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Metabolic networks, which are mathematical representations of organismal metabolism, are reconstructed to provide 

computational platforms to guide metabolic engineering experiments and explore fundamental questions on metabolism. 

Systems level analyses, such as interrogation of phylogenetic relationships within the network, can provide further 

guidance on modification of metabolic circuitries. Chlamydomonas reinhardtii, a biofuel relevant green alga that has 

retained key genes with plant, animal, and protist affinities, serves as an ideal model organism to investigate the interplay 

between gene function and phylogenetic affinities at multiple organizational levels. Here, using detailed topological and 

functional analyses, coupled with trancriptomics studies on a metabolic network that we have reconstructed for C. 

reinhardtii, we show that network connectivity has a significant concordance with the co-conservation of genes; however, 

a distinction between topological and functional relationships is observable within the network. Dynamic and static modes 

of co-conservation were defined and observed in a subset of gene-pairs across the network topologically. In contrast, 

genes with predicted synthetic interactions, or genes involved in coupled reactions, show significant enrichment for both 

shorter and longer phylogenetic distances. Based on our results, we propose that the metabolic network of C. reinhardtii is 

assembled with an architecture to minimize phylogenetic profile distances topologically, while it includes an expansion of 

such distances for functionally interacting genes. This arrangement may increase the robustness of C. reinhardtii’s network 

in dealing with varied environmental challenges that the species may face. The defined evolutionary constraints within the 

network, which identify important pairings of genes in metabolism, may offer guidance in synthetic biology approaches to 

optimize production of desirable metabolites. 

Introduction 

Cells carry out and regulate their metabolism through an 

extended network of biochemical reactions. Ecological niches, 

environmental conditions, and the genetic make-up of 

organisms impact the organization of metabolic networks 
1-5

. 

While morphological complexity of life has increased during 

evolution, shared metabolic pathways as well as conserved 

catalysts are readily observable within the different lineages 
6-

8
. Random events such as gene duplication and recombination 

may contribute to the emergence of new enzymes within 

pathways 
6, 9

 and the expansion of metabolic pathways into 

functional modules 
9, 10

. However, the conservation, 

topological positions, and functional roles of newly-emerged 

enzymes across metabolic networks are not determined by 

chance alone 
6, 11-13

. For instance, in prokaryotes, a set of non-

random, essential, and ancient proteins seem to carry out core 

metabolic activities 
6, 14

. The expansion of metabolic pathways 

takes place by addition of homologous enzymes that 

topologically act in the vicinity of the ancestral ones 
9, 11

. 

Furthermore, the essential cores of metabolic networks 
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contain most of the structural diversities of the associated 

genes with respect to fold representation 
6
. The expanded 

networks are found to display scale-free network 

characteristics in all three domains of life 
12

, where highly 

connected enzymes evolve more slowly 
15-17

. Other studies 

have shown that, in yeast, the phylogenetic distributions of 

conditionally essential genes are likely to be more restricted 
18

. 

These observations point to the multiplicity of selective 

pressures and constraints on the evolution of metabolic 

enzymes. 

 

How might the sequence spaces of enzymes be explored by 

evolution? The idea of adaptive landscapes in evolution was 

first introduced in the 1930’s to conceptualize the evolvability 

potential of organisms 
19

. This concept was further developed 

into coevolution and the dependency of fitness landscapes was 

mathematically modeled, e.g., with the NK model, describing 

changes in the ruggedness of the landscape with respect to 

dependency on function of other genes 
20-25

. In broad terms, 

the linkage between phylogenetic affiliations and their 

functional groupings 
26, 27

 can be viewed as a consequence of 

linked fitness landscapes which may be detectable from co-

conservation of genes.  

 

In recent years, reconstruction of genome-scale metabolic 

networks has elucidated fundamental aspects of metabolic 

network formation and evolution 
1, 5, 6

. Extensive work has 

been done in studying the architecture of metabolic networks, 

linking topology, evolution and function of metabolic enzymes. 

Von Mering et al.
28

 have shown that a large portion of 

metabolic enzymes cluster together in a modular fashion 

within metabolic networks. Such findings have been further 

corroborated by Zhao et al.
29

 where they identified a core-

periphery modular organization of the network within which 

the peripheral modules show a more cohesive coevolution as 

compared to the core pathways. Kanehisa et al. 
30

 have further 

ascertained the latter finding where they suggested that the 

core metabolic pathways might have evolved in an 

individualized fashion whereas the peripheral or extensions 

were driven by modular sets of enzymes and reactions.  

 

The evolutionary dynamics of metabolic genes are not 

characterized in C. reinhardtii and still not fully resolved in any 

eukaryote, particularly with respect to relationship to distant 

lineages. We addressed this gap here by extending the 

information content of a genome-scale metabolic network that 

we recently reconstructed 
31

. We defined evolutionary 

affinities of the network with 13 major eukaryotic lineages 

representing most if not all major eukaryotic lineages, some of 

which reside very distant to C. reinhardtii. We looked at the 

evolutionary dynamics of gene pairs by distinguishing highly 

conserved pairs with those that are conserved in a subset of 

lineages. This information was then integrated with topological 

and metabolic analyses in conjunction with gene expression 

data to determine if there are concordances between 

evolutionary affinities, expression, and functional constraints 

within the C. reinhardtii network. Further, we carried out 

interolog analysis to assess rewiring of the metabolic networks 

in the yeast and Arabidopsis. 

Materials and Methods  

Evolutionary affinity assignments 

Evolutionary conservation was assigned by comparing the 

translated sequence of C. reinhardtii metabolic ORFs with the 

annotated whole proteomes of the available fully sequenced 

genomes from 13 lineages representing major eukaryotic 

lineages (Tables S1, S2 and Method S1).  

