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From linked open data to molecular interaction: studying 

selectivity trends for ligands of the human serotonin and 

dopamine transporterⱡ 

Barbara Zdrazil,*†a Eva Hellsberg,†a Michael Viereck,a and Gerhard F. Eckera 

 

Retrieval of congeneric and consistent SAR data sets for protein targets of interest is still a laborious task to do if no 

appropriate in house dataset is available. However, combing integrated open data sources (such as the Open PHACTS 

Discovery Platform) with workflow tools, now offers the possibility to query across multiple domains and tailor the search 

to the given research question. Starting fromtwo phylogenetically related protein targets of interest (the human serotonin 

and dopamine transporters), the whole chemical compound space was explored by implementing a scaffold-based 

clustering of compounds possessing biological measurements for both targets. In addition, potential hERG blocking 

liabilities were included. The workflow allowed to study selectivity trends of scaffold series, identify potentially harmful 

compound series,and to perform SAR, docking studies and molecular dynamics (MD) simulations for a consistent dataset 

of 56 cathinones. This delivered useful insights into driving determinants for hDAT selectivity over hSERT. With respect to 

the scaffold based analyses it should be noted that the cathinone dataset could only be retrieved when Murcko scaffold 

analyses were combined with similarity searches such as a common substructure search.  

Introduction  

With the public availability of large data sources such as ChEMBL1 

and the Open PHACTS Discovery Platform,2 retrieval of data sets for 

certain protein targets of interest measured under consistent assay 

conditions is no longer a time consuming process. Especially the use 

of workflow engines such as KNIME3 or Pipeline Pilot4allows to 

submit complex queries and enables to simultaneously search for 

several targets. This has recently been demonstrated for two ABC 

transporters, where the use of the Open PHACTS API delivered 

useful datasets for subsequent classification models.5However, 

extracting datasets suitable for QSAR studies still remains a 

challenge due to the special requirements needed for performing 

quantitative data analyses.6These include, among others, the 

demand for homologous series of compounds measured under 

comparable assay conditions. In order to assess the capabilities of 

the Open PHACTS Discovery Platform for providing such data sets, 

two representatives of the solute carrier family (SLC) were selected 

for a proof of concept study.  

Solute carriers represent the largest group of transporter in the 

human genome, containing more than 400 representatives.7This 

includes several prominent and important drug targets, such as the 

human sodium-dependent serotonin transporter (short: serotonin 

transporter or hSERT), and the human sodium-dependent 

dopamine transporter (short: dopamine transporter or hDAT).  

These transporters belong to the solute carrier 6 (SLC6) gene family, 

also referred to as the neurotransmitter-sodium-symporter family 

(NSS) or as Na+/Cl- dependent transporters.  

Numerous compound classes have been identified to interact with 

these transporters, and they are used in therapeutic settings or 

abused as illicit drugs.8,9 The therapeutic spectrum includes inter 

alia tricyclic antidepressants, selective serotonin reuptake inhibitors 

and stimulant agents (SSRIs), whereas MDMA (3,4-methylendioxy-

methamphetamine), cocaine and the methamphetamines are 

prominent representatives of the abusive range; though admitting 

that the borders blur between treatment and malpractice.10,11 The 

activation of dopamine receptors in certain brain regions plays an 

important role in causing addiction. Addictive drugs elevate the 

dopamine levels in these regions, making it more available to the 

receptors – for example within intervening in the reuptake by the 

dopamine transporter.12 However, drugs interacting with hDAT in a 

therapeutic setting do not cause abusive effects. Serotonin and its 

pathways are not involved in the reward system and therefore 

causing no addiction. The potential to cause an addictive tendency 
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or not is an important information to keep in mind for a meaningful 

selectivity profiling.  

A quite prominent group of illicit drugs is the class of cathinones. 

They are sold as bath salts, research chemicals or plant food to 

evade the detection by authorities.13 Following the report of 

European drug monitoring in 2015, 450 new psychoactive 

substances are traced by the European warning system (EWS) with 

31 new synthetic cathinones amongst them.14 Out of these 

representatives, mephedrone and methylenedioxypyrovalerone are 

among the most prevalent cathinones.15,16 Structure-activity 

relationship (SAR) studies as well as docking of selected cathinones 

into protein homology models of hDAT and hSERT revealed first 

insights into the molecular basis of transporter selectivity.15,17,18 

Following the aim of this study, we explored the whole chemical 

space of hSERT/hDAT interacting compounds in the open domain, 

and analysed the results with respect to scaffolds appearing 

selective for either hSERT or hDAT. Subsequently, a dataset of 56 

cathinone analogues measured on both transporters was extracted 

and used for ligand- and structure-based modelling studies. This led 

to further insights into the molecular features driving transporter 

selectivity. 

Results and discussion 

Data retrieval and analyses 

Semantically integrated data sources such as the Open PHACTS 

Discovery Platform2 are a powerful tool to conduct complex queries 

in the life sciences domain.19 In analogy to a recent study on a set of 

ABC-transporters,5 chemical compound bioactivity data for human 

SERT and DAT was retrieved from the Open PHACTS Discovery 

Platform by utilizing a KNIME  workflow (Fig. 1).3 

From the beginning, data retrieval was restricted to the activity 

endpoints IC50, and Ki. After filtering for ‘single protein’ targets and 

preprocessing, 5405 bioactivities for hSERT, and 3783 bioactivities 

for hDAT remained (9188 data points in total: 4698 IC50, 4490 Ki 

values). By creating an overlap matrix via mapping ChEMBL 

compound IDs, 4563 unique compounds were retained (2671 for 

IC50 only). 

