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This study performed untargeted metabolomics for plasma sample from 40 coronary heart dis-

eases patients and 43 healthy controls by high-performance liquid chromatography coupled with
mass spectrometry technology to find a set of effective biomarkers for CHD diagnosis and prog-
nosis. The discriminating metabolites were extracted and analyzed by univariate and multivari-
ate analysis methods. We found five metabolites (1-Naphthol, 2-Naphthol, Methylitaconate, N-
Acetyl-D-glucosamine 6-phosphate and L-Carnitine) contributing to the separation of CHD pa-
tients from healthy controls , a subset of two metabolites in these five were identified as po-
tential plasma biomarkers for CHD diagnosis. Major metabolic pathways associated with these
potential biomarkers included nicotinate and nicotinamide metabolism, protein glycosylation, lipid
metabolism and fatty acid metabolism. In addition, two potential biomarkers (GIcNAc-6-P and
L-Carnitine) were found be to be associated with intestinal microflora, indicated that intestinal
microflora may be related to the metabolism and progression of CHD.
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1 Introduction method to diagnose CHD urgently needs to be developed. The

normal function of heart highly depends on metabolism process.
The major energy supplier ATPs are mainly (>90%) produced by
fatty acid oxidative phosphorylation2.The other metabolic sub-
strates include fatty acids, glucose, ketone bodies, lactate and
amino acids, which alter in line with internal or external environ-
ment change3. Previous studies confirmed that many cardiovas-
cular diseases are associated with metabolic abnormality*. Car-
diovascular diseases (CVD) such as coronary heart disease and
cardiac failure undergo a "metabolic shift" as a consequence of
both intrinsic and extrinsic perturbations. The fact that core de-
fects in cardiovascular disease are lipid metabolism disorders>.
In recent years, the progress of multiple omics techniques has al-
lowed us to better understand various diseases at different levels.
Genomics, transcriptomics, proteomics, and metabolomics reflect

Coronary heart disease (CHD) is a complex disease with very
high prevalence and mortality rate worldwide. The incidence
of CHD has been increasing for years and it is anticipated that
the growth rate of mortality caused by CHD will reach 137% for
male and 120% for female from 1990 to 2020 !.The most effec-
tive way to prevent CHD from developing is diagnosing in early
stage, evaluating the risk factors and taking intervention mea-
sures at proper time. So far coronary angiography is the golden
standard for CHD diagnosis, but the drawback of this method is
that it is invasive, not suitable for massive screening and progno-
sis monitoring. Therefore, a non-invasive, feasible, and effective

% BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.

b Department of Cardiology, Chinese PLA General Hospital, Fuxing Road 28, Beijing,
100853, China.

¢ BGI-Shenzhen, Shenzghen, 518083, China.

4 Department of Biology, University of Copenhagen, Ole MaalgesVej 5, 2200 Copen-
hagen, Denmark.

¢ Shenghen Engineering Laboratory of Detection and Intervention of human intestinal
Microbiome.

/' Medical Research Center of Guangdong General Hospital, Guangzhou, Guangdong,
China.

8 Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences,
Guangzhou, Guangdong, China.

" Department of Human Microbiome, School of Stomatology, Shandong University,
Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China.
 These authors contributed equally to this work.

* To whom correspondence should be addressed.

This journal is © The Royal Society of Chemistry [year]

the patient’s status at gene, RNA, protein, and metabolites level
respectively. However, only changes on metabolites level illus-
trate the accurate physiological status of human body since they
are the final physiology outcomes®. Therefore, metabolomics
which detects the small-molecule metabolites is a vital tool for
early screening, diagnosis, and prognosis of diseases. It con-
sists of measurement of detecting small-molecule metabolites
(molecular weight less than 1500 Da) in body fluids by high-
throughput methods, analyzed the dynamically change of the
metabolites after endogenous (such as genetic mutation) or ex-
trinsic (environmental change) stimulation, and identified the
correlation between metabolites and physiological or pathological
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alteration®®. The major metabolomics techniques include chro-
matography, mass spectrometry (MS), and nuclear magnetic res-
onance (NMR). Compared with NMR, MS-based techniques more
frequently since they have higher sensitivity, wilder coverage of
the metabolome, improved metabolites identification and dis-
crimination capacity, and modularity to perform compound-class-
specific analysis. In recent years, chromatography coupled with
mass spectrometry, such as gas chromatography-mass spectrom-
etry (GC-MS), capillary electrophoresis-mass spectrometry (CE-
MS), and liquid chromatography mass spectrometry (LC-MS), has
significantly expand the scope of metabolites analysis’. Since GC-
MS and CE-MS are only suitable for volatile and ionic substances
respectively, their applications were limited. Meanwhile, LC-MS
has been widely used for metabolomics study due to its high sep-
aration capacity and the ability of detecting hundreds of com-
pounds simultaneously. In this study, we used high performance
liquid chromatography coupled with mass spectrometry (HPLC-
MS) technology to detect the changes of plasma metabolites in
CHD and healthy control groups. Multivariate statistical analysis
methods were used to identify significantly different metabolites
and potential biomarkers between CHD patients and healthy in-
dividuals, the diagnostic ability of the potential biomarkers was
evaluated, and the correlation between potential biomarkers and
clinical phenotypes was studied.