 

Network transformation 

To transform the investigated metabolic network into a 

protein-centric one, gene-reaction-metabolite association 

information of the network was used to generate the 

corresponding protein-centric network. Two enzymes were 

connected with an edge either if they are co-enzymes or if 

they have substrate-product relationship (Fig. S1). For 

instance, an edge was extended from enzyme E1 to enzyme E2 

if a product of a reaction catalyzed by E1 is a substrate of a 

reaction catalyzed by E2. The following metabolites were 

excluded in this construction as currency metabolites:  H
+
, H2O, 

ATP, Pi, ADP, CoA, NAD, NADH, NADP, NADPH, PPi, O2, AMP, 

CO2 and NH4.    

 

Co-conservation analyses  

To evaluate the evolutionary dynamics between gene 

products, we first constructed a profile for each gene in the 

network. The profile for each gene is a vector with a row and 

13 values (one for each of the 13 eukaryotic lineages). A “1” in 

the column indicates conservation, while “0” indicates non-

conservation. Thus, the profile is a representation of gene 

conservation/non-conservation status in each of the 13 

eukaryotic lineages (Table S3). We calculated mutual 

information (MI), Euclidean distance (ED), and profile similarity 

definition (PD) for each gene profile pairs (Method S2). We 

then randomized profiles and evaluated MI and PD for 1000 

random trials and identified statistically significant MI and PD 

values. 

 

Functional (GO enrichment) analyses of dynamic and static 

subnetworks 

Over-representation of GO terms in gene sets was determined 

by using the Biological Networks Gene Ontology tool (BiNGO) 

(http://ww.psb.ugent.be/cbd/papers/BiNGO/)
32

. BiNGO 

retrieves the relevant GO annotation then tests for significance 

using the Hypergeometric test. This tool was used to identify 

functional enrichment of genes identified through various 

performed analyses. Enrichment score represents the degree 

of enrichment (P-values) calculated from hypergeometric 

distribution, which determines the significance (P < 0.05) of 

overrepresented term enrichment within a list of genes 

present in iRC1080, the C. reinhardtii metabolic network used 
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in this study. Correction for multiple testing was not 

performed. 

 

Synthetic interaction analysis 

The maximum in silico growth rate for all possible double-gene 

deletion combinations in the network (more than 500,000 pairs) 

was predicted using COBRA Toolbox v.2 under two different 

conditions of dark and autotrophic light growth. The COBRA toolbox 

(COBRA = Constraint-Based Reconstruction and Analysis) is a 

comprehensive collection of tools developed for in silico model-

based analysis and reconstruction of metabolic networks 
33, 34

 . To 

simulate growth under dark with acetate (or “DA”), light flux was 

set to zero and acetate uptake of up to 10 mmol/gDW.h was 

permitted to provide a source of energy and carbon. The wild-type 

maximum growth rate was 0.7 mmol/g-DW/hr. Simulation of 

growth under light with no acetate (or “LNA”) was achieved by 

setting acetate intake flux to zero and light flux to 646 

mmol/gDW.h. These parameters resulted in biomass productivity of 

0.3 mmol/g-DW/hr for wild type autotrophic metabolism. The 

values obtained for each double-gene deletion was divided by the 

wild-type growth rate at both conditions to get the growth rate 

ratio for each in silico deletion mutant. We only considered the 

deletion pairs in which the decrease in the metabolic output was 

greater in the double deletion compared to sum of the respective 

single deletions. We classified double deletions that result in zero 

growth as synthetic lethal and those that reduce the metabolic 

output as “synthetic sick”. We note that the number of synthetic 

sick interactions under DA condition was more than those under 

LNA in some categories including; (100-80)%, (40-20)% and (20-

0)%). We did not look at positive synthetic interactions. We note 

that although there may be limitations in the predictive capabilities 

of this type of modelling
35

, the generated predictions have been 

validated experimentally in many different cases
36

. 

 

Statistical analyses of double-gene deletions  

To check the normality of the profile distance distribution 

within the synthetically interacting gene sets, we performed 

Kolmogorov-Smirnov (KS) tests to measure the maximum 

absolute difference between our data and standard normal 

distribution. The standard normal distribution was obtained 

from profile distances between all the 1,086 genes in the 

network (Method S3). Hypergeometric distribution is a 

measure of the probability that describes the number of 

successes in a sequence of n draws from a finite population 

without replacement.  In our analysis we performed 

hypergeometric tests on the profile distance data of the 

synthetic interactions genes. The following values were 

chosen: > 1, < 2, ≥ 2, > +3. The tests provide a statistical 

measure to examine if the synthetic interaction distances are 

enriched for larger than random network values or not 

(Method S4).  

 

 

Coupled reaction set analysis 

The 2,190 reactions of iRC1080 were classified randomly into 20 

sets of 100 reactions. iRC1080 is a re-constructed genome scale 

metabolic network model that accounts for 1080 genes, 2190 

reactions and 1086 unique metabolites. It includes 83 subsystems 

distributed across 10 cellular compartments
31

 . The solution space 

was constrained for growth under LNA or DA. The correlated sets of 

reactions (or co-sets) were obtained using an extension script to 

COBRA Toolbox. Genes associated with the co-sets were identified 

using findgenesfromReaction function in COBRA Toolbox. The 

profile distance of all possible gene pairs between correlated 

reactions in each co-set was calculated and presented; 

hypergeometric test to evaluate enrichment for short or long 

evolutionary profile distances was carried out as described in the 

Synthetic interaction section. The co-sets with only one pair of 

genes were not considered in this analysis. 

C. reinhardtii strain growth and RNA isolation  

C. reinhardtii (strain CC-503) was grown as descried before
37, 

38
. Briefly, at room temperature (22–25 °C) either in dark with 

acetate as carbon source in Tris-acetate-phosphate (TAP) 

medium, or under continuous white light (with a 

photosynthetic photon flux of 60 μmol m
-2

 s
-1

) without acetate 

in Tris-phosphate (TP) medium containing 100 mg l
-1

 

carbenicillin. C. reinhardtii cells were harvested at mid-log 

phase by centrifugation at 2,000 rpm (650 g) for 10 min. Total 

RNA was isolated from pelleted cells using TRIzol reagent 

(Invitrogen). The isolated RNA was treated with 0.08 U µl
-1 

RNase-free DNase I enzyme (Ambion) to remove any residual 

cellular DNA. The integrity and quality of the RNA was assessed 

by an Agilent 2100 Bioanalyzer (Agilent) using RNA Pico 6000 

kit according to the manufacturer’s instruction. RNA samples 

with RNA Integrity Number (RIN) values greater than 7.5 were 

used in subsequent transcriptome sequencing as described 

below.  

