MHz, CDCl³) *δ*: 24.43; HRMS *m/z* (ESI) Calcd for $C_{21}H_{38}N_2O_6P$ [M+H]⁺ 445.2462, Found: 445.2460.

Diethyl (1-(tert-butyl(1-(4-fluorophenyl)ethoxy)amino)-2,2 dimethylpropyl)phosphonate (4h).

Salen ligand (0.65 mmol), MnCl₂ (0,65 mmol), 1• (17 mmol), 4fluorostyrene (25.5 mmol) and NaBH₄ (17 mmol) to give after concentration under reduced pressure a crude product as a 1:3 mixture of diastereoisomers $\int^{31} P\text{-NMR}$ ratio). The diastereomers were separated by automatic flash column chromatography (gradient of ethyl acetate in petroleum ether) to afford (*RR/SS*)-**4h** and (*RS/SR*)-**4h** (4.1 g, 58%). (*RS/SR*)-**4h**; Colourless solid; m.p.: 56 °C; $R_f = 0.61$ (petroleum ether/AcOEt $= 4:1$); ¹H NMR (300 MHz, CDCl₃) δ :17.41 (dd, J = 8.5, 5.7 Hz, 2H), 6.93 (t, *J* = 8.7 Hz, 2H), 5.21 (q, *J* = 6.6 Hz, 1H), 4.51 – 3.64 (m, 2H), 3.48 – 3.18 (m, 2H), 3.38 (d, *J*_{H-P} = 26.2 Hz, 1H), 1.51 (d, *J* = 6.6 Hz, 3H), 1.34 – 1.08 (m, 21H), 0.90 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ: 162.3 (d, *J*_{C-P} = 245.1 Hz), 139.2 (d, *J*_{C-P} = 3.2 Hz), 129.7, 129.6, 114.9, 114.6, 77.8, 70.2 (d, J_{C-P} = 139.3 Hz), 61.6 (d, *J_{C-P}* = 6.5 Hz), 61.3, 58.8 (d, *J_{C-P}* = 7.5 Hz), 35.4 (d, *J*_{C-P} = 5.0 Hz), 30.8 (d, *J*_{C-P} = 6.0 Hz), 28.3, 21.2, 16.4 (d, *J*_{C-P} = 5.8 Hz), 16.3 (d, J_{C-P} = 6.9 Hz); ¹⁹F NMR (282 MHz, CDCl₃) *δ*: -115.3; $31P$ NMR (121 MHz, CDCl₃) δ : 24.7; HRMS m/z (ESI) calcd for C21H37FNO4P [M + H]⁺418.2522, found: 418.2520. (*RR/SS*)-**4h**; Colorless oil; $R_f = 0.50$ (EP/AcOEt = 4:1); ¹H NMR (300 MHz, CDCl³) δ: 7.26 (dd, *J* = 8.5, 5.5 Hz, 2H), 6.97 (t, *J* = 8.6 Hz, 2H), 4.98 (q, *J* = 6.6 Hz, 1H), 4.31 (m, 1H), 4.17 – 3.79 (m, 3H), 3.35 (d, *J*H-P = 26.3 Hz, 1H), 1.57 (d, *J* = 6.7 Hz, 3H), 1.31 (q, *J* = 6.9 Hz, 6H), 1.23 (s, 9H), 0.84 (s, 9H); 13 C NMR (75 MHz, CDCl $_3)$ δ : 161.9 (d, J_{C-P} = 245.0 Hz), 140.9 (d, J_{C-P} = 3.2 Hz), 128.8 (d, J_{C-P} = 7.8 Hz), 127.0 (d, *J_{C-P}* = 8.0 Hz), 114.7 (d, *J_{C-P}* = 21.2 Hz), 83.9, 69.8 (d, J_{C-P} = 138.6 Hz), 61.6 (d, J_{C-P} = 6.3 Hz), 61.2, 59.0 (d, J_{C-P} $= 7.4$ Hz), 35.5 (d, $J_{C-P} = 5.5$ Hz), 30.2 (d, $J_{C-P} = 6.0$ Hz), 28.5, 23.6, 16.6 (d, J_{C-P} = 5.7 Hz), 16.2 (d, J_{C-P} = 6.7 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ : -115.7; ³¹P NMR (121 MHz, CDCl₃) δ : 25.7; HRMS m/z (ESI) calcd for C₂₁H₃₇FNO₄P [M + H]⁺ 418.2522, found : 418.2520.

