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Illuminating Drug Action by Network Integration of Disease 
Genes: A Case Study of Myocardial Infarction†  

Rui-Sheng Wang,
a
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a 

Drug discovery has produced many successful therapeutic agents; however, most of these drugs were developed without 

a deep understanding of the systems-wide mechanisms of action responsible for their indications.  Gene-disease 

associations produced by molecular and genetic studies of complex diseases provide great opportunities for a system-level 

understanding of drug activity. In this study, we focused on acute myocardial infarction (MI) and conducted an integrative 

network analysis to illuminate drug actions. We integrated MI drugs, MI drug interactors, drug targets, and MI disease 

genes into the human interactome and showed that MI drug targets are significantly proximate to MI disease proteins. We 

then constructed a bipartite network of MI-related drug targets and MI disease proteins and derived 12 drug-target-

disease (DTD) modules. We assessed the biological relevance of these modules and demonstrated the benefits of 

incorporating disease genes. The results indicate that DTD modules provide insights into the mechanisms of action of MI 

drugs and the cardiovascular (side) effects of non-MI drugs. 

Introduction 

Although drug discovery and development have produced many 

effective therapeutic agents during the past several decades, most 

of these drugs were developed without a deep knowledge of the 

systems-wide molecular mechanisms of action responsible for their 

indications. This knowledge gap of drug activity limits our 

molecular-level understanding of their therapeutic effects and 

adverse side effects. Drugs exert their effects by modulating 

molecular pathways rather than affecting a single specific target in 

isolation. It is, therefore, of great importance to investigate how 

drugs achieve their therapeutic functions via underlying signaling 

pathways and network modules. Indeed, drug discovery is moving 

from the conventional “one-effect/one-cause/one-target” magic 

bullet-type paradigm, to a systems biology paradigm, which 

considers the effect(s) of a drug as the result of perturbations of 

molecular network interactions 
1
.  

Many computational approaches have been developed for 

predicting drug-target interactions and drug-disease associations 

from chemical structure and genome features 
2-6

, but few studies 

focus on drugs used for specific diseases. One of the rare exceptions 

is the study conducted by Azuaje and colleagues 
7
, who assembled 

the myocardial infarction (MI) drug-target interactome network.  An 

important resource overlooked by this study, however, is the 

compilation of MI disease genes, which could provide rich 

information about the mechanisms underlying the therapeutic 

effects of MI drugs. Early relevant studies focusing on 

cardiovascular drugs include the work of Ivanov and colleagues 
8
  

who developed a computational approach for identifying drug-

induced MI-related proteins by predicting drug-target interactions, 

and the work of Li et al. 
9
 who constructed networks of different 

layered interactions underlying the universes of cardiovascular 

drugs, targets, genes, and disorders to reveal comprehensive 

insights into cardiovascular pharmacology.  

With advances in genotyping and phenotyping, many gene-disease 

associations have been produced over recent decades 
10

. Increasing 

evidence indicates that most human diseases cannot be attributed 

to a single gene but are a result of complex interactions among 

multiple genetic variants and environmental factors. Some 

databases have been developed to store gene-disease associations 
11-13

, which provide great opportunities for a better understanding 

of the molecular mechanisms of drug action responsible for their 

specific diseases. Our goal in this study is to examine the molecular 

basis for the association between drug targets and disease genes 

and understand how drugs act in the context of complex biological 

pathways. We focus on a highly prevalent disease, acute myocardial 

infarction (MI). Although a few select drugs for MI have been widely 

used, little is known about the underlying mechanisms of action at a 

systems-level 
7
. We propose that integrating MI disease genes, MI 

drugs, and drug targets into the comprehensive human 

interactome, a network of all ascertainable protein-protein 

interactions in a cell, can provide a better understanding of 

systems-level molecular activities of MI drugs. This approach may 

also be helpful for repositioning some non-MI drugs or discovering 

their cardiovascular adverse effects.  

The scheme of this study is shown in Figure 1(A-B). We construct a 

bipartite network of MI-related drug targets and MI 
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disease proteins using the interactions between them, and derive 

drug-target-disease (DTD) modules. We assessed the biological 

relevance of these modules from different perspectives and 

demonstrate the benefits of incorporating disease genes in the 

analysis of a drug-target network. The results also indicate that the 

DTD modules are biologically significant and represent potential 

signaling pathways of drug action.  This study shows that network-

based integrative analysis of MI drugs, targets and MI disease genes 

can help facilitate an understanding of the systems-wide action of 

MI drugs and identify the molecular basis for the cardiovascular 

side effects of some non-cardiovascular drugs.   

Materials and Methods 

Drug and target datasets 

We obtained 38 drugs used for MI and 330 non-MI drugs that have 

interactions with MI drugs from a previous study 
7
. Drug-drug 

interactions are mediated by common targets, transforming 

enzymes, transporters, or common underlying pharmacokinetics or 

pharmacodynamics according to DrugBank 
14

. We denoted non-MI 

drugs that interact with MI drugs as MI drug interactors. Only those 

drugs (300 MI drug interactors and 30 MI drugs) that have target 

information in the database will be considered for future analyses. 

In total, there are 425 drug targets for all of these drugs. For 

convenience, we denoted the drug targets in this study as MI-

related drug targets, as the drugs are either MI drugs or MI drug 

interactors. Among all of the drug targets, 67 (denoted MI drug 

targets) are targeted specifically by MI drugs. We further collected 

MI disease genes or gene products from Phenopedia in HuGE 

navigator 
11

. To obtain a reliable list of MI genes, we only 

considered those with at least two publications that support the 

association. 431 MI disease genes satisfy this criterion. We then 

mapped MI-related drug targets and MI disease gene products 

(proteins) onto the human interactome.  

Compiling a human protein interactome 

Biological processes reflecting drug actions involve different types 

of molecular interactions. We, therefore, used a consolidated 

human interactome combining physical interactions from different 

databases and sources, including protein-protein interactions, 

protein complexes, protein-DNA interactions, kinase-substrate 

interactions, metabolic interactions, and signaling pathways. This 

interactome has been used in a previous study 
15

 and also enhanced 

by incorporating the latest additional data sources (Supplementary 

File 1); it has 14,174 proteins with 170,303 interactions, after 

removing duplicate interactions and self-loops. We mapped drug 

targets and disease genes onto the interactome, and found that 361 

MI-related drug targets (including 65 MI drug targets) and 398 MI 

disease proteins overlap with the proteins in the interactome.  A 

total of 256 MI drug interactors and 30 MI drugs whose targets can 

be found in the interactome were included in the overall analysis.  

Network analysis and implementation 

In this study, most of the network analyses were performed using 

Python, with the assistance of a Python package, NetworkX 
16

. It 

contains many built-in network analysis algorithms, such as shortest 

path algorithms, subgraph induction, random graph generators, and 

module detection, etc. We readily used these algorithms for 

examining the proximity between drug targets and MI disease 

proteins (Supplementary File 1). In addition, we used a null model 

to assess the significance of emerging properties. The null model 

keeps the human interactome unchanged and randomly selects 

1,000 pairs of random protein sets of the same size as MI drug 

targets and MI disease proteins respectively (Supplementary File 1). 