Being aware that mixing activity data from different assays with 

endpoint IC50 introduces noise/uncertainty to the analysis, an 

investigation on intra- and inter-variability in different pIC50 and pKi 

measurements for hSERT and hDAT was performed. Correlating 

pIC50 to pKi values (inter-variabilities) from duplicate measurements 

led to an R² of 0.62 for hSERT (385 compounds) and 0.75 for hDAT 

(360 compounds). These values are in the same range as intra-

variabilities of pKi and pIC50values if the maximum and minimum 

values of multiple measurements are correlated (pKi correlation: 

R²=0.74 for hSERT, R²=0.69 for hDAT; pIC50 correlation: R²=0.61 for 

hSERT, R²=0.76 for hDAT). Thus, we can assume that the size of 

error gained from mixing different assay outcomes in our setup is in 

the same range as the error introduced by multiple measurements 

of the same compound-target pair. 

For a global scaffold analysis of the hSERT/hDAT chemical space 

present in the Open PHACTS Discovery Platform, we thus kept both 

bioactivity endpoints (IC50 and Ki) but filtered out entries without 

measurements on both transporters. This led to a total number of 

2460 unique compounds with median and mean activity labels 

Fig. 1 Schematic depiction of the KNIME workflow for data retrieval, filtering, processing and analyses. 
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assigned.  

Cut off’s for separating actives from inactives (and assigning the 

respective label 1/0) were tailored to the specific protein 

(hSERT/hDAT) and activity endpoint (Ki/IC50). Known drugs included 

in the data sets were ranked according to their bioactivity values for 

that target (for IC50 and Ki values separately). The drug with the 

lowest bioactivity which is still recognized as being pharmacological 

active on hSERT or hDAT in DrugBank20 (Version 4.5) was used as a 

reference and its bioactivity served as tailored cut off for that target 

and endpoint. Thus, in case of hSERT sibutramine (Ki=1.11 µM; 

IC50=2.09 µM), and in case of hDAT modafinil (Ki=1.46 µM; IC50=1.83 

µM) were selected as a reference. 

For the purpose of showing the selectivity profiles of the 2460 

unique compounds in a heat map representation, instances with a 

median activity label of 0.5 (meaning that they were found 

active/inactive in different measurements or assays) were removed 

from the dataset, leading to a matrix of 2353 compounds (Fig. 2). As 

obvious from the heat map, more than half of the compounds are 

active on both hSERT and hDAT (1197) in the low µmolar or 

submicromolar range, and the smallest proportion of compounds 

(251) is the one showing selectivity for hDAT over hSERT, whereas 

hSERT selectives are clearly overrepresented (528 comounds). This 

might be due to the fact that SSRIs (selective serotonin reuptake 

inhibitors) represent a prominent class of antidepressant drugs. 

Further evidence for this selectivity bias can be retrieved by 

analysing the selectivity profiles of drugs within this heat map: 

eighteen hSERT selective versus eight hDAT selective marketed 

drugs are present, with a large portion of antidepressants in the 

hSERT selective cluster. 

 
Fig.2 Heat map reflecting the selectivity profile of 2353 unique 

compounds with bioactivity measurements (IC50 and Ki) for human 

SERT and DAT in binary representation; red bars...active; blue 

bars...inactive 

 

Subsequently, Bemis-Murcko scaffolds for the 2460 unique 

compounds were computed as part of the KNIME workflow. 

Strikingly, clustering the dataset by scaffolds led to a total of 798 

unique scaffolds with 745 of those scaffold clusters comprising less 

than ten member compounds. The high number of different 

scaffolds most probably is due to the fact that the generation of 

scaffolds according to Bemis and Murcko distinguishes between 

different stereoisomers. Furthermore, it is not possible to treat 

certain heteroatoms as optional. Thus, a medicinal chemistry 

perspective is certainly needed for drawing conclusions from such 

clustering. 

 

Aiming to identify hSERT/hDAT selective scaffolds versus 

promiscuous ones among the higher populated 53 scaffolds (with at 

least ten member compounds), the mean values (between 0 and 1) 

of activity labels (0/1) of respective member compounds were 

analysed. A mean value below or equal to 0.4 points to a trend 

towards inactivity within the scaffold series, a value above or equal 

to 0.6 towards activity, whereas mean activity labels closer to 0 for 

inactives, or vice versa closer to 1 for actives, are pointing towards 

more pronounced trends within a scaffold cluster. This led to four 

rather hDAT selective scaffolds, 10 rather hSERT-selective scaffolds, 

and 24 scaffolds with a pronounced activity on both transporters 

(Fig. 3, Fig. 4, and Fig. S1, ESI). The remaining 15 scaffolds are either 

inactive on both hSERT and hDAT (5 scaffolds), or no clear activity 

trend can be deduced among the member compounds (displaying a 

mean value of assigned activity labels for hSERT or hDAT around 

0.5; 10 scaffolds). 

Regarding the final selection of hSERT and hDAT selective scaffold 

series (Fig. 3 and 4), some scaffolds appear structurally very similar. 

For instance, the only difference of scaffolds 12 and 13 (Fig.4) is the 

position of the sulfur atom in the thiophene ring. Also, mean 

bioactivity labels of these two scaffolds reflect equivalent selectivity 

trends (Fig. 4), which suggests that also SAR trends might be 

coherent. It needs a Medicinal Chemist’s experience to inspect such 

similar scaffold clusters into more detail and decide whether the 

compound series could be merged due to the existence of a 

common substructure required for the interaction with the target 

protein. 

 

Fig.3 Four rather hDAT selective scaffold clusters (considering IC50, 

EC50, and Ki) with counts of unique compounds within this cluster, 

and mean values of activity labels of their member compounds: 

lower left (hSERT), lower right (hDAT); representative drugs 

contained in these scaffold clusters are mentioned if available; 

molecules are depicted without hydrogens. 
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Fig. 4 Ten rather hSERT selective scaffold clusters (considering IC50 

and Ki) with counts of unique compounds within this cluster, and 

mean values of activity labels of their member compounds: lower 

left (hSERT), lower right (hDAT); molecules are depicted without 

hydrogens. 