2 Materials and Methods

2.1 Participants

In this study, 83 individuals were recruited in Guangdong Gen-
eral Hospital. Among them, 40 were CHD patients diagnosed by
angiography, and the other 43 were healthy controls. Blood sam-
ples were collected by Vacuette EDTA blood collection tubes and
centrifuged at 14000 g for 10 min at 4°C to obtain plasma sam-
ples. The plasma samples were stored at -80°C until use. The
clinical information of participants was provided in Table 1. This
study was designed and performed according to the rules of the
Declaration of Helsinki and approved by the Institutional Review
Board of BGI-Shenzhen. Written consents were obtained from all
participants before sample collecting.

2.2 Materials and Reagents

HPLC grade Formic acid was purchased from Fisher Scientific
(Loughborough, UK). Water used in the experiments was ob-
tained from a Milli-Q Ultra-pure water system (Millipore, Biller-
ica, MA). An Agilent ZORBAX ODS C18 column (Agilent Tech-
nologies, Santa Clara, CA) (150 mm 2.1 mm, 3.5 um) was used
for all analysis.

2.3 Sample preparation

To extract low-molecular-weight (<1500 Da) metabolites in the
plasma samples, these samples were prepared by using the meth-
ods mentioned in previous publication with some modifications®.
Before experiment, all the plasma samples were thawed on ice.
A "quality control"(QC) sample was made by mixing and blend-
ing equal volumes (10 puL) from each plasma samples. QC was

used to represent all the analytes encountered during analy-
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sis. For plasma samples, 100 uL of samples were mixed with
200 pL methanol to precipitate protein. The mixture was then
centrifuged at 14000 g for 10 min at 4°C. Supernatant was
transferred into a 1.5 mL polypropylene tube for the following
metabolic profiling experiment.

2.4 HPLC-MS experiments

For HPLC-MS experiment, a LTQ Orbitrap Velos instrument
(Thermo Fisher Scientific, MA, USA) set at 30000 resolution was
coupled with Shimadzu Prominence HPLC system (Shimadzu Sci-
entific Instruments, Kyoto, JPN). All samples were analyzed in
positive mode. Spray voltage was set to 4.5kV and the capillary
temperature was set to 350°C. The mass scanning range was 50-
1500 mass-to-charge (m/z). Flow rate of Nitrogen sheath gas
was 30 L/min and nitrogen auxiliary was 10 L/min. The HPLC-
MS system was run in binary gradient mode. Solvent A was 0.1%
(v/v) formic acid/water, and solvent B was 0.1% (v/v) formic
acid/methanol. The gradient was as following: 5% B at O min,
5% B at 5 min, 100% B at 8 min, 100% B at 9 min, 5% B at 18
min, and 5% B at 20 min. The flow rate was 0.2 mL/min. In order
to ensure system equilibrium, 5 pooled QC sample were injected
at the beginning of experiment. The QC samples was injected
between every 5 samples to monitor system stability during the
whole experiment.