 

Transcriptome sequencing and gene expression analyses  

Transcriptome libraries were constructed using the Roche cDNA 

Rapid Library Protocol, reagents were obtained from 454 Life 

Sciences Corp., Roche (New York, NY). Briefly, polyadenylated 

fractions of isolated RNAs were enriched through two rounds of 

oligo dT selection and the obtained RNAs were fragmented through 

metal-catalyzed cleavage. The first and second strand cDNA 

syntheses were carried out according to the Roche recommended 

protocol. Briefly, polyadenylated fractions of isolated RNAs were 

enriched through two rounds of oligo dT selection and the obtained 

RNAs were fragmented through metal-catalyzed cleavage. The first 

and second strand cDNA syntheses were carried out according to 

the Roche recommended protocol. The obtained cDNAs were used 

as input material to Roche GS Rapid Library Preparation kit to 

generate libraries suitable for 454 FLX sequencing. The resulting 

libraries were purified and clonally amplified in emulsion PCR 

reactions in the presence of library binding beads according to the 

manufacturer’s instruction (454 Life Sciences Corp., Roche). After 
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amplification and disruption of emulsions, the beads carrying the 

amplified DNA library were recovered and enriched. The 

sequencing was performed on a Roche 454 Genome Sequencer 

Instrument using GS FLX Titanium Sequencing chemistry (XLR70) for 

200 flow cycles. Base calling and other primary data processing 

were done using the GS FLX v2.3 software. Two full runs were 

carried out for each growth condition, providing technical replicates 

for each condition. Each run produced between 1.11 to 1.35 million 

reads with average read lengths ranging from of 306 (± 112) to 392 

(± 126) bases. The obtained reads were mapped to a complete set 

of annotated ORFs encoding proteins with metabolic functions 

using gsMapper (v2.3) software tool
39

. This set of reference 

sequences consisted of approximately ~2,000 sequences derived 

from Augustus 5 annotation of JGI v4.0 assembly of the genome.  A 

minimum overlap length of 40 nt and minimum overlap identity of 

90% were used to align the reads. The total number of aligned 

reads to this reference set was used in RPKM calculations according 

to Mortazavi et al. 
40

. Differential gene expression was assessed 

using NOIseq (http://bioinfo.cipf.es/noiseq/doku.php?id=start) 

using default parameters of the software 
41

. 

The raw reads for each library were deposited in NCBI 

BioSample database and they are accessible through Sequence 

Read Archive (SRA) accession number SRP065253. 

Results 

Transformed metabolic network and evolutionary affinities of 

genes  

Metabolic network models describe functional and topological 

connectivity between metabolites, reactions, and their 

associated genes. We previously reported a genome-scale 

reconstruction of the C. reinhardtii metabolic network 
31

. The 

network provides a global map of C. reinhardtii metabolic 

circuitry, including full connectivity between metabolites, 

genes, and associated reactions. The reconstructed network, 

iRC1080, accounts for the function of over a thousand genes, 

as many unique metabolites, and twice as many reactions. The 

network spans 83 metabolic subsystems in 10 cellular 

compartments. iRC1080 is an experimentally validated model 

of C. reinhardtii’s metabolism capable of predicting genome-

wide metabolic fluxes. This network, as in all reconstructed 

functional metabolic networks, is a metabolite-centric network 

where nodes represent metabolites, and links (or edges) 

between the nodes are associated with reactions. Each 

reaction is typically associated with one or more gene 

products; multiple reactions may also be associated with a 

single gene or metabolite. A transformation of this network to 

a gene-centric network, where nodes correspond to gene 

products and edges represent metabolites (or links between 

enzyme complexes) was needed for our analyses 
42

. Following 

removal of currency metabolites, we used the gene-reaction-

metabolite associations described in the network to carry out 

this transformation (Fig. S1). The resulting network (Fig. S2) 

consists of 11,094 edges (connections) between 1,086 

metabolic gene products, with an average connectivity of ~21, 

and clustering coefficient of 0.57. The network has 14 

connected components; 1,040 of the 1,081 nodes reside in its 

largest component. We note that the average degree and 

clustering coefficient of the network is higher than a typical 

protein-protein interaction network, alluding to a high 

interconnectivity of metabolic genes and pathways in the 

network.  

 

We extended the information content of iRC1080 by defining 

the evolutionary affinities (i.e., sequence similarity) of genes in 

the C. reinhardtii network (Table S1) with protein-coding genes 

of major eukaryotic lineages. We interrogated over 250 

annotated genomes spanning 13 eukaryotic lineages (Table S2) 

with BLAST and clustered the obtained high scoring hits to 

assign the affinities (Fig. 1 and Table S3). The highest number 

of affinities is assigned to Viridiplantae (green plants) with 

Stramenopiles (or heterokonts, which include diatoms, golden, 

and brown algae) and Metazoa (animals) occupying the next 

two largest groups. Members of Diplomonadida, which do not 

possess true mitochondria, have the lowest number of 

affinities assigned. Interestingly, Choanoflagellida, a group of 

flagellates closely related to animals have a significantly lower 

number of assigned affinities compared to animals 
43

. We note 

that approximately 200 genes in the network remain 

unassigned to any eukaryotic lineage (other than C. reinhardtii 

or potentially to other green alga), as their affinities fall below 

our set threshold of P < 0.001. These genes are likely to have 

homology to cyanobacteria and other prokaryotes, while a 

subset may be Chlamydomonas-specific.    