Surprisingly, although many more rather hSERT-selective scaffolds 

versus hDAT-selective scaffolds were found (4 vs. 10 scaffolds), the 

reason for this imbalance is not the existence of antidepressants 

within these scaffold clusters - as it was the case when examining all 

individual compounds in the heat map (Fig. 2). On the contrary, we 

could not find any marketed drug within the 10 hSERT selective 

scaffold series (Fig. 4). For hDAT, at least one scaffold series is 

containing a drug (methylphenidate in scaffold 2, Fig. 3). 

Where are the drugs? 

Thus, a thorough analysis of the distribution of drugs within the 

dataset was performed, in order to additionally identify scaffolds 

which already proved to be important from a drug-discovery 

perspective. The total number of drugs in the whole dataset with 

annotations for both hSERT and hDAT (2460 compounds) is 54 (sd 

file available in the Supplementary Material, File S2, ESI). These 

drugs can be assigned to 39 (out of 798) scaffolds. Strikingly, 23 out 

of these 39 drug-containing scaffold clusters appear as singletons in 

our analyses, which suggests that there are no proper SAR series 

published along. However, 18 out of these 23 scaffolds were 

composed of at least 3 rings and in general are quite complex. Still, 

some of the scaffolds are structurally very similar (e.g. ketoconazole 

and terconazole), which indicates that the scaffold extraction 

algorithm doesn’t allow to identify SAR series. Grouping the 

remaining 16 drug-containing scaffolds (with more than one 

member compound) by rather hSERT selective, hDAT selective and 

promiscuous scaffolds, we again found a larger proportion of hSERT 

selective scaffolds over hDAT (3 vs. 1 scaffold), with a greater 

number of drugs in total for hSERT-selectives (10 drugs versus 1). 

However, SERT-selective scaffolds appear rather sparsely populated 

with less than ten unique compounds per cluster (Fig. 5), whereas 

the single drug-containing DAT selective scaffold 2-Benzylpiperidine 

(= scaffold 2 in Fig. 3), is composed of 24 compounds with just one 

annotated drug (methylphenidate). Such compound series, 

comprising a common scaffold, a clear selectivity trend, and being 

populated by at least one drug, are ideal starting points for further 

SAR studies (see cathinone use case). In contrast, the rather SERT-

selective drug-containing scaffolds (scaffolds 15-17, Fig.5) comprise 

a very low number of respective member compounds (3–6) with 50-

100% of their compounds being annotated drugs. Within these 

clusters, the tricyclic antidepressants (TCA) imipramine, 

clomipramine, desipramine are located, as well as antidepressants 

of the selective serotonin reuptake inhibitor (SSRI) class (e.g. 

fluoxetine) and of the serotonin-norepinephrine reuptake inhibitor 

(SNRI) class (e.g. venlafaxine). It seems rather surprising that those 

well known drug classes would not show up in congeneric SAR 

series (with a least a few member compounds), which reflects the 

communities’ synthetic efforts and interest in a certain drug class. 

We therefore performed a substructure search, looking for the four 

drug-containing SERT selective scaffold types. For this search, 

scaffolds from Fig. 5 were further refined if a bigger common 

substructure than the Murcko ring system was contained within the 

scaffold series (e.g. by adding an aminoethyl side chain in the case 

of scaffold 15 and a dimethylaminomethyl sidechain in the case of 

scaffold 16).As expected, additional compounds could be retrieved 

from the hSERT/hDAT dataset. Surprisingly, for scaffold 17 

(imipramine-type scaffold) only one additional compound could be 

found, showing moderate activity on hSERT. Those tricyclic 

antidepressants and derivatives were not in the focus of synthetic 

efforts within the last decade, and therefore do not show up with 

the same prevalence in MedChem literature extracted from 

ChEMBL as it is the case for SSRI- and SNRI-like compounds. A 

survey on prevalence of imipramine- and fluoxetine-reporting 

publications in ChEMBL revealed, that fluoxetine was reported 3 

times more often since 1993. ChEMBL basically covers publications 

reporting on SAR series (where imipramine and fluoxetine 

bioactivities would have been reported along). Therefore, these 

numbers are somewhat representative for the amount of analogues 

in these publications. An equivalent search in SciFinder21 with 

publications going back to the 1980’ties supports these findings, 

showing a ten years shift in peaks of fluoxetine- versus imipramine-

containing publications (see Supplementary Fig. S3, ESI). However 

also regarding SSRI- and SNRI-like compounds, those analogues 

show up in diverse Murcko scaffold clusters within our dataset, 

depending on the presence of additional rings. For scaffold 20, five 

additional compounds could be retrieved. For scaffold 19, even 170 

extra compounds appeared with various different Murcko scaffolds, 

still possessing the same common substructure. Moreover, one 

should not forget that these substructure searches were performed 
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on the dataset with measurements for both transporters only. 

Repeating the same analysis on the bigger dataset before removal 

of compounds with missing measurements for one of the two 

proteins, even more compound analogues were detected (data not 

shown).  

 

Fig. 5 Drug-containing SERT selective scaffolds (considering IC50 and 

Ki) with counts of unique compounds within this cluster, and mean 

values of activity labels of their member compounds: lower left 

(hSERT), lower right (hDAT); representative drugs contained in these 

scaffold clusters are mentioned; molecules are depicted without 

hydrogens. 