2.5 Data processing and statistics analysis

The pre-treatments of HPLC-MS data include the following pro-
cedures described in previous publications: peak picking, peak
grouping, retention time correction, second peak grouping, and
annotation of isotopes and adducts®. Raw data files from LC-MS
were converted into mzXML format and then processed by the
XCMS19 and CAMERA!! toolbox implemented with the R soft-
ware(v3.1.1). Intensities of each peaks were recorded and a three
dimensional matrix containing arbitrarily assigned peak indices
(retention time and m/z pairs), sample names (observations) and
ion intensity information (variables) was generated. In order to
obtain consistent results, the obtained matrix was further reduced
by removing peaks with more than 80% missing values (ion inten-
sity=0) and those with isotope ions from both CHD and healthy
control groups. As a quality assurance strategy in metabolic pro-
filing, all retained peaks were normalized to the QC sample us-
ing Robust Loess Signal Correction (R-LSC) based on the periodic
analysis of a standard biological quality control sample (QC sam-
ple) together with the real plasma samples '2. The relative stan-
dard deviation (RSD) values of metabolites in the QC samples
was set at a threshold of 30% which was accepted as a standard
in the assessment of repeatability in metabolomics datasets!3.
The nonparametric univariate method (Mann-Whitney-Wilcoxon
test) was used to discover the significantly changed metabolites
among the CHD patients and healthy control. The results was
corrected by false discovery rate (FDR) to ensure that metabolite
peaks were reproducibly detected!4. The multivariate statisti-
cal analysis (PCA, PLS-DA) were performed to discriminate CHD
samples from control subjects. A number of metabolites responsi-
ble for the difference in the metabolic profile scan of CHD patients
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and control subjects can be obtained on the basis of variable im-
portance in the projection (VIP) threshold of 1 from the 10-fold
cross-validated PLS-DA model. The PLS-DA model was validated
at a univariate level using FDR test from the R statistical tool-
box with the critical p-value set to be lower than 0.05. Three
dimensional PLS-DA analysis was also implemented to show the
difference between CHD samples and control subjects!>. Heat-
map was used to depict the relatively disturbed and unbalanced
metabolism state among CHD samples compared to control sub-
jects. Spearman correlation analysis was implemented in those
significantly changed plasma metabolites with clinical phenotype
data of CHD patients and control subjects and correlations of
metabolites was profiled with Cytoscape software 3.2.11°. In ad-
dition, receiver operating characteristic (ROC) analysis was used
to evaluate diagnostic capability of identified potential biomark-
ers1’.

2.6 Metabolites identification and validation

The online HMDB database (http://www.hmdb.ca) 18-20 and
KEGG database (http://www.genome.jp/kegg) 2122 were used to
identify the metabolites by matching the exact molecular mass
data (m/z) of samples with those from database. If a mass dif-
ference between observed value and the database value was less
than 10 ppm, the metabolite would be identified and the molec-
ular formula of metabolites would further be validated by the
isotopic distribution measurements. Reference standards were
purchased and used to validate and confirm those significantly
changed metabolites by comparing their MS/MS spectra and re-
tention time 23,

3 Result

3.1 Clinical information of participants

An untargeted metabolomics method was used to study plasma
samples from 40 CHD patients and 43 healthy controls. The par-
ticipants’ clinical information was listed in Table 1. A total of
13 biochemical indexes were incorporated, including age, triglyc-
eride (TRIG), lipoprotein (LPA), body mass index (BMI), alanine
transaminase (ALT), low-density lipoprotein (LDLC), cholesterol
(CHOL), high-density lipoprotein (HDLC), aspartate transami-
nase (AST), hydroxybutyrate dehydrogenase (HBDH), albumin
(ALB), total protein (TP), and lipoprotein (LPA). The average age
i 59.98 + 8.98 (mean =+ SD) and 59.97 + 7.043 for CHD patients
group and control groups respectively. The average body mass in-
dex (BMI) is 24.8 + 3.6 and 24.75 + 5.2 for CHD and control
groups respectively. There is no significant difference in age and
BMI between the two groups by student’s t-test.

3.2 Analysis of QC samples

Using the untargeted HPLC-MS based metabolomics technique, a
total of 2588 metabolites (m/z, mass-to-charge ratio) were ob-
tained in the plasma samples. To assess the stability and repro-
ducibility of the current dataset, QC samples were measured dur-
ing the whole experimental period. Principal component analysis
(PCA) among QC samples and tested samples were performed
and the two-dimensional PCA score plot was showed in Supple-
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mentary Figure 1. The result showed that QC samples formed a
cluster and there is no obvious shift in tested samples, and thus
confirmed that our current metabolomics data has good stability
and reproducibility.

3.3 Plasma Metabolomics data analysis

To demonstrate the overall profile of the metabolomics data, a
cloud plot of all 2588 metabolites were shown in Figure 1A.
The results showed that the intensity of 31.22% (808) metabo-
lites were significantly increased in CHD patients’ plasma sam-
ples (fold change > 1.2) while that of 30.64% (793 m/z) sam-
ples were significantly decreased in CHD patients (fold change
< 0.8) compared with healthy control group. To evaluate the
discriminating power of the obtained 2588 metabolites, we per-
formed principal component analysis for the plasma samples from
40 CHD patients and 43 healthy controls and the two-dimensional
PCA score plot was shown in Supplementary Figure 2. The CHD
patient group and control group formed separate clusters, indi-
cating that they could be discriminated based on two principal
component scores (PC1, PC2 as 11.09% and 6.61%). Besides,
the three-dimensional partial least squares discriminant analy-
sis (PLS-DA) scores plot (Figure 1B) also confirmed the signifi-
cant difference between CHD and control group with PC1, PC2,
PC3 as 42.86%, 10.72%, 7.68% respectively. The PLS-DA model
was constructed by performing 10-fold cross validation and it has
demonstrated good modeling and prediction using 3 components
(with cumulated R2(X)=61.26%, cumulated Q2(X)=48.32). To
avoid over-fitting of the model, we further validated it with a per-
mutation multivariate analysis of variance (PERMANOVA). The
R2 distribution plot of the permutation test for the PLS-DA model
among plasma samples was showed in Figure 1C. The permu-
tation model used three latent factors and the probability of this
model randomly occurring was less than 0.001. From these above
results, we confirmed that the metabolic profiling of CHD patients
and control groups is significantly different.