 

Evolutionary concordances of gene pairs  

The obtained conservation information was used to define an 

evolutionary profile vector for each protein sequence in the 

network. Each vector carries a 0 or 1 for each of the 13 

lineages; therefore, the vector describes the evolutionary 

affinities of the gene (see Methods) in a format amenable to 

quantitative analyses. Phylogenetic correspondence has been 

used to identify and assign functions to genes and their 

pathways 
26, 27, 44

. Here, we defined and integrated 

phylogenetic information with independently derived 

functional gene assignments and network topology to 

empirically link network connectivity with evolutionary 

affinities. Entropy analyses with respect to evolutionary 

conservation of genes in the network was carried out by 

defining a mutual information index, MI 
45

, for all directly 

connected gene pairs in the network. We generated 1,000 

random networks by randomizing affinity profile vectors while 

maintaining the network properties intact then carried out MI 

analysis on the random profile networks. Based on the 

randomization results, a mutual information index value of ∼ 

0.3 or higher occurs at the probability of P < 0.001 (Fig. 1B). 

We used this MI value as our threshold for identifying co-

conserved pairs. We observed 908 pairs of genes in the 

network with MI values equal or higher than this threshold 

(Table S4). Four hundred and fifty five genes (nodes) constitute 

this group. These results show that co-conservation of a 
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significant number of genes (42%) in the network (i.e., 455 out 

of 1,081) is linked to their placements in the network. We 

consider these as dynamically co-conserved genes because 

they share a similar vector profile but may not be conserved 

across all 13 interrogated lineages. 

 

Universally conserved gene pairs have low MI values and 

cannot be detected as statistically significant pairs (P < 0.001) 

while they are clearly evolutionarily constrained. We examined 

the co-occurrence of highly conserved gene pairs in the 

network by calculating evolutionary profile distances for each 

neighboring pair in the network and compared them to 

randomized network distances. At the normalized distance 

threshold value of 0.1, occurrences of pairs with 0.1 or lower 

profile distances become statistically significant relative to 

random networks (P < 0.001) (Fig. 1C). With this threshold, 775 

pairs comprised of 223 gene products (21% of genes in the 

network) can be detected (Table S5). Because these gene pairs 

have similar profiles that are conserved across most or all of 

the 13 lineages, we refer to these as statically co-conserved 

pairs.  

 

We further corroborated the mutual information and 

evolutionary profile distance analyses by randomizing the 

network structure (while maintaining the affinity vectors 

intact) and investigated how many dynamic or static pairs 

occur in the random networks. The randomized networks in 

both cases show a statistically significant lower number (P ≤ 

0.001) of dynamic and static co-conserved pairs relative to the 

real network (Fig. 1D-E) indicating that the occurrences of 

these pairs (at the threshold value used) are not random.  

 

Two sub-networks were reconstructed to examine 

connectivities within the dynamic and static groups (Fig. 2A 

and b); the gene pairs not assigned as being dynamic or static 

are not included in these sub-networks. GO term enrichment 

of the static (low evolutionary profile distance pairs) and 

dynamic (high MI) pairs showed a number of overlapping 

terms; however, most terms were enriched uniquely in the 

dynamic and static networks; “calcium ion binding” was the 

only term that was shared between the two subnetworks (Fig. 

3A, B and Fig. S3). GO terms that were exclusively enriched 

within the static pairs included nucleotide kinase activity and 

oxidoreductase activity, acting on sulphur group of donors. On 

the other hand, glactosidase activity and intramelcular 

oxidoreductase acivity (transposing C=C bonds) were enriched 

within the dynamic pairs (Fig. S3). These results demonstrate 

that there is a considerable segregation between the two sub-

networks both topologically and functionally.  

 

The dynamic network is fragmented and displays more varied 

conservation. It consists of 89 connected components, many of 

which consist of isolated bi- or tri-gene groups; its largest 

connected component consists of 171 genes. The static sub-

network is smaller (223 genes) but less fragmented compared 

to the dynamic sub-network – it encompasses 14 connected 

components in contrast to 89 components of the dynamic sub-

network and its nodes have a higher average degree (6.95 vs 

3.99). The static sub-network is nearly universally conserved.  

 

Hubs, or highly connected nodes in biological networks, often 

carry important or essential functions 
46

. To investigate if the 

hubs in the transformed network show segregation with 

respect to their co-conservation, we identified highly 

connected nodes (Table S6) then classified them as dynamic or 

static on the basis of their interaction with their partnering 

nodes. We found that hubs with dynamically evolving partners 

have little overlap with statically evolving hubs (Fig. 3B), which 

suggests a functional distinction between the two types of 

hubs. Indeed, the distinction between the two hub types can 

be observed in the metabolic processes they are involved in; 

many of the dynamic hubs are involved in photosynthesis or 

lipid metabolism, whereas the low evolutionary profile 

distance hubs are involved in central metabolism but not 

photosynthesis (Tables S7 and S8).  

 

Taking the five most connected hubs as examples, four of the 

five are exclusively dynamic and one is a dual static and 

dynamic hub (Fig. 3C and Fig. S4). The four dynamic hubs 

encode ferredoxins and are involved in photosynthesis or 

other metabolic processes such as lipid metabolism. These 

four hubs have distinct affinities including the following 

lineages: fungi, Alveolata, Rhodophyta, Stramenopiles, and 

Viridiplantae. Several distinct ferredoxins are known to be 

differentially expressed in a variety of specialized conditions 
47

. 