Finally, inspecting the five promiscuous drug-containing scaffold 

series (possessing mean activity labels ≥ 0.6 for both hSERT and 

hDAT), one additional marketed antidepressant belonging to the 

class of SSRI’s was detected: sertraline. It belongs to a rather big 

scaffold cluster of 48 compounds (see Fig. S1), and although potent 

activity on hDAT has been reported for the whole compound series, 

according to DrugBank20 the pharmacological action on hDAT is 

‘unknown’. The remaining four scaffolds include e.g. the drugs 

sibutramine and mazindol, with pharmacological effects and side 

effects similar to amphetamines. Both are classified as anorectics, 

however, mazindol is not marketed for use in the treatment of 

obesity and sibutramine was withdrawn from the market in 2010 

due to severe cardiovascular (CV) side effects. Recently, these 

sibutramine-induced CV adverse events have been attributed to 

hERG (human ether-à-go-go-related gene) channel inhibition.22 

HERG encodes channels responsible for the cardiac rapid delayed 

rectifier potassium current. Blocking hERG by small molecules and 

drugs is related to QT interval prolongation and cardiac arrhythmia 

(torsades de pointes, TdP). Consequently, in drug-discovery projects 

compounds are commonly screened in early phases against hERG in 

order to avoid such potential side effects23. 

Flagging blockers of the hERG potassium channel 

In this context, it appears interesting to investigate the potential of 

extracted scaffold series to inhibit the hERG channel by flagging 

single compounds within a series if an inhibitory effect was 

measured (< 10 µM). Although it is hard to assess if the ability to 

interact with hERG is rather induced by a specific scaffold or by a 

certain side chain (or a combination of both), in some cases such 

serial trends have been reported, e.g. for some tricyclic 

antidepressants.24 

In a separate workflow, we therefore included pharmacology data 

on hERG for the 2460 unique compounds (with both hSERT and 

hDAT measurements). For hDAT selective scaffold series we did not 

get any alert on hERG inhibition, within hSERT selective scaffold 

series, however, some hERG blockers could be identified (9 out of 

13 compounds belonging to the scaffold series 15-17, Fig. 5). This is 

in so far alarming as many of the approved drugs are also hERG 

inhibitors. Out of 54 drugs with measurements for both hSERT and 

hDAT, we identified 19 drugs with a potential liability due to hERG 

blockage, six out of those are marketed antidepressants. In 

addition, it was reported previously that a 30-fold safety margin 

between the effective therapeutic free plasma concentration and 

hERG IC50 should be met in order to prevent QT interval 

prolongation.25,26 These studies revealed that indeed some 

marketed antidepressants (e.g. amitryptile, citalopram, imipramine, 

fluoxetine) might be associated with QT interval prolongation and 

TdP. 

Using the information on hERG blocking liabilities provided by the 

workflow, potentially harmful compound series can be identified at 

an early stage in the drug discovery pipeline if data on hERG 

inhibition is available in the open domain. For the assessment of the 

risk of dTP, however, an additional literature survey or in vitro/in 

vivo studies are needed in individual cases.  

Although it is not in the focus of the underlying investigation to 

study other potential off-target effects (e.g. interaction with GPCRs, 

ABC transporters, etc.), the workflow provides the flexibility to 

include any target pharmacology desired in the context of the use 

case of interest. 

The cathinone use case 

Our studies point to the fact that Murcko scaffold analyses have to 

be always interpreted with caution, as certain structurally very 

similar scaffolds (possessing a common substructure) could fall into 

different scaffold clusters and would therefore sometimes be 

filtered out if strict counts of member compounds serve as filtering 

criteria. This is, e.g., the case for the hDAT selective scaffold 1(Fig. 

3), which clearly relates to the group of cathinones, a subclass of 

amphetamines currently comprising popular illicit drugs with a 

rising trend of consumption. 

Filtering the initial dataset retrieved by the KNIME workflow for IC50 

bioactivity endpoints created an overlap matrix of 2671 unique 

compounds, with 1290 compounds having measurements for both 

transporters. A substructure search with the cathinone structure 

(=Benzoylethanamine) as input lead to a final cathinone dataset of 

56 unique compounds (a sd file of the cathinone dataset can be 

found in the Supplements, File S4, ESI), reported essentially in three 

different publications.27–29 Just two compounds, Pyrovalerone 

(CHEMBL201960) and Bupropion (CHEMBL894), have been 

reported in other additional articles.30–33 Having a closer look on 

those 56 cathinones, one essentially captures four different scaffold 
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types (Fig. 6). They are all showing the cathinone substructure, 

either possessing an aliphatic side chain (falling into the large 

benzene cluster), a cyclopentane substituent on the amine group, 

or having the amine as part of a five or six membered saturated ring 

(pyrrolidine or piperidine). This again outlines the drawback of a 

scaffold definition based primarily on the number of rings, as 

obviously all four compound series belong to what a medicinal 

chemist would label as cathinone-like structure.  

 

Fig. 6 Four different scaffold types in the cathinone dataset as 

Murcko representation (except for the very left scaffold which would 

be benzene in Murcko representation); hydrogens are not depicted. 

 

SAR analysis 

Although, activity values for the 56 cathinones were retrieved from 

three different publications,27–29 assay parameters were identical.  

Therefore, these IC50 measurements could be combined into one 

dataset suitable for SAR studies. As the publications were mainly 

aiming at investigating hDAT, around 50% of the compounds just 

show > 10 µM or > 100 µM for hSERT. Thus, quantitative 

statements linking structural features to transporter selectivity 

need to be taken cautiously. Main structural variations comprise 

the substituent of the nitrogen atom, the substituents at the 

aromatic ring, as well as some modifications at the Cα to the 

carbonyl group. As already outlined in a previous study, a 

pyrrolidine ring at the nitrogen atom strongly favours hDAT 

selectivity.15 Compounds with t-butyl and piperidine substituents 

show analogous behavior. Also the substituent in α-position to the 

carbonyl group seems to contribute with larger groups fostering 

hDAT selectivity.34 However, in most of the cases transporter 

selectivity is achieved by rendering the compounds less active or 

inactive at hSERT rather than improving hDAT binding. To further 

analyse this, we performed multiple linear regression on this 

dataset with hDAT pIC50 values as well as selectivity as dependent 

variables. As the main purpose of this study was to get further 

evidence on SAR trends observed, we just used a very limited set of 

descriptors. These comprise the overall Van der Waals volume 

(vdw-vol), the partition coefficient (logP (o/w)) and molar 

refractivity (mr) of the compounds, the Van der Waals volume of 

the substituent at the Cα-atom to the carbonyl group (vdw-vol-Cα), 

the Van der Waals volume of the substituent at the nitrogen atom 

(vdw-vol-N), as well as substituent constants for the substituents at 

the aromatic ring (π-arom, mr-arom, σm and σp) and indicator 

variables for meta- (Im) and para-substitutions (Ip). The analysis was 

performed with StatPlus for Mac, starting with all variables and 

performing a backward descriptor selection until all regression 

coefficients showed 95% confidence. The following equation was 

obtained for hDAT pIC50 (equ. 1): 