3.4 Identification of metabolic biomarkers

To identify the significantly changed metabolites in CHD patients
and potential biomarkers for CHD, two types of analysis were per-
formed. First, Variable Importance for Projection (VIP) scores of
all 2588 metabolites were extracted from PLS-DA model and the
S-plot demonstrated putative biomarkers were showed in Figure
2A2%. The modelled covariance (x-axis) and modelled correla-
tion (y-axis) from the PLS-DA model were combined in a scat-
ter plot. The red triangles in S-plot represented the significantly
changed metabolites (VIP >= 1). The two-tailed Wilcoxon rank-
sum tests were performed with false discovery rate correction (q-
value), fold-change (FC), and average intensity of each metabo-
lite from CHD patients normalized to the average value of the
same metabolite from control group. A volcano plot combined
the statistical test with the magnitude of the change was shown in
Figure 2B. It enabled quick visual identification of these metabo-
lites with large fold change values. A total of 1040 significantly
different metabolites (with g-value < 0.05 and FC > 1.2 or FC
< 0.8) were highlighted in volcano plot with red color. To inte-
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grate the results from S-plot and volcano plot, a Venn diagram
(Figure 2C) was plotted. Eventually, 83 metabolites in the over-
lapped area met the following criteria (q-value < 0.05, FC > 1.2
or FC < 0.8, VIP > 1). To visualize the intensity patterns of the
83 significantly changed metabolites in CHD patients and control
group, a heat-map was plotted (Figure 3). Each row represents a
specific metabolite’s intensity and each column represents a indi-
vidual (patient or healthy control). As shown in Figure 3, there
is a distinct pattern between these two groups. To identify po-
tential biomarkers, the 83 significantly changed metabolites were
aligned to KEGG and HMDB databases with 10 ppm error toler-
ant. As a result, a total of 37 potential metabolites were iden-
tified and their detailed information is listed in Supplementary
Table 1. Among these 37 metabolites, 7 (2,3-Dimethylmaleate, 2-
Naphthol, Methylitaconate, N-Acetyl-D-glucosamine 6-phosphate
, 1-Naphthol, L-Carnitine, Phenylpyruvate) were verified using
purchased reference standards and could be considered as candi-
date potential biomarkers for CHD diagnosis. The detailed infor-
mation of these 7 metabolites was listed in Table 2. Among the 7
potential biomarkers, 2,3-Dimethylmaleate, 2-Naphthol, Methyl-
itaconate, and N-Acetyl-D-glucosamine 6-phosphate were signifi-
cantly increased in the CHD patients, with fold change of 4.24,
17.61, 1.40, 16.58 and g-value of 3.88 x 10-9, 0.014, 3.14 x
10-11, 2.85 x 10-10respectively. The other three metabolites (1-
Naphthol, L-Carnitine, and Phenylpyruvate) were decreased in
CHD patients, with fold-change value of 0.27, 0.06, 0.06 and
g-value of 0.0035, 0.0079, 0.0198 respectively. An online tool
MetaboAnalyst 3.02> was used to analyze the relevant metabolic
pathway. The following 5 pathways were identified (Supplemen-
tary Table 2) : nicotinate and nicotinamide metabolism pathway,
metabolism of xenobiotics by cytochrome P450 pathway, pathway
for phenylalanine, tyrosine and tryptophan biosynthesis, pheny-
lalanine metabolism pathway, amino sugar and nucleotide sugar
metabolism pathways.

