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Abstract 1 

Intramammary infection leading to bovine mastitis is the leading disease problem affecting dairy cows and has 2 

marked effects on the milk produced by infected udder quarters.  An experimental model of Streptococcus 3 

uberis mastitis has previously been investigated for clinical, immunological and pathophysiological alteration in 4 

milk, and has been the subject of peptidomic and quantitative proteomic investigation.  The same sample set 5 

has now been investigated with a metabolomics approach using liquid chromatography and mass 6 

spectrometry.  The analysis revealed over 3,000 chromatographic peaks, of which 690 were putatively 7 

annotated with a metabolite.  Hierarchical clustering analysis and principal component analysis demonstrated 8 

that metabolite changes due to S. uberis infection were maximal at 81 hours post challenge with metabolites 9 

in the milk from the resolution phase at 312 hours post challenge being closest to the pre-challenge samples.  10 

Metabolic pathway analysis revealed that the majority of the metabolites mapped to carbohydrate and 11 

nucleotide metabolism show a decreasing trend in concentration up to 81 hours post-challenge whereas an 12 

increasing trend was found in lipid metabolites and di-, tri- and tetra-peptides up to the same time point. The 13 

increase in these peptides coincides with an increase in larger peptides found in the previous peptidomic 14 

analysis and is likely to be due to protease degradation of milk proteins.  Components of bile acid metabolism, 15 

linked to the FXR pathway regulating inflammation, were also increased. Metabolomic analysis of the response 16 

in milk during mastitis provides an essential component to the full understanding of the mammary gland’s 17 

response to infection.  18 

 19 

 20 

Keywords; Bovine mastitis, Streptococcus uberis, untargeted metabolomics, bile acid metabolism, farnesoid X 21 

receptor (FXR) pathway, eicosanoids pathway 22 

23 
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 24 

1. Introduction 25 

Bovine mastitis, which generally develops as a sequel to intra-mammary infections, is a major infectious disease 26 

problem in dairy cows, costing the global dairy industry €16-26 billion per annum (www.dairy.ahdb.org.uk, 27 

accessed March 2016).  However, recent advances in analytical sciences which have enabled the “omics 28 

revolution” have not been fully applied to this most important disease for the dairy industry.  This paper reports a 29 

metabolomics investigation of an experimental model of Streptococcus uberis mastitis, adding to previous studies 30 

which have examined the pathophysiology of the immunological responses 1, the protein changes in the acute 31 

phase reaction along with the omic investigation of the peptidome 2 and the system-wide quantitative proteomic 32 

analysis 3. The overview of mastitis provided by such a systems biology approach to the analysis of proteins, 33 

peptides and other metabolites in milk linking to disease progression provides a unique view of the pathological 34 

processes involved. In contrast to proteomics and peptidomics that analyse intact proteins and peptides (the 35 

latter consisting mostly of degradation-derived short protein fragments (polypeptides)), metabolomics analyses 36 

low-molecular weight metabolites of endogenous and exogenous origin. Most metabolites analysed have a mass 37 

less than 1.5 kDa 4. 38 

Metabolomics applies analytical chemistry techniques such as nuclear magnetic resonance (NMR) spectroscopy or 39 

hyphenated mass spectrometry combined with advanced computational and informatics methods to analyse low 40 

molecular weight compounds in a biological sample 5-7. It has previously been applied to milk in relation to 41 

physiology and composition 8-12. There have also been investigations of mastitis using Gas Chromatography-Mass 42 

Spectrometry (GC-MS) and NMR spectroscopy based metabolomics approaches. Hettinga et al., employed two 43 

different GC-MS approaches for quantification of volatile metabolites in milk during clinical mastitis caused by 44 

one of the five principal causative organisms, and demonstrated the specificity of distinct volatile metabolite 45 

profiles in milk for intramammary infections 13-16. Using a NMR spectroscopy approach, Sundekilde et al., 46 

identified differentially expressed metabolites in skimmed milk that differed between samples with low or high 47 

somatic cell count (SCC) 17. They reported increased amounts of lactate, butyrate, isoleucine, acetate and β-48 

hydroxybutyrate, and decreased amounts of hippurate and fumarate in milk samples with high SCC.  49 