hDAT pIC50 = 7,01 – 0,63 logP + 0,03 vdw-vol-Cα + 0,91 π-arom 

n = 51, r2 = 0,56           equ 1 

Using the log(IC50_SERT/IC50_DAT) as dependent variable 

(corresponds to log selectivity), the qualitative trends discussed 

above could be further strengthened (equ. 2), whereby para-σ was 

borderline with respect to significance: 

Log selectivity = 30,3 – 7,05 mr + 0,12 vdw-vol-N + 0,15 vdw-vol-Cα+ 

0,69 mr-arom – 0,97 σp 

N = 25, r2 = 0,56           equ 2 

Both equations point towards a significant influence of the 

substituent at the Cα-atom to the carbonyl group on the hDAT 

activity as well as on hDAT over hSERT selectivity of the compounds. 

This is e.g. exemplified by compound CHEMBL202409 

(Supplementary File S4, ESI), which has an isobutyl moiety in this 

position and shows a 345-fold selectivity for hDAT. 

 

Molecular Docking 

As outlined above, both SAR studies as well as multiple linear 

regression analysis point towards a role of the Cα-substituent for 

hDAT over hSERT selectivity of cathinones. We thus selected a set 

of compounds, which show variation in this position, for docking 

studies into protein homology models of the two transporters.15 As 

seen in Fig. 7, all six compounds are rather inactive at hSERT 

(considering a cutoff of 1 µM), while at hDAT they are all active 

(showing bioactivities in the range of 31 nM to 440 nM). While 

previous modelling studies focused on the substitutions at the 

aromatic ring and at the cationic nitrogen,15,18,35,36 the compounds 

chosen in this study are supposed to provide information about the 

role of the C�-substituent.  

In order to derive potential structure-based hypotheses for hDAT 

over hSERT selectivity of cathinones, we docked these six 

cathinones (Fig. 7) into homology models of hDAT and hSERT. The 

central binding site of the biogenic monoamine transporters is 

divided into the three subsites A, B and C.37 
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Fig. 7 Selected compounds for the docking study. The activity values 

represent the measured IC50 results from literature.27–29If multiple 

measurements were available, we considered the lowest IC50. 

 

All of the monoamine transporter crystal structures in the PDB (14 

of dDAT, 12 of LeuBAT and 5 of hSERT) comprise the same 

orientations of their co-crystallized ligands: the cationic nitrogens 

reaching into subsite A and the aromatic moieties pointing towards 

subsite B or C of the central binding cavity. Further, the influence of 

Phe76 in hDAT and Tyr95 in hSERT on an appropriate transport rate 

is well known from mutational studies.10,38–40 In Fig 8, a selection of 

four PDB structures (4XP9, 4XPA, 5I6X, 4MM4) is depicted in order 

to demonstrate this common orientation and the vicinity to the 

mentioned amino acids. The structures were selected in a way (a) 

to represent each crystallized monoamine transporter and (b) 

because they have been co-crystallized with ligands. D-

amphetamine and   3,4-dichlorophenethylamine were chosen due 

to the structural similarity to the cathinone series under  

investigation. Paroxetine was selected once because the co-

crystallized ligand of 4MM4 was used for the homology model of 

hSERT, and a second time in 5IX6 because it has the highest 

resolution in the very recently released hSERT crystals.41  A previous 

docking study by Sakloth et al.36 shows the same orientation and 

vicinities of p-substituted cathinones. Resulting from these 

observations, the cationic nitrogen in the cathinones was restrained 

to be placed within 2-4 Å to the backbone of the carbonyl oxygen of 

Phe76 in hDAT and Tyr95 in hSERT in the actual docking study, as 

published already in Saha et al.15 

  

 

Fig. 8 Central binding site (side view) of PDB 4XP9 (grey, dDAT with 

D-amphetamine), 4XPA (grey, dDAT with 3,4-

dichlorophenethylamine), 4MM4 (lightblue, LeuBAT with 

paroxetine) and 5I6X (mint, hSERT with paroxetine), pointing out the 

vicinity of the cationic nitrogen to the carbonyl oxygen of Tyr95 

(hSERT), Phe43 (dDAT) and Tyr21 (LeuBAT), respectively. The 

marked distance of 2.93 Å is measured in 4MM4. 

 

Following our common scaffold clustering method,42–44 we obtained 

five different clusters in hDAT composed of in total 103 poses. The 

co-crystallized structures of LeuBAT45 and dDAT46 show, that the 

aromatic moiety of the ligands is primarily placed in the B-site, and 

to a much lesser extent also in the C-site. Two of the dDAT 

structures are co-crystallized with metamphetamine (4XP6) and D-

amphetamine (4XP9), which are structurally similar to the 

cathinones. Both compounds show a methyl group in the C�-

position which points to the center of the binding site. Based on 

these experimental findings, we selected the clusters 1 (38 poses) 

and 2 (34 poses) (Fig. S5, ESI) for further analysis, as in these 

clusters the aromatic moieties protrude into the B- and C-site, 

respectively (Fig.8). Additionally, these clusters contain the majority 

of the retrieved poses. Clusters 3 (13 poses) and 4 (9 poses) are 

remarkably smaller and there is no experimental evidence for these 

placements. Cluster 5 (9 poses) is similar to cluster 2 with the 

aromatic moiety pointing into the C-site, but the orientation of the 

carbonyl oxygen and the C�-substituent is diametrically opposed. 
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In cluster 1 (Fig. S5, ESI), all six compounds are present, with the 

aromatic moieties reaching into the B-site and the cationic 

nitrogens being close to the carbonyl oxygen of Phe76. However, 

the latter is due to the constraint set during pose generation (see 

Materials and Methods). The majority of C�-substituents points to 

the center of the binding site, where the most space is provided 

(Fig. 9; upper left). However, in a small number of poses the C�-

substituent is turned towards Asp79, Tyr156 and Val152, which 

might lead to a spatial hindrance as the relevant six poses are 

showing  

steric clashes with these amino acids. Additionally, in 19 poses an H-

bond interaction between the cationic nitrogen and Asp98 could be 

observed. 