The topological properties of random protein sets are then 

compared with those of real drug targets and disease proteins.  

To find modules densely connecting MI-related drug targets and MI 

disease proteins, we constructed a bipartite network using the 

interactions between them, and used the Louvain method to 

maximize a modularity function Q 
17, 18

 and, thereby, identify drug-

target-disease (DTD)  modules  (Supplementary File 1): 
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Q    

where m is the total number of edges; the Ai,j are the adjacency 

matrix elements; ki  and kj are the degrees of node i and node j, 

respectively; ci and cj are the module indices of node i and node j, 

respectively; and , the delta function, is equal to 1 if ci = cj, and is 

otherwise equal to 0. Modularity function Q is defined as the 

fraction of the edges that fall within modules minus the expected 

fraction in a random network with the same node degree 

distribution. Since modules in a network are conceptually defined 

as groups of nodes that are more densely connected internally than 

with the rest of the network, modularity optimization is one of the 

most effective methods for module identification. Maximization of 

Q is known to be an NP-hard problem which means that there are 

no exact algorithms for finding global optimal solutions within 

acceptable time 
19

. The Louvain method is a fast greedy heuristic 

algorithm that attempts to optimize the modularity of a partition of 

the network approximately 
18

. The method first searches for small 

communities by optimizing modularity locally. It then merges nodes 

belonging to the same community and creates a new network 

whose nodes are the communities. These two steps are repeated 

iteratively until a maximum of modularity is attained 
18

. 

Statistical tests and tools 
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All network visualization was performed with Cytoscape 
20

. GO-

based functional similarity of  pairs of MI-related drug targets and 

MI disease proteins was quantified by GS2 (GO-based similarity of 

gene sets) developed in a previous study 
21

. The daily snapshot of 

the GO tree and human gene annotations was downloaded from 

the GO web site (http://www.geneontology.org) 
22

. Unless 

otherwise specified, when we assess the significance of emergent 

properties of observations by comparing them with null models, all 

P-values are obtained by fitting the histograms to normal 

distributions (Supplementary File 1).  All error bars in the figures are 

standard errors.  

Results 

MI drug targets are significantly proximate to MI disease proteins 

in the interactome 

Most drugs exert their therapeutic effects through binding to one 

or more protein targets. Thus, we hypothesize that drug targets 

should not be very far from proteins associated with the indicated 

diseases in the interactome.  For convenience, we refer to the 

targets of the drugs in this study as MI-related drug targets since 

the drugs are either MI drugs or MI drug interactors.  In order to 

assess the proximity between MI-related drug targets and MI 

disease genes, we mapped them onto the consolidated human 

interactome and identified 361 MI-related drug targets (including 

65 MI drug targets) and 398 MI disease proteins in the network. As 

shown in Figure 1 (C), 66 of MI-related drug targets and 23 of MI 

drug targets are also MI disease proteins. The intersecting sets of 

proteins are significantly larger than expected by chance 

(hypergeometric test, P<2.5×10
-35

 and P<8.4×10
-20

, respectively). 

This result indicates that MI-related drug targets overlap 

significantly with MI disease proteins.  

In addition to this gene overlap analysis, we also assessed the 

proximity between MI drug targets and MI disease proteins at the 

network level. We identified 1,029 interactions between MI-related 

drug targets and MI disease proteins, which is significantly greater 

than the number of interactions between two random sets of the 

same size (P<1.0×10
-16

), as shown in Figure 1 (D). Previous studies 

have used the number of common interacting neighbors of two 

proteins to predict whether they have functional associations or not 
23

. Similarly, we next checked the number of pairs of MI-related 

drug targets and MI disease proteins that have common neighbors. 

As shown in Figure 1 (E), there are significantly more pairs of MI-

related drug targets and MI disease proteins with common 

neighbors than protein pairs from two random sets (P<1.0×10
-16

). 

The conclusion holds as well if we focus on MI drug targets only 

(P=2.8×10
-12

). We also calculated the average shortest path length 

between MI-related drug targets and MI disease proteins in the 

interactome. As shown in Figure 1 (F), the average shortest path 

length between MI-related drug targets and MI disease proteins is 

4.19, significantly smaller than that between two random sets of 

the same size (4.33±0.02, P =6.9×10
-10

). All of these results, 

therefore, support the conclusion that MI-related drug targets are 

significantly proximate to MI disease proteins in the human 

interactome than random expectation, which, in turn, provides 

evidence for the utility of incorporating MI disease proteins in a 

network-based analysis to provide insights into the mechanisms of 

action of MI drugs.  

To avoid the potential concern that the targets of drugs for use in 

other diseases may also be close to MI disease proteins, we 

performed a control experiment in which the same number of drug 

targets was randomly selected from the pool of all drug targets 
14

 

while excluding MI-related drug targets. We assessed the closeness 

relationship between control drug targets and MI disease proteins, 

in terms of overlap, the number of interactions, the number of 

protein pairs that have common neighbors, and the average 

shortest path length. The results, shown in Figure 2 (A-D), indicate 

that MI-related drug targets have significantly greater overlap with 

MI disease proteins and are closer to MI disease proteins than 

control drug targets, confirming that MI-related drug targets are 

truly proximate to MI disease proteins in the interactome. These 

results, after removing MI drug targets from MI-related drug 

targets, support the same conclusion (Supplementary Figure S1). 

Similarly, to avoid the potential concern that MI-related drug 

targets may also be close to proteins associated with other 

diseases, we performed another control experiment wherein we 

randomly selected the same number of disease proteins from the 

pool of all proteins involved in other diseases 
15

 while excluding MI 

disease proteins. The results, shown in Figure 3 (A-D), indicate that 

MI disease proteins have significantly greater overlap with MI-

related drug targets and are closer to MI-related drug targets than 

control disease proteins in the human interactome. The 

comparative closeness analysis of control disease proteins and MI 

disease proteins with MI drug targets yields very similar results 

(Supplementary Figure S2) . 

Bipartite network of drug targets and disease proteins  

Based on the analyses performed above, we note that MI-related 

drug targets are, indeed, significantly proximate to MI disease 

proteins in the human interactome. Previous studies have shown 

that densely connected subgraphs in protein interaction networks 

indicate protein complexes and novel functional modules 
24, 25

. 

Therefore, the modules of MI-related drug targets and MI disease 

proteins may represent functional associations between them and 

define the complex biological pathways underlying the mechanisms 

of drug action. To understand the network-based mechanisms of 

action of MI drugs and the cardiovascular adverse effects of non-MI 

drugs, we constructed a network of MI-related drug targets and MI 

disease proteins by using the molecular interactions between them. 