Curiously, there has been no previous report of metabolomics profiling of milk during mastitis using a Liquid 50 

Chromatography Mass Spectrometry (LC-MS) approach. Compared with NMR spectroscopy or GC-MS, LC-MS has 51 

the potential to analyse a larger proportion of the metabolome due to its high sensitivity 7. Hence we used a LC-52 

MS method to quantify temporal changes in metabolite concentrations in milk during mastitis in an experimental 53 

model of the disease. The aim of this part of the overall investigation was to assess the variation in the 54 
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metabolome in bovine milk samples following progression of the experimental intramammary challenge with a 55 

host-adapted strain of Streptococcus uberis (FSL Z1–048) 1. S. uberis represents an important cause of mastitis in 56 

dairies in the UK and it has been shown to cause severe disease which is often difficult to control 18. The goal of 57 

the metabolomics analysis was to identify the metabolites that demonstrated either an increase or decrease in 58 

milk from infected udder quarters over a time course from pre-infection to resolution. This would provide a 59 

better understanding of metabolic pathways altered in mastitis, and along with the results of the immunological, 60 

acute phase, peptidomic and proteomic investigations provide a novel insight into the bacterial IMI and the host 61 

response. 62 

2. Materials and methods  63 

Cows (n = 6) were challenged with Streptococcus uberis strain FSL Z1-048 in a single bacteriologically negative 64 

udder quarter per cow as previously described 1.  Aliquots of milk samples collected from six selected time points 65 

(0, 36, 42, 57, 81 & 312 hours post-challenge) of the challenge study were used to generate untargeted 66 

metabolomics data, as was done in the associated peptidomic 2 and proteomic studies 3. The time-points were 67 

selected on the basis of the changes in the clinical manifestations, bacterial load and somatic cell counts over the 68 

course of the experimental challenge study 1. Body temperature of the cows and bacterial concentrations in milk 69 

from challenged quarters peaked from 24 hours (bacteria) or 30 hours (temperature) post-challenge up to 57 70 

hours post-challenge and had decreased to a plateau by 81 hours post-challenge, whereby body temperature had 71 

returned to normal and bacterial concentrations in culture positive quarters stayed constant until the end of the 72 

study at 312 hours post-challenge. All animal experiments were conducted at the Moredun Research Institute 73 

(Penicuik,UK) with approval of the Institute’s Experiments and Ethical Review Committee in accordance with the 74 

Animals (Scientific Procedures) Act 19861. 75 

2.1 Untargeted metabolomic data generation 76 

The aliquots of milk samples were stored at -20 °C at the Moredun Research Institute, Edinburgh and were 77 

transported frozen to Garscube campus of the University of Glasgow for metabolomic data generation and 78 

analysis. The samples were thawed at 4 °C and metabolites were extracted using chloroform and methanol (1:3 79 

v/v) mixture 19, 20.  400 µl of 1:3 (v/v) chloroform and methanol mixture was added to 100 µl of skimmed milk 80 

sample, and vigorously extracted on a vortex mixer for two hours at 4 °C. The mixture was centrifuged at 13,000 g 81 

for 5 minutes at 4 °C, and then the supernatant was separated and stored at -80 °C until used for LC-MS analysis. 82 

A Dionex UltiMate 3000 RSLCnano (liquid chromatography) system coupled to a Thermo Scientific Exactive 83 

Orbitrap mass spectrometer was used for LC-MS analysis. Glass vials containing 200 µl of the extracted analyte 84 

from the samples were loaded on the RSLC Autosampler connected to a 4.6 x 150 mm SeQuant ZIC-pHILIC (Merck 85 
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KGaA, 6427 Darmstadt, Germany) column. 10 μL of the analyte was injected in every run. Separation of the 86 

analyte was achieved by a mobile phase composed of a two solvent system consisting of solvent A: 20 mM 87 

ammonium acetate (pH 9) and solvent B: acetonitrile (ACN) with a flow rate of 300 μl/min. Chromatographic 88 

conditions for LC-MS included a gradient of 80 % ACN to 5 % ACN (solvent B) in 15 minutes, then held at 5 % for 3 89 

minutes, returned to 80 % in 1 minute, equilibrated for 6 minutes. The total run time was 25 minutes per sample. 90 

