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Dynamic-field devices for the ultrasonic manipulation of 

microparticles 

Bruce W. Drinkwater 

Department of Mechanical Engineering, University of Bristol, Bristol, BS8 1TR 

Abstract 

The use of acoustic radiation forces in lab-on-a-chip environments has seen a rapid 

development in recent years. Operations such as particle sieving, sorting and 

characterisation are becoming increasingly common with a range of applications in the 

biomedical sciences. Traditionally, these applications rely on static patterns of ultrasonic 

pressure and are often collectively referred to as ultrasonic standing wave devices. Recent 

years have also seen the emergence devices which capitalise on dynamic and 

reconfigurable ultrasonic fields and these are the subject of this review. Dynamic ultrasonic 

fields lead to acoustic radiation forces that change with time. They have opened up the 

possibility of performing a wide range of manipulations such as the transport and rotation of 

individual particles or agglomerates. In addition, they have led to device reconfigurability, i.e. 

the ability of a single lab-on-a-chip device to perform multiple functions. This opens up the 

possibility of channel-less microfluidic devices which would have many applications, for 

example in biosensing and microscale assembly. This paper reviews the current state of the 

field of dynamic and reconfigurable ultrasonic particle manipulation devices and then 

discusses the open problems and future possibilities. 
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I. Introduction 

This paper reviews published research on dynamic and reconfigurable ultrasonic 

manipulators. The definition of a dynamic device adopted here is one in which the acoustic 

field is altered dynamically for the purpose of micro-particle manipulation. The paper starts 

by briefly reviewing static-field ultrasonic devices which have found widespread lab-on-a-

chip (LOC) applications, such as microparticle sorting. These static-field devices form the 

basis for the more recent emergence of dynamic devices. Of course, this is not a one way 

process and research on both static and dynamic field concepts is now proceeding in 

parallel. As the number and functionality of available devices increases seemingly 

exponentially, it becomes progressively harder for academic and industrial researchers to 

understand what the most appropriate device for a given application is. This review aims to 

bring clarity to this confusion. The approach adopted here is to discuss the physical 

principles of the different devices and explore what functions each can perform, setting them 

in the context of the current LOC applications. The dynamic devices are then classified into 

the scheme is proposed in Figure 1. Within this classification scheme three broad classes of 

device are defined: in-plane manipulators, beam manipulators and planar arrays. The paper 

compares and contrasts these devices and concludes by considering what future 

developments, both in device science and practical application, might be possible. 

A. Devices using static acoustic fields 

Although the focus of this review is on dynamic-field devices, it is important to set their 

development in the context of the alternatives; namely static-field manipulation devices. It is also 

important to stress that the purpose of a device is to fulfil a function required by an application. In 

general if a simpler device can fulfil that function, it will be a better and more reliable solution. 

The key point here is that dynamic reconfigurability comes at the cost of complexity, therefore 

such devices should only be used when an application demands. In this section the key static 

field devices are described and examples of where they have solved specific LOC application 

challenges are given.  

Ultrasonic standing wave devices that create a static acoustic field have now found wide-spread 

application in LOC devices (see reviews by Coakley et al.1, Laurell et al.2, Wiklund3 and Glynne-

Jones et al.4). A common configuration is to excite a resonance in a fluid-filled chamber or 

channel. Typically, the chamber has a simple planar geometry and a simple mode shape is 

selected in which the mode has local near-1D properties.4 This resonant operation means that 

very efficient devices, in terms of acoustic force applied for a given input power, can be made if 

the system has low damping. In turn, this means that these devices can often by driven with a 

sinusoidal signal of a few volts and <0.1 W of input power. However, the acoustic field is fixed by 
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the resonant mode-shape, which is a characteristic of the geometry (and acoustic properties) of 

the device, hence the use of the term static. Any specific device will have an infinite number of 

possible modes to choose from, however, typically a single, low-order mode with a simple mode-

shape is selected. Such modes are preferable as they are the easiest to excite and are sufficient 

to perform operations such as agglomeration and separation. The other common factor of these 

devices is that the wavelength, , of the ultrasound is commonly set to be significantly larger than 

the objects being manipulated (or more strictly, 𝑘𝑎 ≪ 1, where 𝑘 = 2𝜋 𝜆⁄ , and, a, is the size of the 

particle, e.g. the radius in the case of a sphere). In this Rayleigh regime, the forces act to move 

dense and stiff particles (e.g. cells in water) to the pressure nodes. More strictly the acoustic 

radiation force is governed by a contrast factor which is a function of the particle and host density 

and compressibility. The forces are then proportional to the gradient of the Gor’kov energy 

potential as discussed in section 1.C.5 

Cell agglomeration for tissue engineering is an area that has attracted particular attention6,7,8. In 

a typical device, an agglomeration of cells in a liquid cell culture medium, is held at a node of a 

planar (or strictly a near-planar) standing wave. The planar acoustic field leads to the production 

of a planar tissue construct. The benefit of ultrasonic forces in these applications is that the 

agglomerate is formed in a three-dimensional scaffold-less environment which is thought to be a 

reasonable approximation to the situation in vivo. Many of these devices have been built on a 

microfluidic scale, in combination with microfluidic flows. One or more of the chamber 

dimensions, e.g. the channel width, is set to an integer multiple of half the acoustic wavelength to 

produce the desired resonance. Frequencies in the MHz range are required for microfluidic 

lengthscales, leading to wavelengths and hence channel dimensions of the order of 100’s of 

micrometers (e.g. in water =375 m at 2 MHz). A particularly compelling microscale filtering 

application was shown in Petersson et al.9 in which red blood cells are separated from lipids (fat 

particles). The mixture flows along a microfluidic channel containing a half-wavelength planar 

standing wave field and because of their differing density and compressibility with respect to the 

host fluid, the red blood cells move towards the nodes and the lipids towards the antinodes. The 

red blood cells and lipids are then separated spatially and flow out through different channels. 