For example, in C. reinhardtii, FDX3 has been shown to be 

involved in nitrogen assimilation, FD4 in glycolysis and 

response to reactive oxygen species, and FDX5 in hydrogenase 

maturation under anoxic conditions. FDX1 and FDX2 both 

serve as the primary electron donor for NADPH and H2 

production, however electron transfer speed of FDX2 is less 

than half as fast as that of FDX2 
47

 so C. reinhardtii is capable of 

modulating speed of NADPH and H2 production by 

differentially expressing these FDXs. Environmental condition 

variability would have a strong impact on the differential 

expression and most likely evolutionary maintenance of C. 

reinhardtii’s ferredoxins. The fifth hub in this group encodes an 

acyl-carrier protein (ACP2), which is involved in lipid 

metabolism. The encoding gene is conserved across all 

lineages except Diplomonadida. There are only three other 

dual hubs in the network; these encode CYC1 (Cytochrome c), 

a CYC1 paralog, and EamA transporter. Overall, our results 

support the hypothesis that the dynamic hubs have emerged 

to fulfill the metabolic fitness of the species under specialized 

or specific conditions with shared constraints. On the other 

hand, static hubs are not determinants of specialized 

metabolic functions; rather they perform universally shared 

functions. 

 

Dynamic and static metabolic interologs in yeast and Arabidopsis 

Conservation of interactions among orthologs were described 

by Walhout et al.
48

  in the context of protein-protein 

interactions and were later shown to be observable at 
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statistically significant rates 
49

. We thus investigated the extent 

in which the identified dynamic and static pairs occur in yeast 

and Arabidopsis following the transformation of their 

metabolic networks to gene-centric ones based on their GO 

terms (Method S5). For these analyses, we required the 

ortholog pairs (i.e., interologs) to be directly linked with each 

other in their respective networks as their counterparts were 

in the C. reinhardtii network. We compared the interologs of C. 

reinhardtii/A. thaliana and C. reinhardtii/S. cerevisiae for the 

identified static and dynamic pairs. From 908 dynamic pairs, 

we identified 343 and 66 ortholog pairs in A. thaliana and S. 

cerevisiae, respectively. From 775 static pairs, 427 and 87 

ortholog pairs in A. thaliana and S. cerevisiae were identified, 

respectively. The identified orthologs were then mapped to A. 

thaliana and S. cerevisiae networks to examine if they form 

interologs. For the dynamic pairs, 142 interologs (41.4%) in A. 

thaliana and 18 interologs (27%) in S. cerevisiae could be 

identified within their respective networks. We found 203 

(47.5%) and 45 pairs (51.7%) in A. thaliana and S. cerevisiae 

occurring as static interologs, respectively. The level of 

metabolic interologs that our analyses detects is comparable 

to protein-protein interaction interologs 
49

.  

 

To examine if the dynamic and static interologs are 

distinguishable with respect to function, we carried out GO 

enrichment analyses for the identified interologs. The 

interolog analysis (Fig. 4 and Fig. S5) showed that for the static 

pairs, many enriched GO terms overlap between C. 

reinhardtii/A. thaliana and C. reinhardtii/S. cerevisiae; and for 

dynamic pairs, none of the significantly enriched GO terms 

overlap. For example, a GO term uniquely enriched in the 

dynamic interologs of C. reinhardtii/A. thaliana but not in C. 

reinhardtii/S. cerevisiae is cGMP biosynthetic process. In 

Chlamydomonas, nitric oxide (NO)-dependent guanylate 

cyclases (GCs) mediate nitrogen-assimilatory signalling by 

forming cGMP from GTP in the presence of extracellular 

ammonium
50

. The presence of these interologs in C. 

reinhardtii/A. thaliana but not in C. reinhardtii/S. cerevisiae 

indicates dynamic evolution of these components of the 

nitrogen assimilation signalling pathway in plants but not in 

yeast 
50

 which is consistent with dynamic pairs being involved 

in specialized functions. Altogether, these results indicate that 

while some rewiring of metabolic functions have occurred 

during evolution, a significant level of conservation has 

persisted, which in turn attests to a persistence of selective 

pressure in the course of evolution. As expected, less rewiring 

is observed in static pairs, particularly in yeast, which is 

consistent with the centrality of static pairs in the network. 

 

Differential functional enrichment in dynamic and static sub-

networks 

Highly connected regions of the network, or network modules, 

often mark biological complexes with genes involved in related 

functions. We used a network module detection algorithm, 

MCODE 
51

, to define highly connected regions of the two sub-

networks. MCODE detected 41 modules for dynamically co-

conserved gene pairs, ranking each defined module. The top 5 

sub-networks identified based on the MCODE scores are 

shown in Fig. S6. The highest score was 19.263 with 20 nodes 

and 183 edges and the lowest score was 3 with 3 nodes and 3 

edges (a significant result has a score of greater than 1). We 

explored the enrichment under GO terms (biological process) 

for these top 5 modules using BiNGO
32

. GO categories were 

analyzed for enrichment in the top 5 sub-network with P-value 

less than 0.05. The detected processes included carboxylic acid 

metabolic process, oxidative phosphorylation, cobalamin 

metabolic process, tetrahydrobiopterin metabolic process and 

fatty acid oxidation. The hypergeometric test was used to 

determine GO annotation overrepresented amongst each 

cluster (Table S9). 

 

For statically co-conserved gene pairs, MCODE lists 21 sub-

networks with the highest score of 12.211 (20 nodes and 116 

edges) and the lowest score of 2.667 (4 nodes and 4 edges). 

The top GO terms biological process found were lipid 

glycosylation, glycoside metabolic process and cofactor 

metabolic process.  

 

There was only one significantly enriched GO term (lipid 

modification) with overlap between the top five modules of 

dynamically and statically co-sconserved pairs. This indicates 

that 1) the dynamic and static networks are modular, 2) the 

largest modules have distinct and non-overlapping functions, 

and 3) the largest dynamic modules are enriched in specialized 

functions while the static modules are involved in more 

general metabolic functions. 

 

Gene expression and evolutionary affinity dynamics  

We hypothesized that there will be detectable relationships 

between evolutionary and temporal dynamics such that genes 

and modules up regulated by light would display distinct 

evolutionary dynamics not observed in dark-induced genes. To 

explore this hypothesis, we grew C. reinhardtii under light with 

no organic carbon source and in complete darkness with 

acetate as a source of energy then carried out transcriptome 

analysis of their respective messenger RNAs. These conditions 

roughly correspond to autotrophic metabolism (as in higher 

plants) and aerobic heterotrophic metabolism, respectively. 