The MS acquisition was performed in full scan acquisition mode on both negative and positive polarities using ESI 91 

ionization mode. The MS was set at 50,000 resolutions with the scan range from 70-1,400 amu. The LC-MS 92 

analysis was performed at Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of 93 

Glasgow, UK. 94 

2.2 Untargeted metabolomic data analysis 95 

The raw LC-MS data obtained from each sample were visually examined by generating a number of plots using 96 

MZmine (version 2.10) software 21. To examine sample loading and peak resolution, total ion current (TIC) 97 

chromatograms and base peak chromatograms were generated from data obtained from each sample. The raw 98 

LC-MS data from the quality control passed samples were imported into the IDEOM 22 software package (version 99 

18).  Raw data was converted from the Thermo Scientific ‘RAW’ file format to an open-source ‘mzXML’ file 100 

format, centroided and split into positive and negative polarities using MSConvert tool 23. Chromatographic peak 101 

detection was performed using XCMS 24 using the centWave algorithm and saved in the peakML format, peak 102 

matching and annotation of related peaks were achieved using mzMatch.R 25. Artefacts and noise were filtered 103 

out using IDEOM software using the default parameters. Metabolite identification was performed in IDEOM 104 

software package by matching retention times and accurate masses of detected peaks with either the authentic 105 

standards (MSI confidence level 1) or the predicted retention times and masses from a previously validated model 106 

(MSI confidence level 2) 26-28. For improved annotation of metabolites, a mixture of 148 authentic standards were 107 

run in the LC-MS system to predict retention times using the IDEOM software. Where there are multiple 108 

metabolite names associated with a given mass and retention time, the metabolite names were selected 109 

automatically in the IDEOM software as the best match to the database entries of the given mass and formula, 110 

and then reviewed manually. In the absence of additional information, these metabolite names must be 111 

considered as putatively-annotated hits. Using the Partek® Genomics Suite® (version 6.6) 29 software, principal 112 

components analysis (PCA) and hierarchical clustering analysis (Euclidian distance and average linkage) were 113 

performed on the combined peak intensities from positive and negative polarities that were processed using 114 

IDEOM. To identify differentially expressed metabolites, a T-test with time as factor, comparing each time-point 115 

with time-point 0-hour post-challenge was performed using the IDEOM software. In addition, one-way analysis of 116 

variance (ANOVA) test with time as factor was performed on the putatively identified metabolites data, and using 117 
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a threshold of an absolute fold-change more than 2 and FDR-adjusted p-value less than 0.05, differentially 118 

expressed metabolites lists were generated by comparing each time-point with 0-hour time-point. Further, the 119 

list of the identified metabolites were exported from IDEOM to Pathos 30 and iPath 31 web-based metabolomics 120 

tools to identify the represented metabolic pathways and to visualize the metabolic pathways in which the 121 

metabolites are generally present. 122 

3. Results 123 

3.1 Quantification of metabolites 124 

Out of the 36 samples (milk from six cows at six selected time points), only 32 samples passed the initial quality 125 

control and were subsequently included in the downstream analysis. The base peak chromatograms showed 126 

overall consistency between the replicates in each time-point (supplementary figure S1). A total of 3,828 different 127 

peaks were detected over all 32 samples analysed, 1,027 peaks were in the positive ionisation mode while 2,801 128 

were in the negative ionisation mode. Out of the peaks detected, after resolving adducts and charged states, 129 

1,043 features (potential metabolites) were deduced, and from that 740 metabolites were identified by IDEOM 130 