The network comprises 244 MI-related drug targets, 246 MI disease 

proteins, and 1,029 interactions. As some MI-related drug targets 

are also MI disease proteins, we can duplicate them to represent 

the two roles (one as drug target and the other as disease protein) 

so that the network is mathematically bipartite.  

We used the Louvain method to maximize the modularity function 

defined for characterizing the modular structure of networks 
17, 18

 

and to identify modules of MI-related drug targets and disease 

proteins. A total of 12 modules comprising more than 5 proteins are 

detected in the bipartite network (Supplemental Figure S3). Note 
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that the bipartite network does not contain the interactions 

between drug targets nor the interactions between disease 

proteins, except for those that are both drug targets and disease 

genes. Therefore, the derived modules truly represent the specific, 

direct associations between MI-related drug targets and MI disease 

proteins. After we derived the modules, we restored the 

interactions among drug targets, the interactions among disease 

proteins, and the drug-target interactions. These modules, called 

DTD (drugs, drug targets, and disease proteins) modules, reflect the 

mechanisms of drug action and underlying biological pathways of 

the corresponding drugs that target the modules.  

Figure 4 shows some of the DTD modules; a full list of modules is 

provided in Supplementary Figure S4. Although each DTD module 

only contains a few MI drugs and targets (owing to the limited 

number of MI drugs), many drug targets have dense connections 

with MI disease proteins. This finding may offer an explanation for 

why some non-MI drugs have adverse cardiovascular side effects. 

For example, disulfiram is a drug used for alcohol dependence. 

Previous studies have shown that when disulfiram is used at very 

high doses or in individuals with cardiovascular disease, severe 

reactions can occur, including myocardial infarction, arrhythmias, 

and congestive heart failure 
26

.  In Module 1, the target of 

disulfiram is ALDH2, which is a drug target for myocardial 

protection from ischemia-reperfusion injury 
27

, providing a plausible 

mechanism by which to account for disulfiram’s cardiovascular side 

effects. Minocycline is a tetracycline antibiotic used to treat several 

different bacterial infections; it is located in Module 5 and has been 

associated with some cardiovascular side effects, including 

vasculitis and myocarditis, according to the Sider database 
28

. 

Imatinib is a drug used to treat certain types of leukemia and has 

severe cardiovascular side effects, such as congestive heart failure, 

tachycardia, pulmonary fibrosis, and thrombosis 
28

. In Module 11, 

the target of imatinib has interactions with many MI disease 

proteins, providing a plausible basis for its cardiovascular side effect 

profile.  

We next assessed specific features of the bipartite network of MI-

related drug targets and MI disease proteins. Drug targets and 

disease proteins in the bipartite network have similar degree 

distributions (Figure 5 (A)): most MI-related drug targets are 

connected to few MI disease proteins, whereas a few MI-related 

drug targets are connected to many MI disease proteins. The 

robustness of the DTD modules is vital since the modules are used 

as the basis for interpreting mechanisms underlying drug action and 

drug side effects in this study. We, therefore, assessed their 

robustness from different perspectives. To demonstrate that the 

constructed bipartite network is truly modular, we tested it against 

a set of shuffled bipartite networks (1,000) of the same size by 

randomly rewiring existing interactions between MI-related drug 

targets and MI disease proteins while maintaining the same number 

of interacting partners. The average modularity of the shuffled 

bipartite networks is 0.436±0.005 (Figure 5 (B)).  None of the 

randomized networks achieved the same modularity observed from 

the bipartite network we constructed, confirming the significance of 

these modules (P<1.0×10
-16

).  Although the human interactome we 

used in this study is very comprehensive, it may still be prone to 

false positives.  To examine the robustness of our DTD modules in 

the presences of false positives, we randomly removed a certain 

percentage of nodes and edges (from 5% to 20%) from the human 

interactome to determine if the best partitions are similar to those 

obtained from the original network. The results of this analysis, 

shown in Figure 5 (C), demonstrate that the partitions obtained 

from the perturbed networks are very close to the original best 

partitions (the Normalized Mutual Information (NMI) measure 
29

 is 

over 0.7 even when we remove 20% of the nodes and edges).  In 

addition, the modularity of the perturbed networks after removing 

a high percentage of nodes and edges remains as high as the 

original network, as shown in Figure 5 (D). All of these results 

indicate that the DTD modules derived from the best partition of 

the original network are robust and can serve as a reasonable basis 

upon which to interpret the potential mechanisms and signaling 

pathways of drug action.  

Biological significance of the DTD modules 

In the DTD modules, MI-related drug targets and MI disease 

proteins are densely associated through the molecular interactions 

between them. We assessed the biological relevance of the DTD 

modules in several different ways. MI-related drug targets and MI 

disease proteins may participate in similar physiological and 

pathological processes as they cluster together in the interactome. 

We, therefore, evaluated the functional similarity of interacting 

pairs of MI-related drug targets and MI disease proteins that are 

located in the same modules.  As a control for significance, we 

randomly selected an interaction set with the same number of 

interactions as the module and calculated its functional similarity. 

Figure 6 (A) shows that most of the identified DTD modules have 

higher functional similarity than randomized modules, suggesting 

that these modules are mechanistically rational and represent 

potential signaling pathways of drug action. The results based on all 

interacting pairs in modules are given in Supplementary Figure S5, 

which is similar to Figure 6 (A). 

Understanding adverse side effects of drugs is equally important as 

identifying the molecular mechanisms of drug action. Adverse side 

effects have been used to infer whether two drugs share a target 

protein 
2
. By contrast, the side-effect similarity of drugs could also 

be caused by the closeness of their target proteins in the 

interactome. Another hypothesis about the biological relevance of 

the DTD modules is that drugs targeting the same modules may 

have similar side effects.  To test this hypothesis, we collected a set 

of drug pairs that have similar side effects from previous studies 
30

 

and examined whether DTD modules are significantly enriched with 

drug pairs that have similar side effects. The results, shown in 

Figure 6 (B), indicate that compared with a random drug set, drugs 

that target the same modules are significantly enriched with drug 

pairs with similar side effects.  

The Anatomical Therapeutic Chemical (ATC) Classification System is 

used to classify drugs into different groups according to the organ 

or system on which they act and/or their therapeutic and chemical 

characteristics. The DTD modules represent the potential 

underlying signaling pathways of drug action. We, thus, 
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hypothesized that drugs targeting the same modules may have 

similar therapeutic effects. To this end, we retrieved ATC codes 

used to annotate the drugs from the DrugBank database and 

constructed two sets of drug pairs that have similar therapeutic 

effects based on the first-level and the second-level of ATC codes, 

respectively. The results indicate that compared with a random 

drug set, drugs in the same DTD modules are significantly enriched 

with drug pairs that have similar therapeutic effects (Figure 6 (C)).  

The similarity of therapeutic effects of drugs may provide insights 

into the mechanism of action of one drug from that of another 

which acts within the same molecular pathway in the interactome. 