In cluster 2 (Fig. S5, ESI), the aromatic moieties are located in the C-

site and the majority of the C�-substituents are facing towards 

Asp79, Val152, Tyr156 and Ser422 (Fig.9; upper right), which leads 

to 19 clashing poses (of 34 in total). Further, in cluster 5, which 

shows the same orientation of the aromatic ring, the C�-

substituents have similar problems with Tyr156 and Ser422, as eight 

out of nine poses show steric clashes. 

Fig. 9 Docking poses of compound 3 (CHEMBL566208) in hDAT (top) and hSERT (bottom). In both proteins, the aromatic moiety reaches 

into the B-site (left; corresponds to cluster 1) and in the C-site (right; corresponds to cluster 2). In the C-site, steric clashes with the Cα-

substituent are visible (dashed orange lines). An H-bond is only found in hDAT if the aromatic moiety reaches into the B-site (top left, 

dashed blue lines). 
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In hSERT, the results look quite similar (Fig. 9, bottom left and 

right), which might be expected considering the high sequence 

identity between the two proteins in the binding site. Here we 

obtained 65 different poses in four separate clusters. The pattern of 

distribution is highly comparable to the one observed in hDAT: 

cluster 1 (Fig. S6, ESI) includes 31 poses with the aromatic moieties 

reaching into the B-site. However, in contrast to hDAT, no H-bonds 

with the cationic nitrogen are found. Cluster 2 (Fig. S6, ESI) 

comprises 22 poses with the aromatic ring positioned in the C-site 

and a high number of steric clashes with Asp98, Tyr176 and Ser438 

due to the C�-substituents.  Cluster 3 (9 poses) and 4 (3 poses) are 

remarkably smaller and located like their counterparts in hDAT. 

 

Both the average glide score of all reported poses (-6,2 in hDAT vs -

5,6 in hSERT) as well as the overall number of poses (103 in hDAT vs 

65 in hSERT) point towards favourable binding of the compounds to 

hDAT and thus emphasize hDAT over hSERT selectivity. 

Furthermore, in cluster 1 of hDAT, H-bonds are formed between 

the cationic nitrogen of the ligand and the protein, which is not the 

case in hSERT. However, no clear rationale for hDAT over hSERT 

selectivity with respect to the role of the Cα-substituent could be 

derived. The majority of poses show the aromatic moiety of 

cathinones with a bulkier C�-substituent preferentially located in 

the B-site, with the C�-substituent pointing towards the center of 

the binding site. Nevertheless, a considerable amount of poses also 

have the aromatic moiety positioned in the C-site with the C�-

substituent pointing towards Asp79, Val152, Tyr156 and Ser422 in 

hDAT and towards Asp98, Tyr176 and Ser438 in hSERT, where this 

leads to a considerable amount of clashes in both proteins. 

Nevertheless, a considerable amount of poses also have the 

aromatic moiety positioned in the C-site with the C�-substituent 

pointing towards Asp79, Val152, Tyr156 and Ser422 in hDAT and 

towards Asp98, Tyr176 and Ser438 in hSERT, where this leads to a 

considerable amount of clashes in both proteins.  

It is well known that subtle changes in ligand structure could lead to 

major reorientations in the binding mode, which recently has also 

been hypothesized for a series of 3,4-methylenedioxyamphetamine 

analogs and their binding to hDAT and hSERT.18 Briefly, two binding 

modes could be observed in docking studies. While the 

unsubstituted MDA and the N-methyl derivative MDMA 

preferentially showed one binding mode and the N,N,N,-

trimethylammonium analog MDTMA exclusively exhibited a 

different binding mode, the N,N-dimethyl derivative MDDMA could 

alternate between the two binding modes. It is tempting to 

speculate that also in case of the C�-substituted compounds two 

binding modes could simultaneously occur, with the one showing 

less steric clashes being preferred in hDAT.  

Molecular Dynamics 

In order to assess the stability of the docking poses obtained, 20 ns 

molecular dynamics simulations were performed for compound 3 

(Fig. 9). As reflected by protein backbone and ligand RMSD plots 

over the whole simulation time (20 ns), all four complexes (Fig. 9) 

converged after approximately 10 nanoseconds of unrestrained 

simulation (with a maximum backbone fluctuation of 4.5 Å from the 

starting structure, File S7, ESI). In addition, the protein secondary 

structure elements analysis reveals a perfect stability over the 

whole simulation time (File S7, ESI). The ligand remains in its initial 

binding pocket in all four simulations. In three of the simulations, 

the aromatic moiety stays within its initial subsite (B or C). In the 

hSERT simulation starting with the aromatic moiety in subsite C, a 

switch to subsite B after 12 ns was observed.  

Overall, the simulations are showing more stable interactions with 

the ligand in hDAT than in hSERT (File S7, ESI). Phe76 in hDAT and 

Tyr95 in hSERT, which are located at equivalent positions in both 

proteins (Fig. 8) are showing interactions with the cationic nitrogen 

of the ligand, providing a further justification for the restraint in the 

docking study. Stable pi-pi stacking interactions of the aromatic 

moiety with Tyr156 in hDAT and Tyr176 in hSERT (Fig. 9) can be 

observed in both proteins, therefore supporting the preference of 

the aromatic moiety being located in subsite B. This observation is 

in line with a more pronounced prevalence of cluster 1 in the 

docking study.  