Perhaps the most commercially developed application is in flow cytometry which standing waves 

due to a low-order channel resonance are used to produce precise alignment of particles in a 

flow cell, prior to spectral analysis.11,12 In a development of this concept a standing wave device 

was used to measure the acoustic impedance of cells (independent of their size) by monitoring 

the balance between flow and the acoustic radiation forces.10 This is one of a number of 

emerging characterisation applications in biomedicine which capitalise on the links between cell 

type and mechanical properties. 

Fixed patterns of standing waves have also been formed across chambers with dimensions >10 

for applications such as patterning13 and larger-scale filtration.14 In cell patterning the area of 
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interest typically has dimensions of the same order as a small glass microscope cover slide (e.g. 

10 mm diameter circle). There has also been interest in using ultrasound to seed particles prior 

to cell growth. For example, Gesellchen et al.15 used ultrasonic standing waves to align Schwann 

cells and demonstrated that the nerve cells, growing from a ganglion follow this ultrasonically 

produced alignment. Very similar devices have also been used to assemble inorganic materials, 

for example, fibre reinforced composites16,17,18 and to assemble micro- and nano-

structures.19,20,21 On a similar scale, Bohm et al.14 demonstrated a filter to remove bio-matter 

from water at flow rates of up to 58 L/day.  Here a standing wave was formed in a filtration 

chamber of dimensions ≥10, through which the contaminated water flowed. Filtration is 

achieved as the bio-matter remains trapped at the nodes of the standing wave field.    

Static-field devices based on travelling waves have also been proposed. Destgeer et al. use the 

acoustic radiation forces of a travelling surface acoustic wave (SAW) to perturb particles from a 

flow; the larger particles are perturbed by a greater distance and hence can be separated.22  

Others have used travelling waves to create streaming effects to move particles in microfluidic 

systems.23 

B. From static to dynamic-field devices 

The thought that dynamic-field devices can do more than static-field devices is attractive and this 

review will explore what has been achieved in this direction and what might be possible in the 

future. For example, Marx24 recently reviewed the rapid development of dynamic cell 

manipulation technologies for biomedical applications. As a minimum a single dynamic device 

might be able to perform the function of multiple static devices – this attribute could be called 

reconfigurability. At the other extreme a future dynamic device might be able to independently 

manipulate many thousands of particles and assemble them into arbitrary configurations – 

imagine an all-acoustic version of a 3D printer. The devices in the previous section were static by 

design and, for example, the standing wave devices were operated at a resonant frequency of 

the device chamber/channel. The simplest method for creating a dynamic device is to use 

multiple transducers and to change the ultrasonic field by switching off/on the excited 

transducers. For example, Llewellyn-Jones et al.25 (2016) integrated an ultrasonic assembly 

stage in to a 3D printer and demonstrated the printing of glass-fibre composite layers. As shown 

in Figure 2, the field (and hence the pattern of fibres) can be changed mid-print by switching 

between differently oriented transducer pairs. In these devices the efficiency benefits of resonant 

operation are maintained but some reconfigurability is added. A more sophisticated method of 

introducing dynamic-fields, which again capitalises on the benefits of resonant operation is to use 

mode switching in which the acoustic field within the device is rapidly switched between resonant 

modes (achieved first in air26 and then in water27). The net force on a particle is then the time 

average of the modal contributions. This approach relies on the switching being performed faster 
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than the time constant associated with particle motion.28 It has also been shown that rapid 

sweeping of the frequency in a narrow band about the resonant frequency of a channel and lead 

to significantly improved trapping stability and consistency.29 Again the net force on the particles 

is the time average across the frequency sweep, which then less affected by other localised 

parasitic device resonances.    

An alternative and much more versatile approach to creating a dynamic-field capability is to 

move to non-resonant device operation. However, whilst non-resonant operation frees the device 

from the constraint of operating at a specific resonant mode, in as many dimensions as required, 

it inevitably reduces the efficiency of the device. This means that greater applied voltages and 

power levels are needed to achieve a given level of force. The extent to which the device 

efficiency is reduced in a non-resonant device depends on the damping (e.g. quality or Q-factor) 

of the resonant device to which is it is compared. Note that, for a system with low damping, the 

Q-factor is the amplification at resonance w.r.t. static forcing.  For example, resonant devices 

manufactured from low damping materials can have, 𝑄 > 10, suggesting greater than ten-fold 

efficiency differences.4 However, it is worth noting that non-resonant devices capable of 

producing 90 kPa/Volt have been reported meaning the operation below 10V would be suitable 

for many LOC applications where typically hundreds of kPa are required.30  

In static standing wave devices it has been shown that temperature changes greater than a few 

degrees can have a major detrimental effect on the acoustic field.31 Non-resonant devices are by 

design less sensitive to changes in the device resonances, so potentially are less sensitive to 

temperature effects. However, such results are device specific and require careful measurement 

in a given device or application. The other cost is complexity: both of the device itself and the 

electronics required to control it. However, rapid progress in microscale manufacture and 

embedded electronics means that a range of LOC scale dynamic devices can already be built 

and operated with modest resources. 