Collectively, the observations in Figure 6 demonstrate the strong 

biological relevance of the DTD modules.  

Cardiovascular adverse effects of unrelated drugs 

Many drugs not used to treat cardiovascular diseases have adverse 

cardiovascular (side) effects 
31

. Since our DTD modules contain non- 

MI drugs that have interactions with MI drugs, we may obtain some 

insights into the cardiovascular (side) effects of these non-MI drugs. 

Among 300 non-MI drugs with target information, 224 were 

assigned to modules; these are denoted module drugs. Other non-

MI drugs not located in the DTD modules are denoted non-module 

drugs. SIDER 2 (Side Effect Resource) contains information on 

marketed medicines and their recorded adverse reactions extracted 

from public documents and package inserts 
28

. Based on this 

database and the literature, 133 module drugs have cardiovascular 

side effects (at least two pieces of supportive evidence), which are 

provided in Supplemental File 2. Table 1 presents some typical 

examples of non-cardiovascular drugs that have cardiovascular side 

effects. For example, thioridazine is a typical antipsychotic drug that 

can cause an arrhythmia leading to sudden death. Thus, it has an 

FDA “black-box warning.” 
31

 Rosiglitazone is an antidiabetic drugs 

used for the treatment of type II diabetes that has been reported to 

increase the risk of cardiovascular complications, including 

myocardial infarction 
7, 32

. The derived DTD modules provide 

mechanistic insights into the cardiovascular side effects of these 

drugs.  

We also hypothesized that module drugs tend to have 

cardiovascular side effects compared to non-module drugs, as 

module drugs are functionally associated with MI disease proteins 

through their targets. We, therefore, also checked the side effects 

of non-module drugs as well, and found that only 26 of them have 

cardiovascular side effects. Table 2 provides the contingency table 

for the enrichment of non-MI drugs with cardiovascular effects. Chi-

squared testing indicates that compared to non-module drugs, 

module drugs are significantly enriched with drugs that have 

cardiovascular side effects (P = 2.5×10
-4

). If we restrict the non-

module drugs to those that have targets in the interactome, the 

result is still significant (Supplementary Table S1), indicating that 

incorporating MI disease proteins is helpful for understanding the 

cardiovascular side effects of module drugs. 

Similarly, we classified the drug targets into two groups as well. The 

drug targets assigned to DTD modules are module targets, and 

others are non-module targets. We hypothesized that module drug 

targets tend to be associated with cardiovascular function or 

cardiovascular diseases compared to non-module drug targets, as 

module drug targets are functionally associated with MI disease 

proteins. We, therefore, examined the overlap of module targets 

and non-module targets with the cardiovascular-associated 

proteins downloaded from the Cardiovascular Gene Annotation 

Initiative (http://www.ebi.ac.uk/GOA/CVI). Table 3 provides the 

contingency table for the enrichment of cardiovascular-associated 

proteins among module drug targets. Chi-squared testing indicates 

that compared to non-module drug targets, module drug targets 

are significantly enriched with cardiovascular-associated proteins (P 

= 1.7×10
-4

). Supplementary Table S2 shows similar results after we 

remove MI drug targets. Once again these results confirm the 

benefits of incorporating MI disease proteins for understanding 

drug action and the functionality of drug targets.  

Pharmacological insights derived from network analysis 

The DTD modules consist of the connections from MI drugs and MI 

drug interactors to MI disease proteins via drug targets in the 

human protein-protein interaction network. These modules 

represent the potential signaling pathways of drug action and 

provide insights into the mechanisms of action of MI drugs as well 

as the cardiovascular side effects and new therapeutic indications 

of non-MI drugs.  A detailed review of DTD modules offers insights 

for potential repurposing of some drugs in the treatment of MI 

(Table 4). For example, valproic acid is a fatty acid with 

anticonvulsant properties used in the treatment of epilepsy. It is 

also a histone deacetylase inhibitor and is under investigation for 

treatment of HIV and various cancers
14

. The mechanisms of its 

therapeutic actions are not well understood. We predict that 

valproic acid may be repurposed for treatment of MI. In Module1, 

ABAT, the target of valproic acid, is densely connected to aldehyde 

dehydrogenase (ALDH) family proteins, which have a role in 

cardioprotection 
33

. Recent epidemiological studies indicate that 

valproic acid is associated with a reduced risk of myocardial 

infarction 
34, 35

, supporting the potential repositioning of valproic 

acid for MI. Minocycline is a tetracycline analog effective against 

several bacterial infections. One of its drug targets is MMP9 whose 

increased level in diabetes causes vascular remodelling, which 

contributes the cardiovascular complications of diabetes. Recent 

studies suggest that the combination of minocycline and aspirin 

prevents worsening of acute MI in diabetic rats by inhibiting MMP2 

and MMP9
36

. In addition, encouraging evidence exists for 

minocycline’s protective role in cardiovascular pathology and its 

activity against myocardial ischemia-reperfusion injury
37

. Ginseng 

has been used as one of the traditional Chinese medicines for 

treating a variety of disorders. North American ginseng (Panax 

quinquefolius) has been increasingly attracting interests in western 

societies for its therapeutic potential in cardiovascular diseases 
38, 

39
.  Although its pharmacological action is not very clear, ginseng 

has been found to target PTGS2, IL6, and AHR 
14, 40

.   PTGS2 (COX-2) 

contains a polymorphism as an inherited protective factor against 

myocardial infarction and stroke 
41

.  It is also the drug target of 

several MI drugs including naproxen, ibuprofen, diclofe, and aspirin.  

Thus, ginseng has potential for treating myocardial infarction as 

well via this common mechanistic target. In addition, in Module 7, 
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the drug targets of acetaminophen are PTGS1 and PTGS2 which are 

also MI disease proteins. Several studies have shown that 

acetaminophen is functionally cardioprotective and can attenuate 

the damaging effects of peroxynitrite and hydrogen peroxide during 

ischemia-reperfusion through an underlying antioxidant (free-

radical scavenging) mechanism
42, 43

. Collectively, the DTD modules 

offer pharmacological insights into mechanistic bases for the 

repurposing of select drugs.  As we illustrate here, one can identify 

drugs not previously known to treat the disease, ascertain their 

targets and targeted pathways within the module, identify the 

molecular mechanisms related to the disease that involve the 

targets and targeted pathways, and explore the literature for any 

prior epidemiological or clinical case-based evidence supporting an 

association between the drug and the disease (MI). This network-

based analysis, therefore, offers a mechanistic rationale for 

pursuing these drugs as potential treatments for MI. 

DTD modules can offer insights into the cardiovascular side effects 

of some drugs as well (Table 4). As mentioned earlier, disulfiram is a 

drug used in the treatment of chronic alcoholism. It acts by 

inhibiting aldehyde dehydrogenase and targets ALDH2 which has a 

role in protecting the heart and brain from ischemia-reperfusion 

injury 
27

. Therefore, we predict that disulfiram may have adverse 

cardiac side effects. Although the Sider database does not include 

the cardiovascular side effects of disulfiram, severe reactions 

including myocardial infarction, arrhythmias, and congestive heart 

failure, can occur when disulfiram is used at very high doses 
26

.  