Following normalization, we were able to detect metabolic 

transcripts that were differentially up regulated in light and 

dark (Fig. 5A and B, Table S10 and Fig. S7). Mapping temporal 

expression information to the dynamic and static gene pairs, 

we found a significantly higher number of dynamic pairs in the 

light induced group than the dark induced genes (Fig. 5C). In 

contrast, we found that the static pairs were enriched in the 

dark condition. Comparing significant changes of expression 

with predicted fluxes (Fig. S8 and Method S6) showed that 

almost half of the active reactions (329 out of 750 reactions) 

are concurrent with the flux needed. Among 329 reactions, 87 

were up regulated and 242 were down regulated based on 

their transcription. We identified the metabolic subsystems 

and their locations for flux-expression correlated up- and 
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down-regulated genes. Among 242 down-regulated genes, the 

largest group of 90 genes was in the Glycerolipid metabolism 

subsystem and 115 genes were from the Cytosol 

compartment. For up regulated genes, the highest group of 9 

was in the Fatty acid biosynthesis subsystem and 28 genes 

were located in the cytosol as shown in (Fig. S9 and Table S11).  

 

Synthetic interactions and evolutionary profile distances 

To investigate if there are non-toplogical relationships 

between gene function and evolutionary profile distance, 

evolutionary profile distances between synthetically 

interacting genes in the network can be investigated. Unlike 

yeast in which double gene deletion studies can be done 

experimentally, such experiments in C. reinhardtii are not 

presently feasible. Therefore, we carried out in silico double-

gene deletions using our reconstructed model (iRC1080) under 

simulated dark and light conditions (over 500,000 double 

deletions under each condition, Fig. 5A, Tables S12 and S13) 

and predicted the resulting biomass yields accordingly. We 

further binned the interactions according to the resulting level 

of biomass reduction (Fig. S10) and calculated their pairwise 

evolutionary profile distances. The pairwise profile distances 

(Euclidean distances) between synthetically interacting genes 

showed a range of values and in many cases values of above 1, 

indicating that the genes that are involved in the interactions 

have distinct evolutionary affinities.  

 

We carried out the Kolmogorov-Smirnov (KS) test measuring 

the maximum absolute difference between our data and the 

standard normal distribution with the null hypothesis being 

that the distances between the interacting pairs follows that of 

random interactions in the network. The standard normal 

distribution was obtained from evolutionary profile distances 

between all 1,086 genes in the network. As illustrated in Table 

S14, the KS test revealed that the synthetic interactions 

distribution is not a standard normal distribution. A significant 

difference was observed between the random pairs in the 

network and the synthetic interaction profile distances under 

both light and dark simulated biomass production. These 

results show that the evolutionary affinities of the genes 

involved in the synthetic interactions at both conditions of 

growth in light with no acetate (LNA) and in dark with acetate 

(DA), differ from overall pairwise distance distributions of the 

network.   

 

To test if the interacting pairs are enriched for short or long 

evolutionary profile distances as compared to random pairs in 

the network, we performed hypergeometric tests for 

enrichment of distances greater than or equal to 1, 2 and 3 for 

both light with no acetate, or LNA and dark with acetate, or DA 

conditions. We observed that under LNA conditions, synthetic 

interactions with values greater than 2 are significantly 

enriched; in contrast, under DA conditions, interactions with 

profile distances of less than 1 and 2 show a significant 

enrichment (Fig. 6B and Table S15). GO term enrichment 

analysis was carried out on each of the different bins under 

both growth conditions and major results are found in Table 

S16. The lists of double-gene knockouts under two different 

conditions; DA and LNA, were used to create the gene 

interaction networks using Cytoscape and compare the 

selected KEGG pathways for each condition (Fig. S11 A and B). 

The KEGG pathway enrichment between two conditions (light 

and dark) for synthetic lethal conditions shows the enrichment 

of a number of pathways common between the two 

conditions (Fig. S12). As an example, synthetic interactions in 

the KEGG pathway are shown in Figs. S13-S17.  

 

Coupled reactions and evolutionary profile distances 

Coupled or correlated sets (co-sets) of reactions are reactions 

that function together in the metabolic process 
52, 53

. Biological 

significance for these linked reactions has been observed. For 

instance in the case of genetic disorders, mutations in 

correlated reactions can often lead to the same disease 

phenotype 
54

. The 2,190 reactions of iRC1080 were classified 

randomly into 20 sets with 100 reactions each, the solution 

space for each 100 was explored and constrained for growth 

under LNA or DA. The co-sets were obtained using COBRA 

Toolbox functions (Tables S17 and S18).  

 

We identified the genes associated with the reactions in the 

co-sets and calculated the evolutionary profile distances of all 

possible gene pairs between reactions (we note that some 

reactions are associated with multiple genes and some 

reactions have no associated genes) (Fig. 6C). As in synthetic 

pairs (described in the previous section), we observed many of 

the distances to be greater than 1, indicating different 

phylogenetic profiles among the genes. A hypergeometric test 

was carried out in relation to the random evolutionary profile 

distances of the whole network (all possible gene 

combinations in the network). The co-sets with only one pair 

of genes were not considered in this analysis. The test 

revealed statistical significance for distance values of less than 

2 and values of 3 or greater (Tables S19 and S20). The 

enrichment probabilities become more significant with 

distances of less than one, or 3 or greater. These analyses 

indicate that the enrichments of co-sets are bipartite relative 

to random network distances, with over-representation of 

both short and long distances within the sets. 