(supplementary table S1), and then they were reviewed to remove multiple identities, thus reducing the number 131 

to 690 putatively identified metabolites (supplementary table S2). Overall, the mass of metabolites identified 132 

ranged between 69 and 888 Da. Exploratory data analysis such as hierarchical clustering analysis and principal 133 

components analysis were performed on the combined chromatographic peak intensities from positive and 134 

negative polarities after removing the noisy peaks. 135 

3.2 Hierarchical clustering analysis 136 

To explore the dataset, a hierarchical clustering analysis (HCA) using Euclidean distance and average linkage 137 

agglomeration method was performed on the peak intensity data from the 3,828 chromatographic peaks 138 

combined from both negative and positive polarities. The hierarchical clustering analysis (Figure 1) shows three 139 

top-level clusters in the column dendrogram. Cluster A on the top right hand side includes milk samples from 36-140 

hour (shown in grey) and 42-hour (shown in violet) post-challenge, corresponding to the early stages of the 141 

infection and inflammation, which is characterized by bacterial growth and cytokine release 1. It also has milk 142 

samples from 57-hour (shown in orange) and 81-hour (shown in red) post-challenge of cow 5, which was 143 

previously identified as a late responder based on clinical manifestations and cytokine profiling 1, and 57-hour 144 

post-challenge samples from cows 1 and 4. Cluster B, which is in the middle, includes samples exclusively from 57-145 

hour and 81-hour post-challenge, and corresponds to the decreasing bacterial load 1. Cluster C is the farthest from 146 

right, and includes all the samples from 0-hour (shown in green) and 312-hour (shown in blue) post-challenge, 147 
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which reflects the similarity between the pre-infection and the late resolution (mostly cleared of infection) stages. 148 

It also includes 36-hour samples from cow 5 and 1, and 42-hour post-challenge sample from cow 5. 149 

3.3 Principal component analysis 150 

 To further explore the dataset, a principal component analysis (PCA) was performed on the combined peak 151 

intensities (3,828 chromatographic peaks) data. The PCA plot (Figure 2) shows the plotting of samples using 152 

principal component 1 (PC1) and principal component 2 (PC2). The clustering pattern of samples in the PCA is 153 

similar to the HCA, and reflects the time course. Overall, the clusters are separated on the PC1, which has 154 

captured 40.4 % of variance in the dataset. The samples at time points 0-hour post-challenge and 312-hour post-155 

challenge formed distinctive clusters, and are shown in Figure 2 indicated by green and blue respectively, are 156 

closer compared to the samples from other time points. The clusters formed by time-points 0-hour and 81-hour 157 

post-challenge samples has the greatest distance on PC1, and the clusters formed by samples from other time-158 

points are located between these two extremes. As in the HCA, samples from cow 5 are seen as outliers showing 159 

slow response evidenced by the clinical, bacteriological and biochemical parameters 1. 160 

3.4 Differential expression analysis 161 

To identify the metabolites that were differentially expressed over the time course, particularly between pre- and 162 

post-challenge, a one-way ANOVA test was performed with time as factor. The lists of differentially expressed 163 

metabolites (supplementary table S2) were created for each comparison using a threshold of an absolute fold-164 

change more than 2 and FDR-adjusted p-value less than 0.05. Compared with the pre-challenge time-point, there 165 

were 222 (156 up & 66 down), 310 (193 up & 117 down), 476 (277 up & 199 down), 490 (303 up & 187 down) and 166 

133 (104 up & 29 down) putative metabolites differentially expressed respectively at 36 hours, 42 hours, 57 167 

hours, 81 hours and 312 hours post-challenge. 168 

3.5 Perturbations in the metabolic pathways 169 

Most of the annotated metabolites were mapped to KEGG reference pathways 32, and the results showed 170 

alterations to a number of mapped pathways including amino acid metabolism such as alanine, aspartate and 171 

glutamate metabolism, nucleotide metabolism such as purine and pyrimidine metabolism, carbohydrate 172 

metabolism such as ascorbate and aldarate metabolism, lipid metabolism such as Eicosanoids pathway. There 173 

were significant changes in the di-, tri- and tetra-peptides concentrations in milk over the time course of the 174 

experimental challenge. Heat map (Figure 3) plotting the fold-changes of metabolite concentrations mapped to 175 

amino acid metabolism, carbohydrate metabolism, lipid metabolism, nucleotide metabolism and di-, tri- and 176 
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tetra-peptides shows increasing trend in lipid metabolism and di-, tri- and tetra-peptides up to 81 hours post-177 

challenge. Conversely, the majority of the metabolites mapped to carbohydrate metabolism and nucleotide 178 

metabolism show a decreasing trend in concentration up to 81 hours post-challenge. The observations were 179 

further corroborated by the results from Pathos web-based tool that showed the intensity of changes in KEGG 180 

metabolic pathways at each post-challenge time-point compared to the pre-challenge metabolite levels 181 