3.5 Correlation between potential metabolic biomarkers
and clinical biochemical indexes

To evaluate the difference in 13 biochemical indexes between
CHD and control groups, student’s t-test was performed and the
results were listed in Table 1. The results showed that LPA were
significantly increased while TRIG, LDLC, CHOL, HDLC, APOB,
ALB, TP were significantly decreased in CHD patients compared
with control groups. Meanwhile, there is no difference in the
levels of AST, ALT, and APOA between the CHD and control
groups. To access the effects of the patients’ covariates (age,
BMI and other clinical biochemical factors) on metabolic pro-
files, PERMANOVA analysis was performed to evaluate the cor-
relation between these 7 potential biomarkers and 13 clinical
biochemical indexes. As shown in Figure 4A, the intensity of
most potential biomarkers have a strong correlation with the lev-
els of ALB, TP, HDLC, CHOL, LDLC, TRIG, LPA while they have
no correlation with BMI, ALT, AGE, APOA, LDLC, AST. Interest-
ingly, the levels of 3 metabolites (2,3-Dimethylmaleate, Methyli-
taconate, and N-Acetyl-D-glucosamine 6-phosphate) which were
significantly increased in CHD patients were negatively correlated
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with the level of ALB, TP while they were positively correlated
with the levels of TRIG and LPA. On the contrary, the levels of
3 metabolites that were decreased in CHD patients (1-Naphthol,
L-Carnitine, Phenylpyruvate) have positive correlation with the
levels of ALB and TP while they have negative correlation with
the level of TRIG, LPA. For instance, the level of N-Acetyl-D-
glucosamine 6-phosphate was increased in CHD patients and it
has significantly strong negative correlation with TP (p=5.62E-
05, rho=-0.442) and ALB(p=6.15E-06, rho=-0.490); the level
of L-Carnitine was decreased in CHD patients and it has signif-
icantly positive correlation with TP (p=0.014, rho=0.278) and
ALB(p=0.005, rho=0.315). These results from PERMANOVA
analysis indicated that these clinical indexes are correlated with
the plasma metabolic profile of CHD patients. In addition, to
evaluate the correlation among the 7 potential biomarkers, spear-
man correlation analysis was performed and the results were
showed in Figure 4B. Interestingly, the levels of 3 biomarkers
(Methylitaconate, N-Acetyl-D-glucosamine 6-phosphate, and 2,3-
Dimethylmaleate) were increased in CHD patients and they also
have significantly positive correlation among themselves. On the
other hand, L-Carnitine and Phenylpyruvate were positively cor-
related with each other but they have no correlation with the
other 5 biomarkers.

3.6 Receiver operating characteristic analysis for potential
biomarkers

To evaluate the diagnosis ability of these 7 potential biomarkers,
receiver operating characteristic (ROC) analysis was applied to an
additional validation dataset of 102 plasma samples (59 CHD pa-
tients vs 43 healthy controls). The experiment programs and data
generation strategies of the validation data set are the same with
the discovery set. In the validation data, we constructed a random
forest classifier and found that five potential biomarkers among
the 7 identified ones (Methylitaconate, N-Acetyl-D-glucosamine
6-phosphate, L-Carnitine, 1-Naphthol, 2-Naphthol) showed the a
good discriminating ability with AUC of 89.95% and 95% confi-
dence interval (CI) 83.29% - 96.61% (Figure 5A). The abundance
of these five metabolites in CHD patient and control groups from
validation dataset was showed in Figure 5B. The level of N-Acetyl-
D-glucosamine 6-phosphate is significantly increased in CHD pa-
tients while 4 other metabolites are slightly decreased in CHD
patients. Meanwhile, for training dataset, the AUC of this group
of five potential biomarkers were showed in Supplementary Fig-
ure 3A with random forest classifier of 97.44% and 95% confi-
dence interval (CI) of 94.69% - 100%. The ROC result of these
5 individual metabolites in training dataset was listed in Sup-
plementary Figure 3B. The AUC were 90.99%, 89.3%, 66.63%,
68.6%, 65.17% for Methylitaconate, N-Acetyl-D-glucosamine 6-
phosphate, L-Carnitine, 1-Naphthol, 2-Naphthol respectively. And
AUC of the combined classifier of the 5 metabolites by random
forest is 97.44%, indicating that the discriminating power of the
combined classifier is also very good in training dataset. Addition-
ally, we compared the level of the five metabolites in two datasets.
N-Acetyl-D-glucosamine 6-phosphate and 1-Naphthol showed the
same trend in both datasets (Figure 5B), which indicated that
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they were better potential biomarkers for CHD diagnosis. AUC of
the two metabolites’ combination is 91.01% and 95% confidence
interval (CI) 84.69% - 97.33% (Figure 5C).