Danazol is a drug used for the treatment of endometriosis and 

breast disorders.  Danazol inhibits the expression of monocyte 

chemotactic protein-1 (MCP-1/ CCL2) 
44

.  As MCP-1/CCL2 is 

important in the development of collateral vessels following acute 

myocardial infarction 
45

, Danazol may increase the risk of MI and its 

consequences with chronic use 
46, 47

. Triazolam targets various 

gamma-aminobutyric acid (GABA) A receptors, such as GABRB1, 

GABRB2, GABRG2, and GABRR1, which are the main inhibitory 

neurotransmitters in the brain. These receptors also mediate 

cardiovascular regulation
48, 49. In addition, GABAergic input affects 

blood vessels and participate in the control of vascular tone, blood 

pressure, and heart rate
50, 51

.  A previous study has shown that the 

overdose of triazolam can cause life-threatening cardiotoxicity 
52

.  

Table 4 provides more examples of predicted cardiovascular 

adverse effects of non-cardiovascular drugs. The DTD modules 

provide the potential mechanisms of cardiotoxicity of these drugs 

based on their network links.   

In addition, network integration analysis also provides other 

insights regarding the connectivity of MI drug targets.  For example, 

in Module 1, known MI drug targets, PPP2CA, PPP2CB, and ANXA2, 

are all peripheral nodes in the network, while in Module 2, PRKCA is 

a highly connected node (hub).  Of note, PPP2CA, PPP2CB, and 

PRKCA are all targeted by vitamin E, suggesting that drugs with 

multiple targets are connected to the network with varying degrees 

of centrality.  Interestingly, highly useful MI drugs, such as the 

angiotensin converting enzyme (ACE) inhibitors, enalapril, captopril, 

lisinopril, fosinpril, and trandolapril, or the purinergic receptor P2Y, 

G-Protein coupled 12 (P2RY12) inhibitors, clopidogrel and prasugrel, 

target peripheral nodes, i.e., ACE and P2RY12 are weakly connected 

in Module 3.  Yet, these weakly linked nodes have important effects 

on module function, and likely do so via their associations with 

other nodes of greater centrality, such as ACE's link to the 

angiotensin receptor 1 (AGTR1) pathway and its downstream 

signaling pathways governing vascular tone and vascular cell 

proliferation, or the interaction of the P2RY12 receptor and the 

beta1-adrenergic receptor (ADRB1) governing cross-talk in signaling 

pathways modulating platelet function.  A clear benefit of this 

integrated network analysis is derived from the inclusion of non-MI 

drugs that have interactions with MI drugs via common targets, 

transforming enzymes, transporters, or underlying 

pharmacokinetics or pharmacodynamics as indicated in DrugBank 
14

.  This expanded MI drug set coupled with the physical protein-

protein association links generated from the comprehensive human 

interactome provides a unique and rich network data set for 

exploratory analysis and hypothesis testing regarding drug action 

and benefit. The summary provided here only begins that 

exploratory process, which can evolve much more comprehensively 

in future studies. 

Conclusions 
In this study, we assessed the closeness relationships between MI-

related drug targets and MI disease proteins and sought to decipher 

the molecular basis of drug action and drug side effects through 

drug-target-disease (DTD) modules. We assessed the biological 

relevance of the DTD modules in different ways. The results 

demonstrate the benefits of incorporating diseases genes for 

gaining insight into the mechanisms of drug action, the functionality 

of drug targets, and the pathobiology of diseases. There are other 

published studies examining the distance between drug targets and 

disease genes in the interactome 
53, 54

 or predicting adverse side 

effects of drugs 
55

.  These earlier studies considered all diseases or 

major disease categories, and did not provide insights into the 

mechanisms of action of individual drugs. We took an additional 

step by examining whether the interactome-based localization of 

disease genes facilitates an understanding of drug actions and drug 

side effects through DTD modules. Through assessing the biological 

relevance of the DTD modules, we confirmed that the DTD modules 

identify potential signaling pathways of drug actions. 

In this study, we used snapshot static networks to analyze the 

functional relationships of MI-related drugs, drug targets, and MI 

disease proteins. It would be interesting to explore how to 

incorporate drug-induced time-series gene expression data into the 

analyses once available. In addition, drugs may have potential off-

target effects and different efficacies, and the molecular 

interactions in the network may have different strengths (weights). 

Considering such detailed information may complicate the 

topological analyses and require the construction of a dynamic 

model for optimal insights.  

Choosing protein interactomes and module-finding techniques may 

have an impact on this study. There are several other protein 

interaction databases with higher coverage, e.g., STRING v10
56

. 

However, these databases contain a large number of predicted 

functional associations, rather experimentally ascertained physical 
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interactions.  Neverthess, we used the interactions from STRING 

v10 to assess the closeness relationships between MI-related drug 

targets and MI disease proteins to attempt to validate our findings 

with other interactomes. We also used another modularity 

optimization method
57, 58

 to detect modules and assess the 

robustness of DTD modules.  As shown in Supplementary File 1, the 

results confirm the reliability of our conclusions and DTD modules.  

Acknowledgements 

This work was supported by NIH grants HL61795, HL108630 

(MAPGen Consortium), and HL048743 (to J.L.). The authors thank 

A.-L. Barabasi’s laboratory at Northeastern University for providing 

access to the consolidated human interactome data they compiled, 

and Ms. Stephanie Tribuna for excellent editorial assistance.   

References 

1. P. Csermely, T. Korcsmaros, H. J. Kiss, G. London and R. 

Nussinov, Pharmacol Ther, 2013, 138, 333-408. 

2. M. Campillos, M. Kuhn, A. C. Gavin, L. J. Jensen and P. Bork, 

Science, 2008, 321, 263-266. 

3. M. J. Keiser, V. Setola, J. J. Irwin, C. Laggner, A. I. Abbas, S. J. 

Hufeisen, N. H. Jensen, M. B. Kuijer, R. C. Matos, T. B. Tran, 

R. Whaley, R. A. Glennon, J. Hert, K. L. Thomas, D. D. 

Edwards, B. K. Shoichet and B. L. Roth, Nature, 2009, 462, 

175-181. 

4. Y. F. Huang, H. Y. Yeh and V. W. Soo, BMC Med Genomics, 

2013, 6 Suppl 3, S4. 

5. F. Cheng, C. Liu, J. Jiang, W. Lu, W. Li, G. Liu, W. Zhou, J. 

Huang and Y. Tang, PLoS Comput Biol, 2012, 8, e1002503. 

6. Y. Yamanishi, M. Kotera, M. Kanehisa and S. Goto, 

Bioinformatics, 2010, 26, i246-254. 