(supplementary tables S3 – S7). In addition, the mapping of metabolites on the KEGG metabolic, regulatory and 182 

biosynthesis pathways were visually examined using iPath web-based tool (supplementary figures S2-S4). 183 

4. Discussion 184 

This study was an untargeted global metabolomics investigation of skimmed milk, carried out to characterise the 185 

metabolite profile of skimmed milk and its changes with time during the course of an intramammary challenge 186 

with a host-adapted strain of S. uberis, an important environmental pathogen of mastitis. Of particular 187 

importance is the ability to relate the findings of this metabolomic investigation with the pathophysiological, 188 

immunological, proteomic and peptidomic changes described in the previous and accompanying reports 1. All 189 

data obtained from post infection time-points were statistically compared with values at 0 hours. It is expected 190 

that metabolomic investigation of milk would yield a high number of metabolites 17 and in this analysis over 3,000 191 

chromatographic peaks were detected, of which 690 were putatively annotated with a definitive metabolite. The 192 

number of compounds identified in this study is by far the largest in any previous metabolomics study using 193 

bovine milk 8, 15, 33. This may be due to the methodology used, LC-MS, which is known to be of higher sensitivity 194 

than other metabolomics techniques such as H-NMR spectroscopy, although having its own disadvantages such as 195 

lower reproducibility and difficulty in identifying spectral features 7. While many methods exist for extraction of 196 

metabolites, we used chloroform and methanol (1:3 v/v) mixture, based on its complementarity with the LC-MS 197 

system in our in-house experience 28. This method is based on the original Folch method 34 and is known to be 198 

effective for the extraction of a broad range of metabolites including lipids 19, 20, 35. 199 

A notable finding of this study is the change in metabolite composition of bovine milk over the course of mastitis 200 

caused by the host-adapted strain of Streptococcus uberis. The time-points used in the omics analyses include a 201 

pre-infection (0 hours post-challenge), peak bacterial load and peak body temperature of cows (36 hours post-202 

challenge), rapidly declining bacterial load and body temperature of cows (42, 57 and 81 hours post-challenge) 203 

and spontaneous clearing of infection with one cow being an exception (312 hours post-challenge). The number 204 

of differentially expressed metabolites increased over the course of infection, and peaked at 81 hours post-205 

challenge. The number of modulated metabolites, and the amplitude of change, peaked at 81 hours post-206 

challenge. These patterns were similar to those found by peptidomic analysis and in the proteomic analysis, 207 
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although in the latter a number of proteins peaked at 57 hours post challenge. However, principal component 208 

analysis and hierarchical clustering analysis of both the metabolomic and proteomics datasets showed 209 

comparable patterns in that the samples from 57 hours and 81 hours are divergent from 0, 36 and 42 hours post-210 

challenge. However, these patterns are contradictory to the clinical and bacteriological profiles where the largest 211 

change occurs at 36 hours post-challenge. 212 

We observed increasing concentrations of bile acids such as taurochenodeoxycholic acid (C26H45NO6S), taurocholic 213 

acid (C26H45NO7S), glycocholate (C26H43NO6), glycodeoxycholate (C26H43NO5) and cholate (C24H40O5) over the time 214 

course until 81 hours post-challenge (Figure 4). The bile acids are produced by liver and are thought have 215 

antimicrobial activity through their detergent property in the intestinal tract 36, 37. Their immunomodulatory roles 216 

are thought to be mediated through the farnesoid X receptor (FXR) pathway 38, which was one of the pathways 217 

enriched in the proteomics analysis 3. As there is evidence in both metabolomic and proteomics analysis, the 218 

involvement of the FXR pathway in bovine mastitis could be studied in detail. In addition to FXR, 3 other nuclear 219 

receptors involved in immunomodulatory activities (pregnane X receptor (PXR), constitutive androstane receptor 220 