Taken together, the findings from molecular modelling studies are 

supporting the experimentally observed selectivity of selected 

cathinones for hDAT over hSERT. 

Summary and Conclusions 

Integrated open data sources combined with workflow tools such 

as KNIME or Pipeline Pilot are very powerful to conduct complex 

queries in order to create consistent data sets for further analysis. 

However, postprocessing of the data by e.g. scaffold clustering 

using the popular method of Bemis-Murcko requires careful 

analysis and the expertise of a Medicinal Chemist. As the Bemis-

Murcko scaffolds are based on rings connected by linkers, common 

substructures which define a certain SAR series might be split over 

different Murcko scaffolds. In our cathinone use case, the 

analogues were spread over four different scaffolds (identified by 

an alternative substructure search). Combining them allows to 

create a data set of 56 compounds, the largest one analysed so far. 

SAR and docking studies, as well as Molecular Dynamics simulations 

point towards a significant influence of the substituent at the Cα-

atom to the carbonyl group on the hDAT activity as well as on hDAT 

over hSERT selectivity. 

The workflow used in this study to retrieve and process the data 

can be adapted to other protein targets and use cases. Additionally, 

it could be expanded in order to e.g. reflect the selectivity profile 

for a whole protein family or include off-targets of interest. The two 

workflows (with and without hERG annotations included) are freely 

available from myExperiment. 

In the search for congeneric SAR series, we advise to combine 

scaffold based clustering methods with similarity searches (e.g. a 

common substructure search).Handling the processed data with 
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caution, the methodology provides a useful way of exploring data if 

common substructures of compound series are less/not defined. 

Methods 

Workflow for data collection and data mining. Bioactivity data for 

the serotonin transporter, dopamine transporter, and hERG 

potassium channel was collected from the Open PHACTS Discovery 

Platform, by using its convenient  API (version 1.5) in conjunction 

with specialized OPS-KNIME nodes (version 1.1.0).47 All further data 

filtering, preprocessing, and analyses were done in a single KNIME 

(version 2.11) workflow; which is fully flexible to be adopted to 

other protein targets and openly available from myExperiment 

(www.myexperiment.org). 

The workflows consist of the following steps: 

Retrieving pharmacology data from the open domain and 

endpoint filtering. The ‘Target Pharmacology: List’ API call was used 

to retrieve pharmacology data from ChEMBL_201 for the protein 

targets under study by including a filter for the ‘activity_types’ 

(activity endpoints) ‘IC50’ and ‘Ki’ as well as for the ‘activity_unit’ 

‘nanomolar’. Upstream, input was given by providing the Uniform 

Resource Identifier (URIs) for the UniProt IDs of hSERT (P31645), 

hDAT (Q01959), and hERG (Q12809) in the form of a table. The 

pharmacology output was then preprocessed to exclude records 

with unspecified compound activity, and with activity values greater 

than 108 (to avoid potential data errors). Further, activity values (for 

IC50 and Ki endpoints) were transformed into their negative 

logarithmic Molar values (‘-logActivity values [molar]’). The same 

activity endpoints are available as ‘pCHEMBL values’ from the 

ChEMBL database, but in addition we also kept values with a 

relation different from ‘ = ’. Bioactivity values were also transferred 

into binary representation (active: 1, inactive: 0) by setting a cut off 

value for separating actives from inactives. This cut off was tailored 

to the specific target and bioactivity endpoint (Ki/IC50): in case of 

hSERT sibutramine (Ki=1.11 µM; IC50=2.09 µM), in case of hDAT 

modafinil (Ki=1.46 µM; IC50=1.83 µM) was selected as a reference 

and the listed bioactivities served as cut off’s. In the case of hERG 

we labelled all compounds with an IC50 or Ki below 10µM as 

potential hERG blockers according to a study by Doddareddy et al.48 

In addition we inspected the ratio between the bioactivity for the 

primary target (hSERT or hDAT) and hERG for all drugs in the 

dataset with measured hERG activity. Precise bioactivity values 

were always retained to be able to adjust the activity label(s) (0/1) 

in individual cases where bioactivities were close to the cutoff or 

due to a ‘>’ relation sign, which should be considered inactive 

although appearing active in our workflow. 

Retrieving drug annotations. Annotations to known drugs and the 

preferred compound names of annotated drugs were retrieved 

from ChEMBL by utilizing the ‘ChEMBLdb Connector Input’ node in 

KNIME with input from the whole initial dataset after 

preprocessing. 

Splitting into two workflow strands. After data retrieval, filtering 

and preprocessing, two parallel workflow strands served for the 

extraction of a cathinone dataset from a subset with IC50 endpoints, 

as well as for a scaffold analysis on the whole dataset (endpoints 

IC50 and Ki). The filtering for the IC50 subset was done by a simple 

‘Row Filter’. The subsequent ‘pivoting’ and filtering steps were done 

in parallel and independent for each of the workflow strands. 

Creating overlap representations of pharmacology data and 

filtering. A pivot table was generated to display bioactivities of 

compounds against the two targets using the ‘Pivoting’ node in 

KNIME grouping rows by ChEMBL compound ID’s and columns by 

‘Target name’. If multiple activity values are given for the same 

compound-target pair, the median of those values was retained for 

the sake of visualization and classification, but preserving the list of 

all activity labels, as well as the list of all precise bioactivity values 

assigned to a compound-target pair. Next, the datasets were 

filtered in order to keep only compounds with bioactivity 

measurements for both targets by using the ‘Numeric Row Splitter’ 

node. 

Retrieving the cathinone dataset. A substructure search for 

benzoylethanamine (= cathinone) was performed on the IC50 subset 

by using the ‘Substructure Search Node’ in the CDK module. 