4 Discussion

Coronary heart disease is a chronic and complex disease affected
by multiple human and environmental factors. It has been the
top health risk for modern society, causing mortality rate higher
than the sum of all types of cancers and leading to huge so-
cial and economic burden. In recent years, the progress of
metabolomics technique has enabled us to measure physiologi-
cal and pathogenic factors that affect the development of coro-
nary heart disease in a high-throughput mode, to identify poten-
tial metabolic biomarkers, and to study possible mechanism for
coronary heart disease progression. In this study, non-targeted
HPLC-MS technique was used to measure metabolic profile of
plasma from CHD patients (n=40) and healthy subjects (n=43).
And a group of 5 metabolites (1-Naphthol, 2-Naphthol, Methyli-
taconate, N-Acetyl-D-glucosamine 6-phosphate, L-Carnitine) has
been identified as potential biomarkers in CHD patients. PER-
MANOVA analysis showed that there was strong correlation be-
tween these biomarkers and patients’ clinical biochemical indexes
such as ALB, TP, HDLC, CHOL, LDLC, TRIG, LPA. Spearman cor-
relation analysis showed that there was significantly positive cor-
relation among these biomarkers, indicating that there may be
some unknown underlying relationships between them. The com-
bination of these five metabolites showed an excellent separating
capability ability in both training set (AUC=97.44%) and valida-
tion set (AUC=89.95%). A subset of the five metabolites consists
of N-Acetyl-D-glucosamine-6-phosphate and 1-Naphthol shows a
good diagnosis ability, which could potentially be used for clini-
cal diagnosis, prognosis monitor, and early detection of CHD pa-
tients. Among these 5 potential biomarkers for CHD, N-Acetyl-
D-glucosamine 6-phosphate (GlcNAc-6-P) is the phosphorylated
product of N-Acetyl-D-glucosamine (GlcNAc). The process that a
single GIcNAc bonds with an oxygen atom on hydroxyl of serine
or threonine by O-glycosidic linkage was called protein O-GlcNAc
glycosylation. Glycosylation of protein kinases, phosphatases, an-
tioxidant enzymes, transcription factors and heat shock proteins,
will change various biological function such as nuclear trans-
port, translation, transcription, DNA repair, signal transduction
and apoptosis26. Previous study indicates that increase of pro-
tein O-GlcNAc glycosylation can induce anti-inflammation, anti-
oxidization, neuroprotection, reducing trauma and bleeding?”.
Especially, O-GlcNAc modification was found to be associated
with atherosclerosis, myocardial reperfusion injury, arrhythmia,
heart failure and other cardiovascular diseases?8-30, Methylita-
conate is metabolic product of niacin and nicotinamide. Niacin,
also named vitamin B3, is an essential vitamin for human body.
Niacin was transformed into nicotinamide which is an integral
part of coenzyme I and II. Niacin participates in glucose glycolysis,
pentose biosynthesis, metabolism of fats, amino acids, proteins
and purine. Currently, niacin preparations have been widely used
in the treatment of hyperlipidemia. Clinical trials showed that
niacin can reduce incidence of coronary, which may reduce the
overall mortality3!. 1-Naphthol and 2-Naphthol belong to Naph-
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thalene family. They are involved in detoxification and activation
of exogenous substrates (include drugs, anti-oxidants, odorants,
solvents, anesthetics) in cytochrome P450 pathway. L-Carnitine
is a quaternary ammonium compound comes from methionine
and lysine biosynthesis. It plays an important role in energy
metabolism, especially in fatty acid catabolism. It assists transfer-
ring long-chain fatty acids through the mitochondrial membrane
into the mitochondrial matrix and promoting their §-oxidation
which provide energy to the myocardial cell3>33. It also in-
volved in carbohydrate metabolism and glucose oxidation. Re-
duction of L-Carnitine will lead to elevation of blood lipids levels
and abnormity in fat metabolism, and then cause acceleration of
atherosclerosis and CHD progression. Recent studies also found
that L-Carnitine containing trimethylamine (TMA) which can be
converted to trimethylamine oxide (TMAO) in gut 34, TMAO can
accelerate atherosclerosis and further promote the progress of
coronary heart disease. Previous literature indicated that over
30% of metabolites in human body originate from intestinal mi-
crobes and the interaction between microbes and host may con-
tribute to disease progress3>. In this study, GlcNAc-6-P was iden-
tified as potential biomarkers and it was reported to be converted
to acetyl glucosamine-6-P by N-acetylglucosamine-6-phosphate
deacetylase (NagA) deacetylation. NagA was originated from E.
coli so it is possible that there is correlation between gut flora and
CHD?3%. In addition, for another potential biomarker L-Carnitine,
it contained TMA which was converted to trimethylamine ox-
ide (TMAO) in gut by intestinal flora3” . Thus, we speculate
that gut flora disorder may be related to CHD progression in
human body. In the future, microbial species and their associ-
ated metabolites might be considered as new indexes and poten-
tial targets for diagnosis and treatment of CHD. In summary, 5
potential biomarkers (2-Naphthol, Methylitaconate, N-Acetyl-D-
glucosamine 6-phosphate, 1-Naphthol, L-Carnitine) and a combi-
nation of two markers for CHD patients were identified by high-
throughput non-targeted HPLC-MS method. Protein glycosyla-
tion, lipid metabolism, and fatty acid metabolism pathways are
found to be associated with the development of CHD. This group
of 5 potential biomarkers are strongly correlated with clinical bio-
chemical indexes. These biomarkers could be used for early de-
tection, clinical diagnosis and prognosis monitor of CHD patients
in the future.