7. F. J. Azuaje, L. Zhang, Y. Devaux and D. R. Wagner, Sci Rep, 

2011, 1, 52. 

8. S. M. Ivanov, A. A. Lagunin, P. V. Pogodin, D. A. Filimonov 

and V. V. Poroikov, Chem Res Toxicol, 2014, 27, 1263-1281. 

9. P. Li, Y. Fu, J. Ru, C. Huang, J. Du, C. Zheng, X. Chen, A. Lu, L. 

Yang and Y. Wang, BMC Syst Biol, 2014, 8, 141. 

10. T. W. T. C. C. Consortium, Nature, 2007, 447, 661-678. 

11. W. Yu, M. Clyne, M. J. Khoury and M. Gwinn, Bioinformatics, 

2010, 26, 145-146. 

12. E. M. Ramos, D. Hoffman, H. A. Junkins, D. Maglott, L. Phan, 

S. T. Sherry, M. Feolo and L. A. Hindorff, Eur J Hum Genet, 

2014, 22, 144-147. 

13. A. Hamosh, A. F. Scott, J. S. Amberger, C. A. Bocchini and V. 

A. McKusick, Nucleic Acids Res, 2005, 33, D514-517. 

14. V. Law, C. Knox, Y. Djoumbou, T. Jewison, A. C. Guo, Y. Liu, A. 

Maciejewski, D. Arndt, M. Wilson, V. Neveu, A. Tang, G. 

Gabriel, C. Ly, S. Adamjee, Z. T. Dame, B. Han, Y. Zhou and D. 

S. Wishart, Nucleic Acids Res, 2014, 42, D1091-1097. 

15. J. Menche, A. Sharma, M. Kitsak, S. D. Ghiassian, M. Vidal, J. 

Loscalzo and A. L. Barabasi, Science, 2015, 347, 1257601. 

16. A. A. Hagberg, D. A. Schult and P. J. Swart, presented in part 

at the Proceedings of the 7th Python in Science Conference 

(SciPy2008), Pasadena, CA USA, August 2008, 2008. 

17. M. E. Newman, Proc Natl Acad Sci U S A, 2006, 103, 8577-

8582. 

18. V. D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, 

Journal of Statistical   Mechanics: Theory and Experiment 

2008, 10, P10008. 

19. U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer and 

Z. Nikoloski, IEEE Transactions on Knowledge and Data 

Engineering, 2008, 20, 172-188. 

20. P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. 

Ramage, N. Amin, B. Schwikowski and T. Ideker, Genome 

Res, 2003, 13, 2498-2504. 

21. T. Ruths, D. Ruths and L. Nakhleh, Bioinformatics, 2009, 25, 

1178-1184. 

22. M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. 

M. Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. 

A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. 

Matese, J. E. Richardson, M. Ringwald, G. M. Rubin and G. 

Sherlock, Nat Genet, 2000, 25, 25-29. 

23. M. P. Samanta and S. Liang, Proc Natl Acad Sci U S A, 2003, 

100, 12579-12583. 

24. V. Spirin and L. A. Mirny, Proc Natl Acad Sci U S A, 2003, 100, 

12123-12128. 

25. K. Mitra, A. R. Carvunis, S. K. Ramesh and T. Ideker, Nat Rev 

Genet, 2013, 14, 719-732. 

26. J. C. Huffman and T. A. Stern, Prim Care Companion J Clin 

Psychiatry, 2003, 5, 41-44. 

27. X. J. Luo, B. Liu, Q. L. Ma and J. Peng, Curr Drug Targets, 

2014, 15, 948-955. 

28. M. Kuhn, M. Campillos, I. Letunic, L. J. Jensen and P. Bork, 

Mol Syst Biol, 2010, 6, 343. 

29. S. Harenberg, G. Bello, L. Gjeltema, S. Ranshous, J. Harlalka, 

R. Seay, K. Padmanabhan and N. Samatova, Wiley 

Interdisciplinary Reviews: Computational Statistics, 2014, 6, 

426–439. 

30. L. Brouwers, M. Iskar, G. Zeller, V. van Noort and P. Bork, 

PLoS One, 2011, 6, e22187. 

31. S. R. Raj, C. M. Stein, P. J. Saavedra and D. M. Roden, 

Circulation, 2009, 120, 1123-1132. 

32. D. J. Graham, R. Ouellet-Hellstrom, T. E. MaCurdy, F. Ali, C. 

Sholley, C. Worrall and J. A. Kelman, JAMA, 2010, 304, 411-

418. 

33. C. H. Chen, L. Sun and D. Mochly-Rosen, Cardiovasc Res, 

2010, 88, 51-57. 

34. J. B. Olesen, P. R. Hansen, S. Z. Abildstrom, C. Andersson, P. 

Weeke, M. Schmiegelow, J. Erdal, C. Torp-Pedersen and G. H. 

Gislason, Pharmacoepidemiol Drug Saf, 2011, 20, 146-153. 

35. A. Dregan, J. Charlton, C. D. Wolfe, M. C. Gulliford and H. S. 

Markus, Pharmacoepidemiol Drug Saf, 2014, 23, 759-767. 

36. L. K. Bhatt and A. Veeranjaneyulu, Arch Med Res, 2014, 45, 

203-209. 

37. G. S. Thind, P. R. Agrawal, B. Hirsh, L. Saravolatz, C. Chen-

Scarabelli, J. Narula and T. M. Scarabelli, Future Cardiol, 

2015, 11, 61-76. 

38. M. Moey, X. T. Gan, C. X. Huang, V. Rajapurohitam, E. 

Martinez-Abundis, E. M. Lui and M. Karmazyn, Circ Heart 

Fail, 2012, 5, 504-514. 

Page 8 of 20Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



ARTICLE Journal Name 

8 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

39. M. Karmazyn, M. Moey and X. T. Gan, Drugs, 2011, 71, 1989-

2008. 

40. S. J. Kim, H. J. Jeong, B. J. Yi, T. H. Kang, N. H. An, E. H. Lee, D. 

C. Yang, H. M. Kim, S. H. Hong and J. Y. Um, Am J Chin Med, 

2007, 35, 329-339. 

41. F. Cipollone, E. Toniato, S. Martinotti, M. Fazia, A. Iezzi, C. 

Cuccurullo, B. Pini, S. Ursi, G. Vitullo, M. Averna, M. Arca, A. 

Montali, F. Campagna, S. Ucchino, F. Spigonardo, S. Taddei, 

A. Virdis, G. Ciabattoni, A. Notarbartolo, F. Cuccurullo and A. 

Mezzetti, JAMA, 2004, 291, 2221-2228. 

42. G. F. Merrill, Am J Physiol Heart Circ Physiol, 2002, 282, 

H1341-1349. 

43. K. M. Jaques-Robinson, R. Golfetti, S. S. Baliga, N. M. 

Hadzimichalis and G. F. Merrill, Exp Biol Med (Maywood), 

2008, 233, 1315-1322. 