Grouping by PubMed IDs served for getting informed about 

relevant literature sources. 

Heat map representation. Starting from the larger dataset with IC50 

and Ki activity endpoints, compounds with contradictory activity 

classifications (if median activity labels of compounds = 0.5 for 

one/both of the transporters) have been removed for the sake of 

visualization. The resulting heat maps were visualized with the 

‘HeatMap (JFreeChart)’ node in KNIME. 

Scaffold analyses. Bemis-Murcko scaffolds of the compounds were 

retrieved by the node ‘RDKit Find Murcko Scaffolds’. Subsequently, 

compounds were grouped by their scaffolds. For analyzing scaffolds 

in the cathinone subset all scaffolds with more than one member 

compound were kept. For the whole dataset, scaffold clusters with 

at least 10 unique compounds were kept for further analyses. Next, 

scaffolds with a preferential activity for one of the two targets, and 

those showing activity on both targets (by evaluating their mean 

activity labels) were identified. 

Performing a substructure search for various antidepressants. A 

substructure search for common substructures of antidepressants 

as retrieved after Murcko analysis was performed for four different 

scaffolds, which appeared as SERT selective and drug-containing in 

our workflow. The ‘Substructure Search Node’ in the CDK module 

was used in order to look for additional compounds with the 

defined common substructure in the whole hSERT/hDAT dataset 

(with IC50 and Ki endpoints).  

SAR analysis. In order to get first insights into the molecular 

features triggering hDAT over hSERT selectivity of cathinones, a 

classical Hansch analysis using descriptors of lipophilicity, size, 

polarizability and electronic properties was performed. Van der 
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Waals volume (VdW-vol), partition coefficient (logP (o/w)), and the 

molar refractivity of the compounds were calculated in MOE 

(Molecular Operating Environment).49 The sigma Hammett constant 

was used as electronic parameter, and the respective values were 

picked from a table.50 To retrieve physicochemical parameters such 

as vdw-vol, logP (o/w), molar refractivity (mr), for individual 

substituents, we implemented an incremental approach using MOE. 

Briefly, the difference of the vdw-vol of two molecules which differ 

only in one position, eg.a para-substituent on the aromatic ring, 

was used to calculate the incremental vdw-vol of this substituent. 

This allowed to generate a data matrix of substituent constants for 

all R-groups outlined in Fig. 9. Finally, we added two indicator 

variables displaying the presence or absence of a meta or para 

substituent on the aromatic ring. The SAR analysis was conducted in 

StatPlus for MAC using the linear regression function.  

 
Fig.10 Common scaffold of the cathinones. 

 

Molecular docking study. For docking of a selected set of 

compounds the software package Glide 6.8 was used.51 Protein 

homology models for hSERT and hDAT in the outward facing 

conformation were taken from Saha et al., 2015.15 As both visual 

inspection of the data as well as QSAR studies revealed an influence 

of the substituent at the alpha position to the carbonyl group, six 

compounds (compound 1-6, Fig. 7) reflecting variations in this 

position (methyl-, ethyl-, propyl- and isobutyl-residues) were used 

for docking. Compounds were used in their protonated form 

reflecting their interactions in the binding pocket45,52,53 and in S-

configuration due to higher activity reported.17 The proteins were 

prepared with Schrödinger Suite 2015-3 Protein Preparation 

Wizard; Epik version 3.354 and in hDAT a water molecule was 

removed from the binding site. The center of the receptor grid is 

nortriptyline, which is co-crystallized in the template (PDB 4M48) 

for hDAT and paroxetine because of the higher affinity in hSERT. 

The template for the hSERT model is also PDB 4M48 due to its 

higher resolution, but the paroxetine ligand was used from PDB 

4MM4, placed into the model by a structural alignment of the Cα-

atoms and the resulting complex was protonated and energy 

minimized in  MOE.49Furthermore, as the antidepressant ligands in 

the crystal structures45 show an analogy in the positive partial 

charge density of the cationic nitrogen, the cationic nitrogen in the 

cathinones was forced to be placed within 2-4 Å to the backbone of 

the carbonyl oxygen of Phe76 in hDAT and Tyr95 in hSERT.15 For the 

output, the number of poses was limited to 100 per ligand. 

To analyse the results, the poses were clustered with the support of 

two in-house scripts: the RMSD matrix of the common scaffold was 

calculated with a MOE script49 and the clusters with an R script at a 

defined maximal distance of 3Å within one cluster.55 The underlying 

algorithm is a hierarchical clustering on a set of dissimilarities and 

techniques to analyse it. 

 

Molecular Dynamics simulations. The MD study was performed by 

using the Schrödinger software, with the Maestro suite (version 

10.256) for visualization and Desmond  (version 4.257) for the MD 

simulation. The four complexes gained from the docking study were 

prepared with the Protein Preparation Wizard. 58 The force field 

used was OPLS2005, SPC was chosen as the solvent model and 

POPC (300K) as the membrane model. The system was placed in a 

box (using periodic boundary conditions), and neutralized with 

counter ions at a salt concentration of 0.15M. Energy minimization 

was accomplished using a hybrid method of the steepest descent 

and the limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) 

algorithms. The maximum number of iterations was set to 2000, the 

convergence threshold for the gradient in units to kcal mol-1 Å-1 to 

1. The simulation was conducted for 20 ns in total with recording 

intervals of 1.2 ps for the energy and 4.8 ps for the trajectory.  The 

relaxation of the system before the simulation was performed using 

the standard protocol (NVT ensemble with Brownian dynamics at 

10 K with short  time steps and solute non-hydrogen atoms 

restrained, NVT ensemble using Berendsen thermostat, NPT 

ensemble using a Berendsen thermostat and a Berendsen barostat). 

To analyze the results, the simulation event analysis as well as the 

simulation interaction diagrams incorporated in Desmond were 

generated and evaluated. 
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