(CAR) and vitamin D receptor (VDR)) are known to be activated by specific bile acids 39, 40. Increased intracellular 221 

bile acids concentration results in the transcriptional activation of these nuclear receptors. Activated FXR ligands 222 

exert anti-inflammatory activity through their interaction with other transcription factors including activator 223 

protein 1 and nuclear factor-κB (NF-κB) 41. Similarly, PXR exhibits anti-inflammatory role by inhibiting the 224 

expression of NF-κB target genes, and the production of interleukins and chemokines 40, 42. Likewise, vitamin D3 225 

plays an inhibitory role in the production of pro-inflammatory cytokines 40, 43. Furthermore, immunomodulatory 226 

role of bile acids can be linked to TGR5, a bile acid activated G-protein-coupled receptor which increases the 227 

production of cAMP in innate immune cells leading to downregulation of inflammatory cytokines such as tumour 228 

necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and interleukin-8 (IL-8) 44, 45. 229 

Interestingly, profiles of pro-inflammatory cytokines in milk (Figure 8, Tassi et al. 1) over the time course in our 230 

study were comparable with the concentrations of bile acids in milk quantified in this analysis. Peak 231 

concentrations of TNF-α, IL-1β, IL-6 and IL-8 in milk were found between 36 and 48 hours post-challenge 1, and as 232 

the concentrations of bile acids increased, the concentration of pro-inflammatory cytokines decreased. 233 

Furthermore, peroxisome proliferator-activated receptors (PPAR) signalling, retinoid X receptor (RXR) activation 234 

and liver X receptor (LXR) activation signalling pathways, which are known to be associated with bile acids 235 

metabolism and signalling 39 were found to be enriched in the proteomic analysis 3.        236 

We found hippurate (C9H9NO3) concentration decreasing over time, with its lowest level reaching at 57 hours 237 

post-challenge. Similarly, lactose (C12H22O11) concentration decreased over time 46, 47, and could not be detected at 238 

81 hours post-challenge. The decreasing trend of lactose concentration in milk is supported by the proteomics 239 
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analysis in which alpha-lactalbumin, a regulatory subunit of lactose synthase involved in the lactose synthesis, 240 

was down-regulated over the time course 3. A previous study showed decreased concentration of hippurate and 241 

lactose in milk associated with the elevated SCC 17, and suggested that the decreased concentration of lactose 242 

could be to maintain osmotic pressure of milk to compensate the flow of blood constituents into milk. We also 243 

observed increased concentration of lactate (C3H6O3) over the time course with highest concentration at 42 hours 244 

post-challenge. Lactate is an end product of bacterial metabolism 15, 17 and correlates with the high bacterial load 245 

in milk, but could also be due to an increase in anaerobic metabolism in the host. Using a NMR spectroscopy 246 

based metabolomics approach, Sundekilde et al., reported increased concentration of isoleucine in milk with the 247 

elevated SCC 17. In our study we found up-regulation of leucine (C6H13NO2) over the time course, with its highest 248 

concentration at 81 hours post-challenge. Identification of isomers such as leucine and isoleucine is a limitation in 249 

the LC-MS based methodology compared with the NMR spectroscopy, and this might well be isoleucine instead of 250 

leucine in our case. 251 

Mapping the metabolites to KEGG pathways, we identified perturbations in amino acid metabolism, carbohydrate 252 

metabolism, lipid metabolism, nucleotide metabolism and metabolism of di-, tri- and tetra-peptides. This is 253 

further supported by our peptidomic study 2. The increasing trend in the metabolism of di-, tri- and tetra-peptides 254 

over the time course post-challenge (Figure 3) could be attributed to the bacterial lysis of proteins. Most of these 255 

compounds were not detected at 0 hours, but their concentration increased at 36, 42, 57 and 81 hours post-256 

challenge, and then decreased (or were not detected) at 312 hours post-challenge, by which time the infection 257 

was resolved. It is possible that the increase in small molecular weight peptides is due to the activities of plasma 258 

proteases such as plasmin, leukocyte associated proteases and cathepsins, as well as bacterial proteases 48, 49. 259 