5 Conclusion

This project successfully applied HPLC-MS based metabolomics
to investigate the differences in metabolites between coronary
heart disease patients and healthy controls. An obvious separa-
tion was obtained by PLS-DA analysis on metabolites from CHD
and healthy controls. The 5 metabolites identified in plasma were
capable of discriminating patients from healthy subjects in both
training and validation dataset, and a subset of them were iden-
tified as potential plasma biomarkers for CHD diagnosis. Pro-
tein glycosylation and energy metabolism pathways may play a
role in development of coronary heart disease. Two metabo-
lites (GlcNAc-6-P and L-Carnitine) associated with intestinal mi-
croflora were among the identified metabolites, suggesting that
intestinal microflora may be related to the metabolism and pro-
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gression of CHD.
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1.1 Graphics
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Fig. 1 (a) Cloud plot analysis of all 2588 metabolites. The grey lines in the background represent the total ion chromatograms for each sample. Each
bubble on the plot represents a metabolite and the position of the bubbles means the retention time (x coordinate) and the mass-to-charge ratio (y
coordinate). Bubbles on the upper half of the cloud plot shows the 808 metabolites with increased intensities in CHD patients (Fold change > 1.2) ;
793 metabolites with decreased intensities (Fold change < 0.8) in CHD patients were showed in the lower halt of the cloud plot. (b) Three-dimensional
(3D) PLS-DA score plot for plasma samples. Red rectangles and green circles represent data for CHD patients and healthy control respectively.
PLS-DA showed that there is obvious difference between metabolic profiles of CHD patients’ plasma samples and healthy controls’ samples with
PC1(42.86%), PC2(10.72%), PC3(13.68%). Model was constructed by performing 10-fold cross validation with R2 of 61.26% and Q2 of 48.32%. (c)
The R2 distribution plot of the permutation test for the PLS-DA model among plasma samples. The model’'s R2 value (red vertical bar on the right) is
significantly distant from the HO randomly classified permutation distribution (blue vertical bars on the left, n=1000). Thus, the probability that this
model randomly occurs is less than 0.001.
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Fig. 2 (a) S-plot combined the modelled covariance (x-axis) and modelled correlation (y-axis) from the PLS-DA model in a scatter plot. The red
triangles represent the metabolites with VIP > 1 and the black triangles represent the metabolites with VIP less than or equal to 1. (b) Volcano plot
combines the statistical test ( y-axis: -log(g-value) ) and the magnitude of the change ( log2(FC) ) of metabolites on a scatter plot. Red points
represent the metabolites with g-value < 0.05, and FC > 1.2 or FC < 0.8. Blue points represent the metabolites with g-value < 0.05 and FC between
0.8 and 1.2. Grey points represent the metabolites with g-value < 0.05. (c) Venn diagram integrating results from Volcano-plot and S-plot showed that
a total number of 83 metabolites were significantly changed in CHD patients. The left red ellipse represents 1140 metabolites highlighted in volcano
plot with g-value < 0.05 as well as FC > 1.2 or FC < 0.8. The right green ellipse represents 138 metabolites from S-plot with VIP > 1. The overlapped
area of these two ellipses represents 83 metabolites which met these three criteria simultaneously: g-value < 0.05, FC > 1.2 or FC < 0.8, and VIP > 1.