C. Acoustic radiation forces on particles 

Before proceeding further the acoustic radiation forces, which are the basis of the devices 

that form the subject of this review are briefly described. Fundamentally, the propagation of 

an acoustic or ultrasonic wave results in acoustic radiation forces on objects and the 

acoustic streaming of fluids. These are second order effects, caused by nonlinearities in the 

governing physics. Lord Rayleigh developed the first understanding of acoustic streaming32 

and the acoustic radiation force on a plane obstacle due to a propagating wave.33,34 The 

basic phenomena had been known for some years prior to this when Kundt observed that 

dust particles moved to the nodes of an acoustic standing wave generated in a glass tube - 

he used these observations to infer the speed of sound in various gases.35 However, the 
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modern understanding of acoustic radiation forces started with King who developed 

analytical expressions for the force on a rigid sphere in an inviscid fluid in plane standing and 

travelling wave fields.36 When the particle diameter is substantially smaller than the incident 

wavelength (i.e. 𝑘𝑎 ≪ 1), the scattering is simplified to a sum of monopole and dipole 

contributions and analytical expressions for the force result.  Further development of this 

basic result produced an analytical solution for compressible spheres37 which was then was 

generalised to arbitrary acoustic fields by Gor’kov.5 Gor’kov elegantly described the forces 

as resulting from a potential field, U, (see also Bruus28). In this way the acoustic radiation 

force, �⃗�, can be found as 

�⃗� = −∇𝑈                                                                   (1) 

              𝑈 =
4𝜋

3
𝑎3 [𝑓1

1

2
𝜅0〈|𝑝1|

2〉 − 𝑓2
3

4
𝜌0〈|�⃗�1|

2〉] 

𝑓1 = 1 −
𝜅𝑝

𝜅0
  and 𝑓2 =

2(𝜌𝑝 𝜌0⁄ −1)

2𝜌𝑝 𝜌0⁄ +1
 

where 〈|𝑝1|
2〉 and 〈|�⃗�1|

2〉 are the mean squared pressure and particle velocity respectively at the 

object, a is the radius of the spherical object,  and 𝜅 are density and compressibility respectively 

and the subscripts denote the particle, ‘p’, or host, ‘0’ properties. Note that for a fluid 𝜅 = 1
𝜌𝑐2⁄ . 

It should be noted that equation (1) only accounts for gradient forces which arise due to gradients 

of acoustic pressure and particle velocity in standing and propagating wave fields. However, it 

does not include the scattered force due to the reflection (i.e. scattering) of propagating plane 

waves (i.e. with no gradient) from the object. It should be noted that scattering forces have been 

shown to be small in most microfluidic applications.38,39 However, for larger particles (i.e. 𝑘𝑎 ≥ 1) 

in travelling wave fields the scattering terms can be significant.22  Another limitation of equation 

(1) is that it does not account for the secondary radiation forces that occur when particles 

become closely spaced.2,40 Although equation (1) has these and other deficiencies from a 

theoretical perspective, for small and widely spaced particles, it is capable of describing the vast 

majority of experimental observations.  

Analysis of the acoustic radiation force on larger spherical particles (i.e. 𝑘𝑎 ≥ 1) has been 

developed37,41 and more recently extended to various non-spherical particles42 and shells.43,44,45 

Note that shells are of particular practical importance as they act as contrast and drug delivery 

agents in medical ultrasonics.  Numerical techniques have meant that the shape and size of 

particles that can now be analysed is almost limitless (see for example, Glynne-Jones et al.46). 

However, with a few exceptions47 and despite recent advances in computational power, the 

numerical methods are still limited to the solution of simplified versions of the full coupled 

governing equations. The most common numerical approach, which broadly follows Gor’kov’s 
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analytical approach, is to integrate the second order acoustic pressures around a boundary that 

encloses the particle,   

−�⃗� = 〈∫ 𝑝2�⃗⃗�dS𝑆
〉 + 〈∫ 𝜌0(�⃗⃗�. �⃗�1)�⃗�1dS𝑆

〉         (2) 

where the integration is over some arbitrarily chosen surface, S, that encloses the particle and �⃗⃗� 

is the normal of that surface. The problem can then be dramatically simplified for an inviscid fluid 

as the second order pressure, p2, can be obtained from first order terms as37 

𝑝2 =
1

2
𝜅0〈|𝑝1|

2〉 −
1

2
𝜌0〈|�⃗�1|

2〉.                                                     (3) 

Given the apparent over-simplifications of the Gor’kov analysis, a number of extensions have 

been made to, for example, include effects of viscosity and heat conductivity of the host 

fluid.48,49,50 However, although these analyses are undoubtedly more complete, the divergence 

from equation (1) is relatively small for most current LOC devices and applications 51. However, 

note that several scenarios relevant to LOC require thermoviscous corrections, for example, sub-

micron liquid particles in low-contrast systems.49 

Acoustic streaming, is a family of effects that are an integral part of any acoustic manipulation 

device.51,52 However, in the majority of devices discussed in this paper, streaming is unwanted 

and researchers operate in regimes where the acoustic radiation forces dominate over the 

streaming induced drag. This means that, whilst streaming in inevitably present, its presence 

does not strongly affect the operation of the devices. Readers should see Wiklund et al. for 

examples of applications where streaming is beneficial, i.e. fluid pumping or microstreaming 

mediated drug delivery.53  The use of streaming for LOC-based particle manipulation is also an 

active area and recently very high frequency (over 200MHz) focused beams were used to create 

combined streaming and radiation forces to cause agglomeration of sub-micron polystyrene 

particles.23   

II. Classification of dynamic manipulation devices 

The following classification scheme, shown schematically in Figure 1, draws together the 

dynamic devices into three broad groups: in-plane, beam and planar array manipulators. The 

aim of this paper is to explore the functionality of the different classes of device and explore 

their suitability for current and future applications. Within each class, device functionality is 

described approximately chronologically. However, this chronological description also maps 

onto the progression towards devices that are increasingly dynamic and reconfigurable. A 

large proportion of the research to-date uses the in-plane devices with beam devices attracting 

growing interest. Both classes of device have seen biomedical application. It should be noted 

that at present very few examples of planar arrays are present in the literature, however, they 
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were thought to be sufficiently different from the in-plane devices to warrant their own class and a 

hence separate discussion.   