There is a decreasing trend in carbohydrate metabolism over the time course, and this could be due to the 260 

utilization of carbohydrates by bacteria or their production may be inhibited as part of host response to deprive 261 

the bacteria of readily available energy substrates. We also observed down-regulation of lipid metabolism over 262 

the time course with the increase of inflammation. The sample extraction method and the chromatographic 263 

separation might significantly affect the discovery of the lipid compounds, and a specialised lipidomic method 264 

should be used to study the lipid compounds. With this limitation, we found that most lipids were eluted in the 265 

first 5 minutes of the LC-MS run. There was a mixed trend in the Eicosanoids pathway, which is an important 266 

metabolic pathway for arachidonic acid metabolism. 18-acetoxy-PGF2alpha-11-acetate (C24H38O8), a prostaglandin 267 

in the Eicosanoids pathway was not detected at 0 hours and 312 hours post-challenge, but present in the rest of 268 

the time-points, while 2,3-Dinor-8-iso-PGF2alpha (C18H30O5) another compound in the Eicosanoids pathway and a 269 

product of prostaglandin metabolism showed increasing trend, peaking at 81 hours post-challenge. However, 270 

PGF2-alpha Methyl Ether (C21H38O4) was significantly down-regulated over the course with its lowest level at 81 271 

hours post-challenge (fold-change = -4.3375, FDR-adjusted p-value = 0.0421). Eicosanoids, particularly PGF2-alpha 272 
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is an important mediator in the acute inflammatory process, and prostaglandins are known to be up-regulated in 273 

milk during mastitis 50.   274 

The integrated omic analyses that have been undertaken on the milk samples taken over 312 hours following IMI 275 

with S. uberis and linking to the clinical and pathophysiological analyses on the same samples provides a unique 276 

view on the multifaceted host responses to the bacterial infection. This system-based approach has been most 277 

revealing in providing an insight into the integration of the responses mounted by the mammary gland in the face 278 

of bacterial invasion.  A key finding has been that while the bacterial count reaches a peak within 36-42 hours 279 

post challenge, many of the host responses do not reach a peak until a 57 or 81 hours post challenge (Figure 5). 280 

As this pattern is present in all three omics analyses (peptidomics, proteomics and metabolomics), it provides 281 

opportunities for further research.  The results here would have benefited from further time point analysis in the 282 

resolution phase of the infection between 81 and 312 hours post-challenge.  However, it is clear that by using 283 

multiple omics technologies, the connectivity of bacterial invasion, cytokine mediation leading to protein, peptide 284 

and metabolite modifications during mastitis can be characterised.  Among omic technologies there are a variety 285 

of approaches to be taken. In proteomics, 2 dimension electrophoresis, difference gel electrophoresis as well as 286 

the CE-MS and LC-MS/MS approach used in this series of experiments 2, 3 while alternatives such as nuclear 287 

magnetic resonance could also be used for metabolomics. The selected approaches were used as being the most 288 

suitable for this sample set in order to demonstrate the value of integrated omics in a systems based investigation 289 

of bovine mastitis.  This polyomic approach should be applied to assessment of comparative responses to other 290 

mastitis causing pathogens to determine how the responses are altered due to bacterial species with the 291 

potential of a differential biomarker panel of protein, peptide and metabolite being developed.  The data 292 

generated by the LC-MS metabolomics analysis is available in the electronic supplementary information (Table S1) 293 

and others working in the field may identify further responses to mastitis in pathways not highlighted here. 294 

Modification to the multi-analytes covered by these investigations in response to mastitis therapy, whether by 295 

pharmacological or biologic agent or by vaccination would be a further potential application of the integrated 296 

approach to the study of mastitomics.  297 

5. Conclusions 298 

The present study used an LC-MS-based untargeted metabolomic approach to profile the changes in metabolite 299 

concentration in milk during the course of the experimental S. uberis mastitis infection. We identified changes in 300 

several hundred metabolites over the course of the infection. Significantly, we found changes in the 301 

concentration of bile acids in milk and compared them with the concentration of cytokines suggesting anti-302 

inflammatory role of the bile acid receptor pathway. Involvement of bile acids in the resolution of mastitis 303 
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through activation of nuclear receptors could potentially a novel discovery in this study. We compared the 304 

observations in the current study with the proteomics and peptidomics studies associated with the same sample 305 

set. This system-wide analysis of peptides, proteins and other metabolites in milk and the changes in the clinical 306 

manifestations and bacterial load provided a unique view of the pathological processes in bovine mastitis. 307 