44. C. Jolicoeur, A. Lemay and A. Akoum, Am J Reprod Immunol, 

2001, 45, 86-93. 

45. Y. Xia and N. G. Frangogiannis, Inflamm Allergy Drug Targets, 

2007, 6, 101-107. 

46. C. J. Boos, M. Dawes, R. Jones and T. Farrell, J Obstet 

Gynaecol, 2003, 23, 327-328. 

47. M. Cicardi, R. Castelli, L. C. Zingale and A. Agostoni, J Allergy 

Clin Immunol, 1997, 99, 194-196. 

48. S. Matsuyama, N. Saito, K. Taniyama and C. Tanaka, Am J 

Physiol, 1991, 261, H1437-1442. 

49. R. R. Matsumoto, Brain Res Brain Res Rev, 1989, 14, 203-225. 

50. J. A. DiMicco, K. Gale, B. Hamilton and R. A. Gillis, Science, 

1979, 204, 1106-1109. 

51. W. Zhang and S. Mifflin, Hypertension, 2010, 55, 201-206. 

52. T. Yamagiwa, M. Amino, S. Morita, R. Yamamoto, T. Saito 

and S. Inokuchi, Clin Toxicol (Phila), 2010, 48, 149-152. 

53. J. Sun, K. Zhu, W. Zheng and H. Xu, BMC Bioinformatics, 

2015, 16 Suppl 5, S1. 

54. M. A. Yildirim, K. I. Goh, M. E. Cusick, A. L. Barabasi and M. 

Vidal, Nat Biotechnol, 2007, 25, 1119-1126. 

55. L. C. Huang, X. Wu and J. Y. Chen, BMC Genomics, 2011, 12 

Suppl 5, S11. 

56. D. Szklarczyk, A. Franceschini, S. Wyder, K. Forslund, D. 

Heller, J. Huerta-Cepas, M. Simonovic, A. Roth, A. Santos, K. 

P. Tsafou, M. Kuhn, P. Bork, L. J. Jensen and C. von Mering, 

Nucleic Acids Res, 2015, 43, D447-452. 

57. R. Guimera and L. A. Nunes Amaral, Nature, 2005, 433, 895-

900. 

58. Z. Li, S. Zhang, R. S. Wang, X. S. Zhang and L. Chen, Phys Rev E 

Stat Nonlin Soft Matter Phys, 2008, 77, 036109. 

59. G. H. Gislason, J. N. Rasmussen, S. Z. Abildstrom, T. K. 

Schramm, M. L. Hansen, E. L. Fosbol, R. Sorensen, F. Folke, P. 

Buch, N. Gadsboll, S. Rasmussen, H. E. Poulsen, L. Kober, M. 

Madsen and C. Torp-Pedersen, Arch Intern Med, 2009, 169, 

141-149. 

60. F. J. Azuaje, Y. Devaux and D. R. Wagner, Clin Transl Sci, 

2012, 5, 111. 

61. C. S. van der Hooft, J. Heeringa, G. G. Brusselle, A. Hofman, J. 

C. Witteman, J. H. Kingma, M. C. Sturkenboom and B. H. 

Stricker, Arch Intern Med, 2006, 166, 1016-1020. 

62. H. Zhou, S. Z. Hou, P. Luo, B. Zeng, J. R. Wang, Y. F. Wong, Z. 

H. Jiang and L. Liu, J Ethnopharmacol, 2011, 135, 287-298. 

63. G. F. Merrill, T. H. Rork, N. M. Spiler and R. Golfetti, Am J 

Physiol Heart Circ Physiol, 2004, 287, H1913-1920. 

64. N. Kagawa, T. A. Senbonmatsu, K. Satoh, K. Ichihara, N. 

Yamagata, O. Hatano, T. Saito, V. Q. Nguyen, M. R. 

Waterman, E. Price, Jr., J. B. Atkinson and T. Inagami, Front 

Biosci, 2005, 10, 608-619. 

65. K. J. Won, H. Y. Lin, S. Jung, S. M. Cho, H. C. Shin, Y. M. Bae, S. 

H. Lee, H. J. Kim, B. H. Jeon and B. Kim, Toxicol Sci, 2012, 126, 

298-305. 

66. J. Simko, A. Csilek, J. Karaszi and I. Lorincz, Infection, 2008, 

36, 194-206. 

67. J. T. Poterucha, M. Westberg, P. Nerheim and J. P. Lovell, Tex 

Heart Inst J, 2010, 37, 218-220. 

68. C. Passalia, P. Minetto, E. Arboscello, E. Balleari, A. Bellodi, L. 

Del Corso, E. Molinari, I. Ponassi, C. Oneto, V. Sicbaldi and R. 

Ghio, Tumori, 2013, 99, 288e-292e. 

 

Figure legends 

Figure 1. The closeness relationships between MI(-related) drug targets and MI disease proteins in the human interactome. (A) MI-

related drugs, drug targets, and MI disease proteins are mapped onto the human interactome. (B) A bipartite network of MI-related drug 

targets and MI disease proteins is constructed, and the dense associations between them are identified as drug-target-disease (DTD) 

modules. (C) The overlap of MI-related drug targets and MI disease proteins. (D) MI-related drug targets (MI drug target, inset) and MI 

disease proteins have significantly more interactions in the interactome than expected by chance. (E) There are significantly more pairs of 

MI-related drug targets (MI drug target, inset) and MI disease proteins with common neighbors than expected by chance. (F) The average 

shortest path length between MI-related drug targets (MI drug target, inset) and MI disease proteins is significantly smaller than that 

between two random gene sets. 
 

Figure 2. The proximity between control drug targets and MI disease proteins. (A) Compared to control drug targets, MI(-related) drug 

targets have larger overlap with MI disease proteins. (B) Compared to control drug targets, MI(-related) drug targets have more 

interactions with MI disease proteins. (C) Compared to control drug targets, there are more pairs of MI(-related)  drug targets and MI 

disease proteins that have common neighbors in the interactome. (D) Compared to control drug targets, MI(-related)  drug targets have a 

smaller average shortest path length with MI disease proteins. 

Figure 3. The proximity between MI(-related) drug targets and control disease proteins. (A) Compared to control disease proteins, MI 

disease proteins have significantly greater overlap with MI-related drug targets. (B) Compared to control disease proteins, MI disease 

proteins have more interactions with MI-related drug targets. (C) Compared to control disease proteins, there are more pairs of MI disease 

Page 9 of 20 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 9  

Please do not adjust margins 

Please do not adjust margins 

proteins and MI-related drug targets that have common neighbors in the interactome. (D) Compared to control disease genes, MI disease 

proteins have a smaller average shortest path length with MI-related drug targets in the interactome. 