 

A. In-plane manipulators 

In-plane manipulators are characterised by transducers arranged around the periphery of a 

plane, manipulation occurring in that plane within a central chamber. Various examples of in-

plane manipulation devices are shown schematically in Figures 1(a)-(c). From this figure and 

also the summary Table 1 it is immediately apparent that the complexity of the fields produced 

and the range of fields possible are dependent on the number of transducers employed. As more 

transducers are used and hence more complex fields are achievable, device reconfigurability and 

functionality increases; i.e. complex operations become possible. The section below charts this 

development in functionality and sets this in the context of current application challenges. 

The most simple in-plane manipulators use opposing pairs of transducers, each pair generating a 

standing wave as shown in Figures 1(a) and (b).54,55,56 The transducer dimensions in the plane of 

operation are designed to be large compared to the wavelength (i.e. L>>) so, when excited with 

a simple continuous sinusoid, they will emit near plane waves. A single opposed pair generates a 

pseudo-1D acoustic standing wave field (i.e. 𝑝(𝑥) = 𝑃0 cos(𝑘𝑥) sin(𝜔𝑡)) which leads to small (i.e. 

𝑘𝑎 ≪ 1), dense and stiff microparticles becoming trapped in a series of nodal lines, with the force 

given by  

𝐹(𝑥) = 𝐹0sin(2𝑘𝑥),                                                             (4) 

where                                              𝐹0 = 4𝜋 (
𝑓1

3
+

𝑓2

2
)

𝑃0
2

4𝜌0𝑐0
2 𝑘𝑎

3. 

Two orthogonal opposed pairs generate a grid-like pattern of nodes due to the interference of the 

two orthogonal, pseudo-1D fields. The first such devices used piezoelectric elements to excite 

bulk waves in a fluid-filled chamber. Here, the exciting sine wave is swept from low to high 

frequency passing through a sequence of simple chamber resonances. As the frequency 

increases, so the nodal lines are compressed about the centre of the device (as the nodes 

become more closely spaced at higher frequencies). Due the resonant nature of the operation of 

these devices, the field is much more intense at the specific resonant frequencies, in effect 

limiting the operation to these frequencies and hence to a fixed sequence of patterns. Using this 

approach it is possible to cause a variety of objects including cells and micro-organisms to be 

transported or become concentrated towards the centre of a device. However, if the manipulation 

chamber is positioned off-centre (i.e. near one of the transducers) the particle motion is a 

translation as well as a compression of the nodal lines.57 
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Wood et al.58 demonstrated a device incorporating two opposed pairs of interdigital transducers 

(IDTs) arranged as a square using a classic microfluidic SAW chip design. As the acoustic field 

in the fluid is generated by leakage of energy from a surface or Lamb wave in the substrate, so it 

is most intense near the surface. It should be noted that this device builds on earlier work which 

explored the use of SAW technology for droplet transport and mixing.59,60,61  The approach is to 

deposit metallic IDT electrodes onto a Lithium Niobate (LiNbO3) piezoelectric substrate and, in 

order to inhibit reflections from the ends of the substrate, add absorbing material to the surface. 

This means that each of the transducer elements can be thought of as emitting into a free-field in 

the plane of operation. Under these free-field conditions, the pseudo-1D force from a pair of 

identical transducers becomes, 

 𝐹(𝑥) = 𝐹0 sin(2𝑘𝑥 + ∆𝜑),                                                       (5)  

hence the frequency (via k) and relative phase (∆𝜑) of the transducer outputs can be used to 

control the shape of the acoustic field within the central chamber. Using frequency control, the 

field pattern changes as shown in Figure 3(a), the new feature here being that, due to the non-

resonant chamber, the ultrasonic field pattern is retained at all frequencies and the movement 

(i.e. compression/expansion of the nodal lines) about the centre of the chamber is continuous. 

Hence, the removal of the reflections, and with them resonances of the chamber, extends the 

manipulation capability. It should be noted that if an IDT with uniform electrode spacing is used 

then as the frequency is moved away from its operating point the transduction efficiency drops 

dramatically. To expand the frequency range (and with it the manipulation range) chirped IDTs 

have been used in which the electrode spacing is varied.57 However, this increased frequency 

range also comes at the cost of reduced efficiency; in essence the input energy is spread across 

a range of wavelengths, only one of which will propagate at a given frequency.  

Courtney et al.62 added a non-reflective boundary condition to a bulk-wave device with a square 

arrangement of transducers as shown in Figure 1(b). This was achieved through the addition of 

matching layers to the front surface of the piezoelectric transducers and the use of a highly 

absorbing backing material. Note that other approaches have been explored to create non-

resonant manipulation devices include angling the transducers to inhibit reflection into the central 

region63 and operating at the first through-thickness resonance of the piezo-element to create an 

efficient transmission line.30 With chamber resonances removed, Figure 3(b) shows that the 

relative phase, ∆𝜑, between opposed transducer elements can then be used to control the 

location of the nodes. This approach leads to the ability to apply an arbitrary translation to the 

line or grid patterns within the plane of operation.  

In bulk wave devices the motion is generated directly in the fluid, therefore, the ultrasonic field 

exists over the entire depth of the device. Intriguingly, Scholz et al. recently showed that, 

although unintended, the energy in many bulk wave devices is also higher near the substrate.18 
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However, further work is needed to see if this is a general effect or a device-specific result. 

Conversely, there are applications such as tissue engineering in which the positioning of objects 

away from the substrate is also beneficial and so further work is required to design devices and 

transduction to facilitate this.  