Particularly, we found links to enrichment of FXR pathway in the proteomics data and the increased 308 

concentration of bile acids in the metabolomic data. Similarly, the down-regulation of lactose over the course of 309 

mastitis could be associated with the down-regulation of alpha-lactalbumin. We have also demonstrated high 310 

correlation in the dynamics of peptides, proteins and metabolites over the course of the experimental infection. 311 
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Legends to Figures 386 

Figure 1: Hierarchical clustering analysis of the detected peaks showing column dendrogram. Hierarchical 387 

clustering analysis was performed on the 3,828 detected peaks intensities using Euclidean distance and average 388 

linkage agglomeration method. The column dendrogram show the clustering of the milk samples. The column 389 

dendrogram show three top-level clusters, and identified by letters (A = early to peak infection based on bacterial 390 

numbers; B = post peak infection; C = pre-challenge and resolution stage), time points by colours (see inset), and 391 

individual cows by numbers. The scale bar shows the intensities in log2 scale. Please note that there are only 32 392 

samples as data from 4 cows were not included after initial quality analysis at raw data level. 393 

Figure 2: Principal component analysis of the metabolome after intramammary challenge with Streptococcus 394 

uberis. The PCA was based on the intensities from 3,828 detected peaks and the plot was generated using the 395 

Partek Genomic suite. The data points refer to milk samples obtained from 6 cows at 6 time points post challenge 396 

(PC). Cows are identified by number and time points by colour, with hours PC shown in the legend. Please note 397 

that there are only 32 samples as data from 4 cows were not included after initial quality analysis at raw data 398 

level.   399 

Figure 3: Heat map showing the fold-changes of putative metabolites mapped to KEGG metabolic pathways. 400 

Fold-change of putative metabolites in each contrast (each time-point compared with 0-hour post-challenge) was 401 

computed from the one-way ANOVA test. The metabolites were mapped to KEGG metabolic pathways using 402 

IDEOM software, and then the heatmap was plotted using the Partek Genomic suite. 403 

Figure 4: Changes in the concentration of bile acids and lactate in milk after intramammary challenge with 404 

Streptococcus uberis. Fold-changes for each metabolite at 36, 42, 57, 81 and 312 hours post-challenge compared 405 

with 0 hours post-challenge were analysed using a one-way ANOVA. The time course profile of fold-changes 406 

shows the increasing concentration of bile acids and lactate over the course of the infection, reaching highest 407 

levels at 81 hours post-challenge, and then dropping down to pre-infection levels at 312 hours. This figure shows 408 

fold-change in log10 scale. 409 

Figure 5. The relative responses of analytes following experimental induced S.uberis mastitis combining 410 

metabolomic results with data from Tassi et al., 1 Thomas et al., 2 and Mudaliar et al., 3. The shading represents 411 

strength of the response relative to the peak response. Responses were increases compared to day 0 levels except 412 

for casein levels (indicated by *), which decreased after challenge.   413 

cfu/ml = bacteria count in colony forming units/ml 1 
414 

SCC = somatic cell count 1 415 

IL = interleukin 1 416 

TNF = tumor necrosis factor 1 417 

LF = lactoferrin 2 
418 
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Hp (ELISA) = haptoglobin as detected by enzyme linked immunosorbent assay  2 419 

mSAA3 = milk derived serum amyloid A 2 420 

CRP = C-reactive protein 2 
421 

IMI77 = peptidomic profile based on 77 peptides 2 422 

Hp (LC-MS/MS) = haptoglobin as detected by liquid chromatography and tandem mass spectrometry 3 423 

PepGly = Peptidoglycan recognition protein 1 3 424 

Cath5 = Cathelicidin-5 3 425 

Annex1 = Annexin A1 3 
426 

PhenylPro = Phenylpropanoate 427 
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