Discussion 

Genes in metabolic networks tend to be well-conserved 
55

, 

however their co-conservation dynamics are not well 

understood. Through our analyses on a model organism that 

can be considered complex with respect to its phylogenetic 

affinities, we find metabolic genes to display distinct dynamics 

with respect to their conservation, network topologies, and 

functional relationships. A significant percentage of the genes 

in the network were identified as being involved in either a 

dynamic or static co-conservation. The herein described 
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detection of dynamic and static pairs in the network, their 

non-random segregation at network level, and their expression 

dynamics, provide evidence for constraints embedded in the 

evolution of metabolic networks. This in turn provides 

evidence for conservation of selective constraints between 

eukaryotic species in different lineages for some node-pairs in 

the network. However, while the occurrences of co-conserved 

pairs are statistically significant, the majority of gene-pairs in 

the network do not display statistically significant co-

conservation, indicating a lack of uniformity in detectable co-

conservation relationships in the network. This may also 

reflect major instances of discontinuity in functional 

interactions between genes across phylogeny 
56-58

. 

 

The presence of non co-conserved pairs in the network, which 

constitute the majority of pairs, implies that functional 

constraints for these genes are not shared between C. 

reinhardtii and the explored lineages in the context of the 

studied metabolic network, at least not in the context of 

neighboring gene-pairs in the network in a consistent manner. 

This fluidity in co-conservation, which we also observe in 

functional analyses of the network, in turn suggests that 

rewiring of metabolic pathways may be a significant 

contributing force behind evolutionary adaptions as recent 

data has suggested being the case in genetic interaction and 

transcription networks 
59, 60

.  

 

Our analyses identifies most network hubs as either dynamic 

or static with very few having characteristics of both. This is a 

consequence of the topological segregation of dynamic and 

static pairs. As we have demonstrated, this segregation is also 

manifested with respect to both regulation, as judged on the 

basis of enrichment under light and dark growth conditions 

(Fig. 5C), and with respect to function as indicated on the basis 

of differential enrichments of GO terms. With respect to the 

latter, we note that this differential enrichment is observable 

at the level of the entire subnetwork (Fig. 3A and Fig. S3) as 

well as at the module level (Fig. S6 and Table S10). Taken 

together, the observed topological, temporal, and functional 

segregation of the static and dynamic pairs and hubs suggests 

that these segregated organizations may provide adaptive 

values in varying evolutionary niches. In biological terms, the 

different ferredoxins that form major hubs in the network are 

expected not to be interchangeable as they may have different 

redox potentials 
61

. As we have illustrated, these proteins have 

different evolutionary affinities and mostly demonstrate 

dynamic co-conservation, which likely reflect different 

biochemical requirements in species belonging to different 

lineages. Taking into account the crucial functions of 

ferredoxins and their involvements in large sets of reactions 

and pathways 
62

, selective pressures in maintaining the 

optimal redox potential can be expected for specific set of 

ferredoxins in each lineage. This and other similar hypotheses 

fall in line with what Fang et al., 2013 set forth in terms of 

gene co-expression and evolution. They concluded that 

selective pressure acts on the relationship between genes 

rather than on individual genes, which may further explain the 

maintaining of a set of ferredoxins within the C.reinhardtii 

metabolic network. 

 

Our analyses show a range of evolutionary profile distances for 

genes in coupled reaction sets as well as those with predicted 

synthetic interactions, which as in our topological analyses, 

point to fluctuations in co-conservation within the network 

despite shared or related function. Synthetic pairs identified 

under “dark” metabolism are enriched for pairs with 

(Euclidean) distances of 1 or less in their phylogenetic profiles, 

indicating that these gene pairs have very similar phylogenetic 

profiles. Gene pairs showing synthetic interactions under light 

growth are enriched in distant values of 2 or greater and less 

than 1, the former indicates distant evolutionary profile 

distances despite a related function in the network. Genes in 

the co-sets show a similar bimodal enrichment with some 

extremes observable, that is, some co-sets are enriched with 

less than 1 and some are enriched for values of equal or 

greater than 3.  

 

Notably, co-sets under both dark and light conditions, and with 

a range of profile distances are shown to be involved in purine 

catabolism, N-glycan biosynthesis, and fatty acid biosynthesis. 

Importantly, the N-glycan biosynthesis pathway involves an 

intersection of light and dark relevant co-sets with long and 

short profile distances respectively (Note S1). Furthermore, 

synthetic lethal interactions link N-glycan metabolism and 

fructose and mannose metabolism (profile distance of 3.6), 

and the pentose-phosphate pathway with the biosynthesis of 

steroids (profile distance of 0) under light condition. As for 

dark condition interactions, amino acid synthesis and nitrogen 

metabolism are observed to interact with a profile distance of 

3.4 (Note S2). 

 

It is to be noted that correlated reactions as well as synthetic 

interactions can be distant in the network topologically (a few 

examples are shown in (Figs. S13-S17). Therefore, enrichment 

for large evolutionary profile distances may coincide with 

distant placements in the network. As such, the C. reinhardtii 

network can be hypothesized to have assembled by 

evolutionary adaptive processes in such a way that 

evolutionary rigidity (exemplified as statically co-conserved 

pairs and short distances in synthetic and co-set pairs) and 

plasticity (exemplified by dynamically co-conserved pairs and 

long distances in synthetic and co-set pairs) are segregated. 