Microfluidic in-plane manipulators have also been used to manipulate cells and small 

organisms.64,65,57 Tran et al. showed that human red blood cells (hRBCs) can be translated at 

speeds of up to 10 mm/s in the SAW version of this type of device.66  Similarly, Figure 4 shows 

how bulk wave devices using phase control have been used to generate complex tartan-like cell 

patterns (using C2C12 cells) by depositing lines of cells, waiting for cell adherence, before 

reconfiguring the acoustic field and depositing further cells.15 Collectively, this body of research 

on cell manipulation suggests that the acoustic pressure levels required for manipulation do not 

have a measureable detrimental effect on cell viability. However, which these results are 

encouraging, cell viability in dynamic-field devices must be treated on a device-by-device basis 

until stringer evidence emerges. It is also apparent that the use of polymer spheres (e.g. 

polystyrene or latex) acts as a reliable model for cell manipulation performance. 

Guo et al. carefully controlled the distance between two cells (various cell types) in a single 

potential well within a 4-transducer device.67  This functionality has significant potential for cell 

communication and interaction studies. The field was switched on for short periods during which 

two initially separated cells were caused to move together by small amounts, until eventually they 

were brought into contact at the centre of the trap. This approach capitalises on the microfluidic 

nature of the device, which means that the particle inertia is negligible and so the motion of the 

particles stops with the ultrasonic actuation. This demonstrates a new operational mode for these 

devices (amplitude modulation) which, in this case, led to precise control of cell-cell separation. 

However, it should be noted that this device applies a device-scale forcing, i.e. the same forcing 

is applied to objects in each pressure node within the device. This limitation comes from the low 

number of transducers. 

As the number of independent transducers increases, so does the range of patterns possible and 

the degree of reconfigurability achievable. For example, the 4-trasnducer devices can be excited 

to reconfigure the field between two pressure distribution extremes by adjusting the average 

phase of the two pairs (where �̃�𝑥 =
𝜑1+𝜑2

2
, �̃�𝑦 =

𝜑3+𝜑4

2
 and 𝜑1…4 are the phases of the individual 

transducers). As shown in Figure 3(c) this enables this type of device to produce a diagonal 

cross-like pattern of Gor’kov potential minima when �̃�𝑥 = �̃�𝑦and a dot-like pattern when�̃�𝑥 =

�̃�𝑦 + 𝜋. If the transducer pairs are excited at differing frequencies (or by using unsynchronised 

signal generators) then the pairs become independent and at long times (𝑡 ≫
1

𝜔1−𝜔2
) the dot-like 

pattern is formed. Under these conditions the force is simply given by68,  
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𝐹(𝑥, 𝑦) = 𝐹𝑥 sin(2𝑘𝑥𝑥 + ∆𝜑𝑥) + 𝐹𝑦 sin(2𝑘𝑦𝑦 + ∆𝜑𝑦).                                    (6) 

This mode of operation is advantageous as it simplifies the drive electronics because 

unsynchronised signal generators can be used. Other devices have arranged the transducers as 

regular polygons such as heptagons and these have been found to produce fields with 

symmetries reflecting the number of transducers.69 However, no detailed study showing the link 

between transducer architecture and achievable fields exists. This is an important open 

challenge as future patterning applications, such as cell seed for tissue engineering, will 

undoubtedly require specific user defined patterns. 

Inspired by the Bessel-shaped traps used in optical tweezing70, Courtney et al.72 used 64-

elements arranged in a circle to generate first order (m=1) Bessel-shaped acoustic fields,  

𝑝(𝑟) = 𝑃0𝐽𝑚[𝑘|𝑟 − 𝑟0|]𝑒
𝑖𝑚𝜃                                                       (7) 

where |𝑟 − 𝑟0| and 𝜃 = arg(𝑟 − 𝑟0) are respectively the radial distance and angle w.r.t. to a 

Bessel function centred on 𝑟0. Assuming a distribution of peripherally located elements, such as 

in the circular arrangement shown in Figure 1(c), the translation of the Bessel function centre is 

achieved by the application of a phase delays such that 

𝜑𝑛 = (𝑚𝜃𝑛 − 𝑘|𝑟𝑛 − 𝑟0|),                                                        (8) 

where, 𝜑𝑛, is the phase delay applied to the nth element, N is the total number of elements, 

|𝑟𝑛 − 𝑟0|, and 𝜃𝑛 = arg(𝑟𝑛 − 𝑟0) are respectively the radial distance and the angle between the 

element and the Bessel function centre. In equation (8), the first term produces a field that 

approximates an mth order Bessel function and the second part translates its centre. Note, as the 

number of array elements increases, so the field becomes a closer approximation to a true 

Bessel function. As shown in Figure 3(d) these fields are attractive as they consist of a low 

potential central node surrounded by a high potential circle, which forms a uniform two-

dimensional trap. This also leads to a more efficient device as the high intensity acoustic field is 

concentrated (i.e. focused) in a small region of the chamber. Using this approach, a particle 

trapped at the central node can be moved to an arbitrary location as shown in Figure 3(d). By 

linear superposition, multiple Bessel traps can be generated and moved independently.71,73 

However, interference between the traps means that, as the Bessel function shaped traps 

approach, they interfere and the trapping is lost. The authors were able to show that controlled 

approaches of the order of a wavelength were possible and that the number of independent traps 

that could be generated depended on the number of elements used. In order to finally bring 

particles together the authors used higher order Bessel functions that have a larger central nodal 

region and then by progressively lowering the Bessel function order brought the particles to a 

central point. If, for example, this array device was combined with amplitude modulation, a 
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number of different cell-cell interaction studies would be possible at different locations within the 

same device.  