Diethyl (1-(tert-butyl(1-(p-tolyl)ethoxy)amino)-2,2 dimethylpropyl)phosphonate (4i).

Salen ligand (0.65 mmol), MnCl₂ (0,65 mmol), 1• (17 mmol), 4methylstyrene (25.5 mmol) and NaBH₄ (17 mmol) to give after concentration under reduced pressure a crude product as a 1:4 mixture of diastereoisomers $\int^{31} P\text{-NMR}$ ratio). The diastereomers were separated by automatic flash column chromatography (gradient of ethyl acetate in petroleum ether) to afford (*RR/SS*)-**4i** and (*RS/SR*)-**4i** (4.4 g, 63%). (*RS/SR*)*-4i*. Colourless solid; m.p.: 63 °C; $R_f = 0.42$ (petroleum ether/AcOEt 4:1); ¹H NMR (300 MHz, CDCl₃) *δ*: 7.34 (d, *J* = 7.9 Hz, 2H), 7.08 (d, *J* = 7.9 Hz, 2H), 5.21 (q, *J* = 6.5 Hz, 1H), 4.17 – 3.65 (m, 2H), 3.49-3.27 (m, 2H), 3.40 (d, J_{H-P} = 26.1 Hz, 1H), 2.30 (s, 3H), 1.54 (d, *J* = 6.5 Hz, 3H), 1.28 – 1.17 (m, 21H), 0.90 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ: 140.5, 137.0, 128.7, 127.9, 78.3, 70.3 (d, *JC-P* = 139.2 Hz), 61.7 (d, *JC-P* = 6.4 Hz), 61.3, 58.7 (d, *JC-P* $= 7.4$ Hz), 35.5 (d, $J_{C-P} = 5.1$ Hz), 30.8 (d, $J_{C-P} = 6.0$ Hz), 28.4, 21.2, 16.5 (d, J_{CP} = 5.8 Hz), 16.3 (d, J_{CP} = 6.8 Hz); ³¹P NMR (121 MHz, CDCl₃) δ: 24.8; HRMS *m/z* (ESI) calcd for C₂₂H₄₀NO₄P [M + H]⁺414.2773, found: 414.2767. (*RR/SS*)-**4i**; Colorless solid; m.p.: 79 °C; R_f = 0.52 (EP/AcOEt 4:1); ¹H NMR (300 MHz, CDCl₃) ^δ: 7.29 (d, *J* = 7.9 Hz, 2H), 7.20 (d, *J* = 7.8 Hz, 2H), 5.07 (q, *J* = 6.8 Hz, 1H), 4.47 (m, 1H), 4.34 – 3.95 (m, 3H), 3.46 (d, J_{H-P} =

 \overline{a}

26.2 Hz, 1H), 2.43 (s, 3H), 1.70 (d, *J* = 6.7 Hz, 3H), 1.43 (m, 6H), 1.36 (s, 9H), 0.97 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ: 142.5, 136.6, 128.7, 127.2, 85.1, 70.0 (d, *J_{C-P}* = 138.5 Hz), 61.7 (d, *J_{C-P}* = 6.3 Hz), 61.2, 59.0 (d, J_{C-P} = 7.5 Hz), 35.7 (d, J_{C-P} = 5.7 Hz), 30.3 (d, J_{C-P} = 5.9 Hz), 28.7, 24.1, 21.2, 16.8 (d, J_{C-P} = 5.6 Hz), 16.4 (d, *J*C-P = 6.6 Hz); ³¹P NMR (121 MHz, CDCl³) *δ*: 26.0; HRMS *m/z* (ESI) calcd for $C_{22}H_{40}NO_4P$ [M + H]⁺ 414.2773, found: 414.2767. *Diethyl (1-(tert-butyl(1-(4-methoxyphenyl)ethoxy)amino)-2,2 dimethylpropyl)phosphonate (4j).*