Heatmap of 83 mz
Control Case

eI LI

Fig. 3 Heat-map of intensity of 83 significantly different metabolites showed significantly different metabolic profiles between control samples (n=40)
and CHD patients (n=43). Each row represent data for a specific metabolite and each column represents an individual (CHD patient or healthy
control). Different colors correspond to the different intensity level of metabolites. Red and green colors represent increased and decreased levels of
metabolites in CHD patients respectively.
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Fig. 4 (a) Spearman correlation analysis was performed for intensities of the 7 identified potential biomarkers (4,3-Dimethylmaleate, 2-Naphthol,
Methylitaconate, N-Acetyl-D-glucosamine 6-phosphate , 1-Naphthol, L-Carnitine, Phenylpyruvate) and the 13 biochemical indexes. The 13 biomedical
indexes include triglyceride (TRIG), lipoprotein (LPA), body mass index (BMI), alanine transaminase (ALT), low-density lipoprotein (LDLC), cholesterol
(CHOL), high-density lipoprotein (HDLC), aspartate transaminase (AST), hydroxybutyrate dehydrogenase (HBDH), albumin (ALB), total protein (TP).
Each row and column represents a biomedical index and a specific metabolite respectively. Red and blue colors represented positive and negative
correlations respectively. Symbol + in a block means p-value of correlation is less than 0.05; Symbol * in a block means p-value of correlation is less
than 0.01. Red panel indicated increased metabolites in CHD patients while blue panel suggested decreased metabolites in CHD patients. (b)
Correlation among intensities of the 7 potential biomarkers were showed. Every rectangle represents a specific metabolite. The levels of metabolites
on the left side of the line were increased in CHD patients while that of metabolites on the right were decreased. Lines linking the metabolites
represent significant correlations (Spearman correlation adjusted p-value < 0.05). Red lines indicate positive correlation while green lines indicate
negative correlation.

®)

Testing {-
dataset

Training =
dataset

Fig. 5 (a) Receiver operating characteristic(ROC) analysis of 5 identified plasma potential biomarkers in validation datasets. (b) The boxplots from left
to right represents the intensity of 5 potential biomarkers in discovery dataset and validation dataset between CHD patients and healthy controls.
Metabolites with the same trend in both dataset were marked by rectangle of dash line. (c) ROC analysis of a subset of metablites
(N-Acetyl-D-glucosamine 6-phosphate; 1-Naphthol) show the same trend in two dataset.
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Table 1 Demographic and clinical biochemical index of participants.

CHD case Healthy control p-value No. of participents (CHD/Control)

Gender(M/F) 29/12 18/25 NA 46/37

AGE 59.98(42-77) 59.97(51-76) 9.99E-01 40/38

BMI 24.8(16.44-30.48) 24.75(17.63-50.32) 9.59E-01 38/43

TRIG 1.77(0.57-5.96) 1.11(0.45-3.49) 1.33E-03 38/38

LDLC 2.8(0.93-5.7) 3.49(2.49-5.47) 1.03E-03 38/38

CHOL 4.6(2.87-8.11) 5.62(3.86-7.88) 5.71E-05 38/38

HDLC 1.04(0.67-1.62) 1.4(0.82-2.31) 1.20E-05 38/38

APOB 0.85(0.52-1.46) 1.01(0.7-1.9) 9.29E-04 31/38

APOA 1.09(0.67-1.63) 1.23(0.67-2.01) 5.18E-02 31/38

LPA 400.1(50.1-1580.84) 149.65(11.17-933.54) 2.01E-03 32/38

ALB 35.76(25.8-42) 42.73(37-47.2) 1.54E-15 38/39

ALT 30.07(13-76.4) 26.79(2-59) 3.70E-01 35/37

TP 64.38(52.3-79.1) 74.92(67.3-86.9) 7.93E-13 38/39

AST 25.75(16-61) 25.78(17-52) 9.88E-01 38/39
Table 2 Potential biomarkers to discriminate CHD patients and controls.

m/z RT?(second) FC> g-value  VIP Formula Adductlon AUC  Pathway
1-Naphthol 145.0649552 531.467 0.268 0.004 2.166 C10H80O H+ 0.686  ko00980*
2-Naphthol 144.0571958 531.9175 17.607 0.014 2.712 C10H80O NAN 0.652 ko00980*

2,3-Dimethylmaleate  145.0496085 1156.85 4.238 0.000 1.595 C6H804 H+ 0.870  ko00760°
L-Carnitine 162.1122492 114.494 0.060 0.008 4.092 C7H15NO3 H+ 0.666 ko04976°
Phenylpyruvate 165.0548439 183.8775 0.061 0.020 1.643 C9H803 H+ 0.641  koxxxxx’
Methylitaconate 167.0315121 104.76 1.380 0.000 1.414 C6H804 Na+ 0.910 ko00760°
GlcNAc-5-P!* 324.0458651 541.3545 16.580  0.000 1.134 C8H16NO9P Na+ 0.893  ko00528

1 N-Acetyl-D-glucosamine 6-phosphate;
2 Retention time;
3 Fold change (CHD/control);

4 k000980, Metabolism of xenobiotics by cytochrome P450;
5 ko00760, Nicotinate and nicotinamide metabolism;

6 k004976, Bile secretion;

7 k000360, Phenylalanine metabolism; ko00400 Phenylalanine, tyrosine and tryptophan;
8 k000520, Amino sugar and nucleotide sugar metabolism;
" Metablites that matched characteristic peaks but mistmatched retention time with purchased refernce standard.
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