Rotation of objects has also been achieved and Schwarz et al.74 showed the controlled rotation 

of non-spherical objects such as glass fibres in a 4-transducer device. They controlled the 

relative phase of the two opposing pairs of transducer, as per Figure 3(c), which resulted in a 

sequence of acoustic fields that then produced rotation of a small cylinder. Hong et al. generated 

an acoustic vortex (i.e. equation (7)) in a circular array device, as shown in Figure 1(c), and 

observed that microscopic objects trapped at the central vortex core were subject to rotation due 

to transfer of orbital angular momentum transfer.75 These examples suggest that controlled 

micro-centrifugation is possible in an LOC environment although this functionality has yet to be 

fully exploited.    

Authors Number of 
transducers 

(wave type)  

Control 
method 

Particles Size (dia.), 

m 

Freq., 
MHz 

Wavelength

, m 

Takeuchi & 
Yamanouchi, 

1994
59

 

2 (SAW) Travelling 
waves 

Glass 100 49 80 

Saito et al, 2002
54

 4 (square) Mode hopping Euglena  Ø10, length 
30-50 

2-4 750-375 

Paramecia Ø30, length 
150-200 

Haake & Dual, 

2005
55

 

4 (BW) Frequency 
shift, 

amplitude 
modulation 

Polymer 26-74 1-3 1500-500 

Haake et al, 2005
56

 4 (BW) Frequency 
shift 

MCF10A 15 1.2-2.2 1250-682 

HL60 20 

Wood et al, 2009
58

 4 (SAW) Frequency 
shift 

Latex 0.5-2 32.4 112-124 

Courtney et al,  

2011
62

 

4 (BW) Phase shift PS 10 5 304 

Orloff et al, 2011
65

 2 (SAW) Phase shift Latex 3 91 46 

Meng et al, 2011
64

 4 (SAW) Phase shift MB 0.87 19.8 200 

Breast cancer 
cell MDA MB 

453 

10 

Ding et al., 2012
57

 4 (SAW) Frequency 
shift 

PS 2-15 18.5-37 100-200 

Bovine RBC 6 

C. elegans Length 300 

Tran et al., 2012
66

 4 (SAW) Frequency 
modulation 

Silicone oil 10 34.5-37 100 

Human RBC 6-8 

Human WBC 14 

Bernassau et al, 

2012
69

 

7 (BW) Phase shift PS 10 4 375 

MDCK - 

Guo et al., 2014
67

 4 (SAW) Amplitude 
modulation 
(incoherent) 

HEK 293T, 
HeLa S3, 
HMVEC 

~15 13.35-
13.45 

~300 
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Courtney et al, 

2014
72

 

64 (BW) Independent 
phase shifts 

PS 45-90 2.35 640 

Table 1 – Summary of publications describing the development of in-plane manipulators: 

comparison of the types of particle manipulated and the length scales of the devices.  

B. Beam manipulators 

The second major class of dynamic manipulator uses propagating beams to trap and move 

microparticles as shown in Figures 1(d) and (e). The use of beams for micro-manipulation was 

suggested theoretically by Wu and Du76 and then explored experimentally using two counter-

propagating focused beams from 3.5 MHz, 12 mm diameter, 24 mm focal length transducers.77 

Latex particles with a diameter of 270 m and clusters of frog’s eggs were trapped, however, in 

these first experiments no movement of the trapped particles was performed. The focused 

transducers emit converging fields which interfere to produce a standing wave, i.e. similar in 

principle to the 1D in-plane manipulator shown in Figure 1(a), except now with a 3D manipulation 

capability due to the stronger lateral forces caused by the focusing. The disadvantage of this 

approach is that the need for two, relatively bulky, focused transducers makes observation of the 

trapped objects challenging. For this reason, these devices have seen little practical application. 

As with the other devices discussed so far, the acoustic wavelength remains larger than the 

particle (i.e. the Rayleigh scattering regime) and the manipulation forces can be described by the 

Gor’kov model. A variant on this simple beam device was realised by Yamakoshi and Noguchi 

who trapped particles in a channel at the focus of two propagating beams driven out of phase78.  

In this configuration a nodal line (and hence trapping) is created between the transducers in the 

direction of propagation. There is no trapping in the propagation direction, but the presence of 

the channel constrains the particles. 

Acoustic beam-based manipulators analogous to optical tweezers70 have recently been 

explored.79 These use a focused acoustic beam with a high frequency and a high F-number (F-

number=focal length/aperture size) to cause trapping effects at the focus. This has made 

possible the trapping and manipulation of single cells opening up a range of new applications 

which have only just begun to be explored. Crucially these beam devices are single-sided and so 

permit simple optical access for imaging. In a typical configuration the ultrasonic transducer is 

mounted below a horizontal plane on which both manipulation and imaging occur (i.e. the 

microscope mounted above). For example, Hwang et al.80 used a trapped functionalised micro-

bead to probe the mechanical properties of cells thereby transforming the beam device into a 

stiffness measurement device. The use of high frequencies (up to 200 MHz has been 

demonstrated) and hence micrometre-scale focal spot sizes, has led to the use of the term 

micro-beam to describe these devices in which the wave-particle interactions are in a regime 

where the object is comparable to, or larger than, the wavelength (i.e. the Mie scattering 

regime).81 Ray models, based on a high frequency approximation, have been used to provide 
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insight into the micro-beam manipulation process. As can be seen in Figure 5, the micro-beam 

transducer emits a series of rays which are reflected and refracted by the particle. Part of the 

momentum of the refracted rays is transferred to the particle and this causes objects of lower 

velocity than the surrounding fluid (such as lipids in water) to be drawn to the high amplitude 

focus.  Excellent experimental agreement with the ray model was achieved for relatively large 