Salen ligand (0.65 mmol), MnCl₂ (0,65 mmol), 1• (17 mmol), 4methoxystyrene (25.5 mmol) and NaBH₄ (17 mmol) to give after concentration under reduced pressure a crude product as a 1:4 mixture of diastereoisomers $(31P-NMR)$ ratio). The residue was purified by automatic flash column chromatography (gradient of ethyl acetate in petroleum ether) to afford (RR/SS)-4j and (RS/SR)-4j (4.6 g, 66%). Colourless oil; R_f = 0.56 (petroleum ether/AcOEt 4:1); ¹ H NMR (300 MHz, CDCl³) *δ*: 7.40 (d, *J* = 8.2 Hz, 2H), 7.23 (d, *J* = 8.3 Hz, 2H), 6.83 (dd, *J* = 8.6, 3.6 Hz, 4H), 5.21 (q, *J* = 6.6 Hz, 1H), 4.96 (q, *J* = 6.8 Hz, 1H), 4.42 – 4.28 (m, 1H), 4.23 – 3.82 (m, 5H), 3.79 (s, 3H), 3.78 (s, 3H), 3.61 – 3.06 (m, 4H), 1.59 (d, *J* = 6.7 Hz, 3H), 1.54 (d, *J* = 6.6 Hz, 3H), 1.32 (td, *J* = 7.0, 4.9 Hz, 6H), 1.25 (s, 12H), 1.21 (s, 9H), 1.20 (s, 9H), 0.92 (t, J = 7.1 Hz, 3H), 0.85 (s, 9H); ¹³C NMR (75 MHz, CDCl³) *δ*: 159.0, 158.8, 137.6, 135.6, 129.2, 128.6, 126.7, 113.9, 113.3 (d, *J*_{C-P} = 1.5 Hz), 84.2, 77.9, 70.29 (d, *J*_{C-P} = 139.3 Hz), 70.06 (d, J_{C-P} = 138.6 Hz), 62.5 – 61.5 (m), 61.2, 58.9 (d, J_{C-P} = 7.9 Hz), 58.7 (d, *J_{C-P}* = 7.4 Hz), 55.3, 55.2, 35.7 (d, *J_{C-P}* = 5.7 Hz), 35.4 (d, J_{C-P} = 5.2 Hz), 30.8 (d, J_{C-P} = 6.0 Hz), 30.3 (d, J_{C-P} = 5.8 Hz), 28.6, 28.3, 23.6, 21.1, 16.8 (d, *J_{C-P}* = 5.7 Hz), 16.6 - 16.1 (m); ³¹P NMR (121 MHz, CDCl³) *δ*: 25.9, 24.8; HRMS *m/z* (ESI) calcd for $C_{22}H_{40}NO_5P$ [M + H]⁺ 430.2722, found: 430.2713.

Homolysis rate constants k_d were measured by EPR,⁴⁵ as previously reported, and given by eq. 1. For 4b, ³¹P NMR⁴⁶ was used at $pH = 2.2$, as previously reported, with k_d given by eq. 2. Air and TEMPO were used as alkyl radical scavengers for EPR and ³¹P NMR experiments, respectively. Activation energies *E*^a were estimated using eq. 3 and the averaged frequency factor $A = 2.4 10^{14} s^{-1}$. Values of k_d and E_a are listed in Table 1.

$$
\ln \frac{\left[\text{nitroxide}\right]_{\infty} - \left[\text{nitroxide}\right]_{t}}{\left[\text{nitroxide}\right]_{\infty}} = -k_{d} \cdot t
$$
\n
$$
\ln \frac{\left[\text{alkoxyamine}\right]_{t}}{\left[\text{1} \cdot \text{ln} \cdot \text{ln} \cdot \text{ln} \right]} = -k_{d} \cdot t
$$
\n
$$
(1)
$$

$$
\ln \frac{[\text{aikoxyanime}]}{[\text{alkoxyamine}]}_0 = -k_d \cdot t
$$
\n
$$
E_a = 8.314 \cdot T \cdot \ln \frac{2.4 \cdot 10^{14}}{t}
$$
\n(2)

d *k* a (3)

Acknowledgements

Authors thank Aix-Marseille Université, CNRS, ANR (grant NAR ANR-14-CE16-0023-01) and the A*MIDEX project (n° ANR-11- IDEX-0001-02) funded by the « Investissements d'Avenir » French Government program, managed by the French National Research Agency (ANR), as well as the Fondation ARC pour la recherche sur le cancer (PJA 20141201886).