The need for such plasticity may be evident at physiological 

level with the recent observation that a wide range of 

metabolites can be utilized by C. reinghardtii as nitrogen 

sources, including di- and tripeptides as well as a number of D-

amino acids 
64

. Moreover, when buffering of pathways are 

required, the network architecture had made use of genes 

with dissimilar phylogenetic profiles. These findings provide an 

alternative and a wider perspective on metabolic network 

architecture and evolution. 
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Figure 1.  Evolutionary affinities and co-conservation of genes in the network. (A) Phylogenetic affinities of genes in the network  
are shown as the fraction of total for each of the 13 eukaryotic lineages explored. The list of the genes and the lineages are provided in 
Tables S1 and S2 respectively. (B) Comparison in distribution of mutually informative pairs between the real and randomized networks. 
Mutual information of neighboring genes (nodes) in the network is a measure of dynamic co-conservation (see Methods). Y-axis is in natural
log scale; plots in green and red represent the real and random networks, respectively. At the mutual information index value of 0.3,
the difference between gene pairs in the random networks and the real network becomes statistically significant (P = 0.001); this value 
(i.e., 0.3) was used to identify mutually informative pairs. Four hundred and fifty five genes form 908 gene pairs in the network with index 
value of 0.3 or higher. (C) Comparison in distribution of number of pairs and evolutionary profile distances between the real and randomized 
networks (see Methods). Evolutionary profile distances are a measure of co-conservation; only the gene pairs that are conserved in at least 
50% of the lineages were included.  Plots in green and red represent evolutionary profile distance values of gene pairs in the real and random
networks, respectively. Y-axis is in natural log scale. Profile distances of 0.1 or less (dotted vertical line) display statistically significant 
differences between the real and random networks, these gene pairs are referred to as statically co-conserved pairs.  Two hundred and twenty
three genes form 775 such pairs in the real network. All values have been normalized to the maximum value and represented on the graph.
(D-E) Mutual information and evolutionary profile distance in randomized networks. Based on randomization of the network threshold 
values for the mutual information index and evolutionary profile distance were set. For every pair of genes in the network, if the mutual 
information index values were higher than, or the profile distance values less than the set thresholds, those pairs were considered dynamically 
or statistically co-conserved gene pairs, respectively. (D) The real network (red square) has the highest number of high MI pairs compared to
all randomized network (P <= 0.001). (E) The number of gene pairs with low PD values in the real network (red square) is significantly 
higher than the randomized network (P < 0.001). 
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Figure 2. Dynamically and statically co-conserved pairs in the network. (A) A subnetwork based on the identified 
dynamic pairs was reconstructed to highlight the connectivity between dynamically co-conserved pairs; non-dynamic nodes 
were not included in this network. The indicated numbers designate regions of the network described in the text and Fig. S6. 
The color of the nodes represents their degree (blue highest, dark-red lowest); the size of the nodes corresponds to the clustering 
coefficient of the nodes. (B) A subnetwork based on the statically co-conserved gene pairs was reconstructed to highlight the
connectivity of these genes; non-static genes are not included in this network. 
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Figure 3. Gene Ontology (GO) term analysis of dynamically and statically co-conserved pairs and their hubs in the network.  
Uniqueness of GO terms for the dynamic and static subnetworks and their associated enrichment p-values are 
shown for Biological Process (A) and Molecular Function (B) ontologies. For each set, over representation probabilities 
were determined using the C. reinhardtii metabolic network as reference (see also Fig. S3). No overlap is observed between 
the dynamic and static GO terms at any significance level in Biological Process ontologies, while an overlap of a single term 
is detected for Molecular Function in (B). (C) The hubs in the network (defined as nodes forming the top 20% of highly 
connected genes) that show evidence of dynamic and static co-conservation are shown in the network (linked respectively 
with green and red edges) and reported in the Venn diagram. The blue circle marks five of the most connected hubs in the network.
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Figure 4. Gene Ontology (GO) analysis of dynamic and static pairs of C. reinhardtii interologs with S. cerevisiae and 
A. thaliana. GO terms (Biological Process) of dynamically co-conserved interologs of C. reinhardtii/A. thaliana, and those of 
C. reinhardtii/S. cerevisiae are shown in (A) and (B); similarly, GO terms of statically co-conserved interologs of C. reinhardtii/A. thaliana,
and those of C. reinhardtii/S. cerevisiae are shown in (C) and (D). For each set, enrichment analysis of terms were carried out using the
C. reinhardtii metabolic network as reference (see Methods).Table heatmaps were used to visualize the top 20 GO terms based on obtained 
enrichment p-values. Heatmaps of A and C were sorted based on lowest C. reinhardtii/A. thaliana GO term p-values and heatmaps B and D 
were sorted based on C. reinhardtii/S. cerevisiae GO term p-values. Ath: A. thaliana, Sce: S. cerevisiae, NP: Not Present.
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Figure 5. Temporal dynamics and co-conservation. (A) Identification of light and dark up regulated genes using 
NOISeq. RNAs isolated in cells grown in dark with acetate as energy source or in light with no acetate were subjected to transcriptome 
sequencing. There are 299 light condition and 211 dark condition genes that are significantly up regulated. About half of the genes in the 
network could be identified as being up regulated in one of the two conditions (genes not displaying significant differential regulation are 
not shown in the figure). (B) Light and dark gene pairs mapped to the network. The network representation visually shows that up regulated 
genes in light tend to form independent units or modules in the network, while dark up regulated genes tend to be positioned centrally in 
the network, connecting modules. (C) Temporal dynamics and co-conservation. Light and dark up regulated genes were plotted for gene pairs in 
each of the co-conservation groups (i.e., dynamic and static). The light up regulated gene pairs tend to be dynamic, while dark up regulated gene 
pairs are more static; the statistical significances for differences between the occurrences of dynamic and static pairs with respect to light-dark 
regulation are indicated. 
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Figure 6. Evolutionary profile affinity distances and functional analysis of C. reinhardtii network. 
(A-C) Double gene deletion analyses were carried out under light with no acetate or dark with acetate to define 
synthetically interacting pairs, the identified pairs were then binned according to the severity of their effects on 
predicted biomass production. The bins represent strict inequalities for the upper bounds. (A) Shows heat maps that 
represent the shared and unique synthetic interaction gene pairs under LNA and DA. Shared pairs are pairs that are 
shared between lethal and sick under light with no acetate or dark with acetate conditions. Unique pairs are pairs that 
are unique for lethal or sick under LNA or DA conditions. The color gradient from yellow to blue corresponds to the evolutionary 
profile distances between the pairs from 0 to 4. For (B) hypergeometric tests were done for enrichment of indicated distances for 
binned synthetically interacting pairs under LNA or DA conditions. In (C) the results of hypergeometric tests are shown for enrichment 
of different evolutionary profile distances found in each co-set under LNA conditions and DA. The blue line above x-axis marks the 0.05 
probability threshold for statistical significance. 
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