(2a=105 m) lipid drops and wavelengths of 50 m.82 This demonstrates that the forces exerted 

by micro-beam devices can be accurately calibrated, which is important in many applications, 

particularly those involving cells. Micro-beam manipulation, has now been demonstrated 

experimentally using frequencies from 30-200 MHz on a wide selection of particles including lipid 

drops and various cells.81 Once trapped, the particle can be manipulated by physical movement 

of the transducer or through use of an array.83   

At present, despite several clear biological application demonstrations, the use of micro-beam 

devices has been low. The author speculates that this is due to two factors; the challenge and 

expense of manufacturing ultrasonic transducers to operate at these frequencies and the 

expense and experimental difficulties associated with generation and amplification of high 

voltages at these frequencies. However, it is reasonable to think that reliable and less expensive 

systems will become available in the coming years. One obvious driver is that performance 

approaching optical tweezing could be possible, but without the need for a high power laser and 

hence the associated laser safety requirements. 

To date, the high frequency (Mie scattering regime) micro-beam devices all manipulate the 

particles against a surface or membrane. Recently Baresch et al.39 developed an array based 

beam manipulator which is capable of creating a stable 3D trap. Unlike the micro-beam devices, 

their array device operates in the Rayleigh regime (i.e. 𝑘𝑎 ≪ 1) and creates a type of focused 

acoustic vortex which is shaped as a first order Bessel-function at the focus. As can be seen in 

Figure 1(e), this device can be thought of as a 3D version of the 2D array device developed by 

Courtney et al.72, both devices operating in the low frequency regime and both generating first 

order Bessel-shaped fields. However, the Baresch et al. device operates into a free-field and so 

is non-resonant in all three-dimensions. Although they only demonstrated an axial manipulation 

capability this approach naturally leads naturally to full 3D manipulation. Given that 30 MHz is 

common in medical imaging arrays, e.g. in ophthalmological applications, it can be expected that 

a range of interesting micro-scale beam devices suitable for LOC operation will emerge in the 

coming years.84 

Author Particles Size (dia.), m Frequency, MHz Wavelength, m No. elements 

Wu, 1991
77

 Latex 270 3.5 429 2 

Frog’s eggs - 

Yamakoshi & 

Noguchi, 1998
78

 

PS 30 5 304 2 
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Lee et al, 2009
79

 Lipid drop 126 30 50 1 

Lee et al, 2011
81

 K562 
Leukaemia cell 

10 200 7.5 1 

Zheng et al, 2012
83

 PS 45 26.3 57 64 

Hwang et al, 

2014
80

 

PS 5 193 8 1 

Baresch et al, 

2016
39

 

PS 190-390 1.15 1304 127 

Table 2 – Summary of publications describing the development of beam manipulators: 

comparison of the types of particle manipulated and the length scales of the devices. 

C. Planar array manipulators 

This section describes devices known as planar arrays or lateral manipulators. Figures 1(f) & (g) 

show 1D and 2D planar arrays in which resonance is used in one direction and manipulation is 

achieved in a line or plane orthogonal to that direction. The concept was introduced by Kozuka et 

al.85 who created a one-dimensional manipulator based on this principle by placing a reflector 

parallel to a 2.19 MHz 1D array with 30 mm separation. They observed that if a small number of 

the array elements were excited then 80 m alumina particles collected in the nodes which form 

a line between the activated elements and the reflector. By slowly switching the activated 

elements along the array, the particles could be made to move laterally, following the activated 

elements. Glynne-Jones et al.86 demonstrated a similar concept but now on a microfluidic scale. 

They used a 1D array to create a half-wavelength resonance in a 300 m channel and 

demonstrated that 10 m polystyrene spheres could be transported along the device. They were 

able to show that the agglomeration and transport effects originate directly from the velocity term 

in the Gor’kov potential function (equation 1) which acts to pull particles laterally into the centre of 

the node. However, they also observed that the relatively shallow gradients typically established 

in the lateral direction gave rise to relatively weak manipulation forces (lateral force was 2.3 pN 

and the force in the vertical resonant direction was 206 pN).  The result being that only slow 

lateral manipulation was achieved. It is worth noting that a similar planar resonator approach was 

implemented to manipulate matter in air and bring two millimetre-sized objects together.87 

Recently Qui et al.88 extended this idea to two-dimensions by creating resonances between the 

elements of a 7.5 MHz, screen-printed 36-element 2D array and a glass reflector. They were 

able to demonstrate 2D manipulation of an agglomerate of 10 m polystyrene spheres. This 

device is attractive as it was manufactured with readily available micro-fabrication techniques 

which would lend themselves to scale-up. The recent development of an optically transparent 

transduction system also offers the potential to overcome the poor quality bight field imaging that 

is one drawback of these devices (the planar arrangement means that the transducer surfaces 

are always imaged with the particles)89. In an interesting hybrid device, Guo et al.68 used a 4-

transducer SAW device to position particles in a horizontal plane and a planar resonance (in 
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conjunction with streaming) to move them against gravity and hold them in the vertical direction. 

This combined forcing approach creates a new route to limited 3D manipulation which could be 

useful for biomedical applications such as scaffold assembly in tissue engineering. 

Author Number of 
transducers 
(geometry)  

Control 
method 

Particles Size (dia.), 

m 

Frequency, 
MHz 

Wavelength, 

m 

Kozuka et 

al, 1996
85

 

15 (1D array) Aperture 
movement 

Alumina 80 2.19 685 

Glynne-
Jones et al, 

2012
86

 

12 (1D array) Aperture 
movement 

PS 10.3 2.52 595 

Qui et al,  

2015
88

 

36 (2D grid 
array) 

Aperture 
movement 

PS 10 7.52 199 

Guo et al, 

2016
68

 

4 (Square) Phase & 
amplitude 

PS 4.2-10.1 13 300 

3T3 and HeLa S3 
cells 

- 

Table 3 – Summary of publications describing the development planar array manipulators: 

comparison of the types of particle manipulated and the length scales of the devices. 