Notes and references

‡ CCDC: 1441553 for (*RS/SR*)-**4b**; CCDC:1441554 for (*RR/SS*)-**4d** and CCDC: 1452314 for (*SR/RS*)-**4h**.

§ All pH measured in D₂O–MeOH- $d₄$ were re-estimated using pH = 0.929 pH^{*} + 0.42. pH^{*} is the pH measured in D₂O–MeOH- d_4 solutions using a pH-meter calibrated with non-deuterated water. See ref. 20.

The electrical effect is considered as an universal effect which is described by the same "universal" constant σ_ι, σ_υ, F, σ_ι, σ_F and so on, depending on the authors. See refs. 22-24.

 $\Omega \sigma^0_{R,NH2}$ = -0.42 and assuming $\sigma^0_{R,NH3+} \approx \sigma^0_{R,NMe3+}$ = -0.32. See refs. 25 and 26.

 $\sqrt{R^2}$ = 0.94 is observed for $\sigma_{L,4-\chi C6H4}$ with 13 data when **H(***RR*/SS), **F(***RR/SS***)** and **OMe(***RS/SR***)** are also considered as outliers.

- 1 G. Audran, P. Brémond, S. R. A. Marque, *Chem. Commun.*, 2014, **50**, 59, 7921-7928.
- 2 D. H. Solomon, E. Rizzardo, P. Cacioli, 1985, Eur. Pat. Appl. 135280; 1986, US Patent 4,581,429; 1985, Chem. Abstr., 102, 221335q.
- 3 A. Goto, T. Fukuda, *Prog. Polym. Sci.*, **2004**, 29, 329−385.
- 4 P. Nesvadba, *Chimia* 2006, **60**, 832-840 and references cited therein.
- 5 R. B. Grubbs, *Polym. Rev.* 2011, **51**, 104-137.
- 6 J. Nicolas, Y. Guillaneuf, C. Lefay, D. Bertin, D. Gigmes, B. Charleux, *Progr. Polym. Sci.*, 2013, **38**, 1, 63.
- 7 Nitroxide Mediated Polymerization: From Fundamentals to Applications in Materials Science Series: RSC Polymer Chemistry Series Ed. D. Gigmes, 2015.
- 8 G. Audran, P. Brémond, J.-M. Franconi, S. R. A. Marque, P. Massot, P. Mellet, E. Parzy, E. Thiaudière, Org. Biomol. Chem. 2014, 12, 719-723.
- 9 9 D. Moncelet, P. Voisin, V. Bouchaud, P. Massot, E. Parzy, G. Audran, J.-M. Franconi, S. R. A. Marque, P. Brémond, P. Mellet, *Mol. Pharmaceutics* 2014, **11**, 2412-2419.
- 10 10 P. Brémond, A. Koïta, S. R. A. Marque, V. Pesce, V. Roubaud, D. Siri Org. Lett., 2012, 14, 1, 358-361.
- 11 S. Marque, H. Fischer, E. Baier, A. Studer, *J. Org. Chem.* 2001, **66**, 4, 1146-1156.
- 12 D. Bertin, D. Gigmes, S. R. A. Marque, S. Milardo, J. Peri, P. Tordo, *Collect. Czech. Chem. Commun.*, 2004, **69**, 12, 2223- 2238
- 13 G. Audran, M. Bim Batsiandzy Ibanou, P. Brémond, S. R. A. Marque, G. Obame, V. Roubaud, D. Siri *J. Phys. Org. Chem.* 2014, **27**,387-391.