Figure 4.  The DTD modules. The blue nodes represent MI disease proteins, and the yellow nodes denote MI-related drug targets. The 

nodes with both colors are both drug targets and MI disease proteins. The nodes with only labels (without node shapes) are drugs. MI 

drugs and MI drug targets are denoted in red. 

Figure 5.  The robustness of the DTD modules. (A)  The degree distributions of MI-related drug targets and MI disease proteins. (B) The 

constructed bipartite network is significantly modular compared to randomized networks with the same degree distributions (P<1.0×10
-16

). 

(C) The NMI value between the best partitions obtained from the original bipartite network and that obtained from the perturbed 

networks after removing a certain percentage of nodes and edges. (D) The modularity of the perturbed networks after removing a certain 

percentage of nodes and edges. 

Figure 6.  Biological relevance of the DTD modules. (A). Functional similarity of MI-related drug targets and MI disease proteins in the DTD 

modules; *P<0.05. (B) Enrichment of drug pairs with similar side effects in each module. The red line represents P=0.05.  (C) Enrichment of 

drug pairs with similar ATC codes in each module. The red line represents P=0.05. 
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Table 1. Cardiovascular adverse effects of some non-cardiovascular drugs based on the Sider database and the literature. 

 

  
Drug name  Module ID  Cardiovascular  side effects with references  

Gemcitabine  1  Arrhythmia; atrial fibrillation; cardiac failure; myocardial 

infarction 
28, 31

 

Clozapine  2, 3  Tachycardia; Metabolic syndrome; myocardial infarction; 

ventricular fibrillation; venous thrombosis 
28, 31

 

Tizanidine  2, 3 Bradycardia; arrhythmia; myocardial infarction; coronary artery 

disease 
31

 

Escitalopram  2, 3, 9  Tachycardia; arrhythmia; cardiac failure; myocardial infarction; 

atrial fibrillation 
31

 

Vardenafil  2, 6  Coronary artery disease; myocardial infarction; tachycardia 
28, 31

 

Trazodone  2, 3, 9  Arrhythmia; cardiac arrest; ventricular tachycardia; myocardial 

infarction 
31

 

Celecoxib  2, 7  Risk of cardiovascular complications; cardiac failure; myocardial 

infarction; thrombosis 
7, 31, 59

 

Thioridazine  3  Torsades de Pointes; ventricular tachycardia 
28, 31

 

Aminophylline  3, 6  Atrial fibrillation; tachycardia; arrhythmia; cardiac flutter 
28, 31

 

Rosiglitazone  5  Adverse cardiac effects; cardiac failure 
31, 32, 60

 

Methylprednisolone  5  Atrial fibrillation; arrhythmia; cardiac arrest; cardiac failure; 

myocardial infarction 
28, 31, 61

 

Aprotinin  9  Arrhythmia; cardiac arrest; myocardial infarction; thrombosis 
31
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Table 2. Contingency table for the enrichment of non-MI module drugs with cardiovascular side effects, P = 2.5×10
-4

 (Chi-squared test).  

 With cardiovascular side effects No cardiovascular side effects  Total  

Module drugs 133  91  224  

Non-module drugs 26  50  76  

Total  159 142  300 
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Table 3. Contingency table test for the enrichment of cardiovascular-associated proteins in drug targets, P = 1.7×10
-4

 (Chi-squared test). 

 Cardiovascular proteins Not cardiovascular proteins  Total  

Module targets  180  52  232 

Non-module targets  75  54  129  

Total  255  106  361  
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Table 4. Pharmacological insights for some drugs based on analysis of the DTD modules.  

Potential drug repurposing 

Drug names Original use Targets in the DTD 

modules 

Mechanism of action  Supportive evidence 

Valproic acid Epilepsy ABAT; ACADSB; 

HDAC9 

Fatty acid 

Histone deacetylase 

inhibitor 

Sodium valproate exposure was associated with 

the risk of MI
35

. There is a consistent association 

between valproate treatment and a reduced risk 

of MI in patients with epilepsy
34

. 

Minocycline Antibacterial 

drug 

ALOX5; CASP1, 

CASP3; CYCS; IL1B; 

MMP9 

A tetracycline analog  The combination of minocycline and aspirin 

prevent worsening of AMI in diabetic rats
36

. 
Minocycline has protective roles in cardiovascular 

pathology and the activity against myocardial 

ischemia-reperfusion injury 
37

. 

Ginseng Adaptogen PTGS2; IL6; AHR Unclear Ginseng has a marked ability to reverse cardiac 

hypertrophy, myocardial remodeling, and heart 

failure
38

. Ginseng protects rodent hearts from 

acute myocardial ischemia-reperfusion injury 
62

. 

Acetaminophen Analgesic and 

antipyretic 

drug 

PTGS2;PTGS1  Inhibiting primarily COX-

2 (PTGS2) vs. COX-1 

(PTGS1) and possibly 

COX-3 (in CNS); Central 

effects via NMDA 

receptor inhibition  

Acetaminophen shows positive cardioprotective 

effects In myocardial infarction and arrhythmia 
42, 

63
. Acetaminophen is both functionally 

cardioprotective and antiarrhythmic against H2O2-

induced oxidative injury 
43

;  

Tetracycline Antibacterial 

drug 

PRNP Interfering with protein 

synthesis 

Tetracycline may be of use in suppressing the 

development of infarction caused by myocardial 

ischemia 
64

.  

Cardiovascular side effects 

Disulfiram Alcohol 

dependence 

ALDH2 Inhibiting aldehyde 

dehydrogenase 

When disulfiram is used at very high doses, severe 

reactions can occur, including myocardial 

infarction, arrhythmias, and congestive heart 

failure 
26

 

Danazol Endometriosis 

and breast 

disorders 

AR; CCL2; ESR1; 

PGR 

Inhibiting the pituitary 

output of gonadotropins 

Danazol inhibits the activity of CCL2 and also 

enhances hemostasis, increasing the risk of MI 

with chronic use 
46, 47

. 

Miconazole Antifungal KCNMA1; 

KCNMB1; NOS3 

Interacting with 14-α 

demethylase 

Miconazole may induce rat cardiotoxicity via a 

ROS-mediated pathway, which is initiated by the 

inhibition of APE/Ref-1 expression 
65

. Miconazole  

has been implicated as the causes for QT interval 

prolongation 
66

. 

Triazolam Insomnia GABRB1; GABRB2; 
GABRG2; GABRR1 

Binding bezodiazepine 

receptors  

Triazolam overdose can cause life-threatening 

cardiotoxicity 
52

.  

Rituximab Lymphoma C1QA; C1QB; 

C1QC; C1R; C1S; 
FCGR1A; FCGR2A; 
FCGR2B; FCGR2C; 
FCGR3A;  MS4A1 

A murine/human 

chimeric monoclonal 

antibody directed 

against the CD20 

antigen 

Rituximab can induce polymorphic ventricular 

tachycardia 
67

. Two patients presented several 

cardiovascular risk factors the administration of 

rituximab 
68

. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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