 \overline{a}

 \overline{a}

- 8421-8434.
- 15 K. Matyjaszewski, B. E. Woodworth, X. Zhang, S. G. Gaynor, Z. Metzner, *Macromolecules* 1998, **31**, 5955-5957
- 16 A. C. Greene, R. B. Grubbs, *J. Polym. Sci.: Part. A. Polym. Chem.*, 2009, **47**, 6342-6352.
- 17 G. Audran, P. Brémond, S. Marque, G. Obame, *Polym. Chem.*, 2012, **3**, 2901-2908.
- 18 G. Audran, P. Brémond, S. R. A. Marque, G. Obame, *J. Org. Chem.* 2012, **77**, 21, 9634-9640.
- 19 E. G. Bagryanskaya, P. Brémond, T. Butscher, S. R. A. Marque, D. Parkhomenko, V. Roubaud, D. Siri, S. Viel, *Macromol. Chem. Phys.*, 2015, **216**, 5, 475-488.
- 20 A. Krężel, W. J. Bal, *Inorg. Biochem.*, 2004, **98**, 161–166.
- 21 D. Bertin, D. Gigmes, S. R. A. Marque, P. Tordo, *Macromolecules* 2005, **38**, 7, 2638-2650.
- 22 O. Exner *J. Phys. Org. Chem.* 1999, **12**, 265.
- 23 M. Charton *J. Phys. Org. Chem.* 1999, **12**, 275.
- 24 O. Exner, M. Charton, V. Galkin *J. Phys. Org. Chem.* 1999, **12**, 289.
- 25 M. Charton, *Prog. Phys. Org. Chem.* 1981, **13**, 119.
- 26 M. Charton, *Prog. Phys. Org. Chem.* 1987, **16**, 287.
- 27 C. Hansch, A. Leo, R. W. Taft, *Chem. Rev.* 1991, **91**, 165–195.
- 28 M. Charton, *Top. Curr. Chem.* 1983, 58–91.
- 29 J. J. Brocks, H. D. Beckhaus, A. Beckwith, C. Rüchardt, *J. Org. Chem.* 1998, **63**, 1935–1943.
- 30 J. M. Dust, D. R. Arnold, *J. Am. Chem. Soc.* 1983, **105**, 1221- 1227.
- 31 D. R. Arnold, A. M. D. P. Nicholas, M. S. Snow, *Can. J. Chem.* 1985, **63**, 1150-1155.
- 32 D. R. Arnold, In Substituent Effects in Radical Chemistry; Viehe, H. G., Janousek, Z., Meréniy, R., Eds.; Kluiwert Academy Press: Dordrecht, The Netherlands, 1986; Vol. 189, pp 171-188.
- 33 R. A. Jackson, M. Sharifi, *J. Chem. Soc., Perkin Trans. 2* 1996, 775-778.
- 34 X.-K. Jiang, *Acc. Chem. Res.* 1997, **30**, 283-289.
- 35 I. B. Afanas'ev, *Int. J. Chem. Kinet*. 1975, **7**, 857-877.
- 36 X. Creary, M. E. Mehrsheikh-Mohammadi, S. McDonald, *J. Org. Chem.* 1987, **52**, 3254-3263.
- 37 X. Creary, P. S. Engel, N. Kavaluskas, L. Pan, A. Wolf, *J. Org. Chem.* 1999, **64**, 5634-5643.
- 38 W. Adam, H. M. Harrer, F. Kita, H.-G. Korth, W. M. Nau, *J. Org. Chem.* 1997, **62**, 1419-1426.
- 39 S. Marque, *J. Org. Chem.* 2003, **68**, 20, 7582-7590.
- 40 D. Bertin, D. Gigmes, S. R. A. Marque, P. Tordo, *Macromolecules* 2005, **38**, 7, 7754-7757.
- 41 D. Bertin, D. Gigmes, S. R. A. Marque, D. Siri, P. Tordo, G. Trappo, *ChemPhysChem*, 2008, **9**, 272-281.
- 42 D. Bertin, D. Gigmes, C. Le Mercier, S. Marque, P. Tordo *J. Org. Chem.* 2004, **69**, 15, 4925-4930
- 43 B. Schmalzbauer, D. Menche, *Org. Lett.* 2015, **17**, 12, 2956.
- 44 A. C. Greene, R. B. Grubbs, *J. Polym. Sci. Part A Polym. Chem.* 2009, **47**, 23, 6342.
- 14 R. Braslau, N. Naik, H. Zipse, *J. Am. Chem. Soc.*, 2000, **122**, 45 S. Marque, C. Le Mercier, P. Tordo, H. Fischer, *Macromolecules*, 2000, **33**, 12, 4403-4410.
	- 46 D. Bertin, D. Gigmes, S. Marque, P. Tordo, *e-Polymers*, 2003, **2**,