III. Discussion and future prospects 

Dynamic-field devices offer the prospect of high levels of control over the position of multiple 

micro-scale objects and are well suited to integration into LOC environments. Table 4 

summarises the current capabilities of the manipulation devices covered by this review and 

arranged according to the classification scheme shown in Figure 1. The simpler dynamic-field 

devices, such as the 4-transducer devices, have now been demonstrated on applications that 

require operations such as translation of the acoustic radiation force field.15,25 In parallel with this 

application development of the simpler devices, more complex devices have emerged that have 

new functionalities.73 These devices are only just starting to find application, and the section 

below discussed their potential.81  

The simple in-plane devices (see Figure 1 (a) & (b)), either using SAW or bulk waves, have seen 

the greatest research interest and have now been extensively demonstrated in the widest range 

of LOC application scenarios. Some of this technology, for example the classic 2- and 4-element 

SAW and bulk wave devices, is now moving to maturity. These devices have been demonstrated 

in assembly operations that require a single pattern with a single particle type, i.e. no dynamic 

manipulation.  This now includes numerous examples in tissue engineering6,90 and materials 

assembly20,18. Given that these devices are now in wide-spread use by the research community, 

the focus of the current work is on their application and their integration with other electronics, 

microfluidics or other LOC systems. Indeed, their inherent integratability is emerging as a strong 

point of ultrasonic manipulation technology. However, the addition of a manipulation or 

reconfiguration capability leads to the possibility of performing multiple and more sophisticated 

operations within a single device. Application examples of these dynamic devices are growing 
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and include the creation of co-cultures in tissue engineering15, the careful control of cell-cell 

distances as a biological research tool67, or dynamically shaping composite materials25. 

 

Class Figure Sub-

class 

Field 

shape 

Manipulation 

methods 

Manipulation 

capability 

Independent 

motion 

Wavelength 

range 

Cells 

tested 

In-

plane 

1(a) 2-

element 

Lines Phase 1D translation No 46-1500 Yes 

Frequency 1D stretch 

1(b) 4-

element 

Grid Phase 2D translation No Yes 

Frequency 2D stretch 

Amplitude 2D translation 

1(c) Array Wide range Phase 2D Arbitrary Yes 375-640 Yes 

Beam 1(d) Mie 

Regime 

Focused Phase 2D Arbitrary Yes 8-57 Yes 

1(e) Rayleigh 

regime 

Focused 

first-order 

Bessel-

beam 

Phase 3D Arbitrary Yes 304-1304 Yes 

Planar 

array 

1(f)&(g) 1D or 2D Local 

resonance 

Amplitude 

(on/off) 

2D Arbitrary 

(limited by 

element size) 

Yes 199-703 Yes 

Table 4 – Summary of manipulation methods and capabilities of dynamic and reconfigurable 

devices. 

This paper has described the wide range of manipulation functionalities now possible with 

dynamic-field devices (i.e. Table 4). Exactly how this increased functionality will be best deployed 

to solve application challenges is uncertain. One example is the user driven manipulation seen in 

optical tweezers in which operator views and controls the manipulation on a microscope. 

However, another alternative is completely automated operation in which particles are 

manipulated in a closed LOC environment.91 A key enabler here is that the electronics required 

to drive and control these acoustic manipulation systems is inexpensive and can be both 

miniaturised and integrated. Indeed, the challenge of achieving this new functionality within a 

LOC environment remains one of the open problems in micro-particle manipulation. Courtney et 

al.73 made some progress in this direction when they used an array to trap up to three 90 m 

polystyrene spheres and moved them independently using a superposition of first-order Bessel 

shaped fields. In this device, the particle separation had to be maintained at above a wavelength, 

or interference between the traps caused the trapping to be lost. The use of an array with many 

elements, all of which need to be controlled, makes the devices and the electronics more 

complex. This means that these devices will only see widespread usage if the expense of these 

systems can be justified. Given this expense, there are now challenges in the design of robust 

dynamic devices with the minimum level of complexity necessary to solve the emerging 

application challenges. In this way devices with limited, application specific reconfigurability, will 

emerge. 
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In the future, more sophisticated control strategies may emerge to overcome current limitations in 

the range of acoustic fields that can be produced and hence lead to even more versatile 

manipulation capabilities. One possible approach is to cast the manipulation challenge as an 

optimisation problem.92,93 Here a design requirement, such as point-like or other shaped traps, is 

encapsulated in an objective function. The parameter space, e.g. the amplitudes and phases of 

the excitation signals, is then exhaustively searched for optimal solutions. This approach can 

potentially open up new manipulation capabilities, however, it is preferable to use well-formulated 

analytical expressions for device control, assuming they are tractable.  

Device performance is governed by operating frequency as this sets the texture of the acoustic 

field, in a similar way to how it determines resolution in imaging. This analogy is a close one and 

it seems reasonable to assume that future acoustic devices will be diffraction limited.  This 

means that the acoustic field will contain no features smaller than the point spread function of the 

device, which, taking the example of the circular in-plane devices would be the size of the central 

maxima of the zeroth order Bessel function (i.e. 0.76). For high-frequency micro-beam devices 

this performance limit is extremely small (i.e. =5m at 200 MHz), but manufacturing difficulties 

mean that most of the micro-beam devices manufactured to date have been monolithic, 

manipulation only being possible by mechanically moving the transducer.  It is easy to imagine 

that in the future multiple micro-beams or array-based micro-beams could be used to undertake 

very sophisticated manipulations.  

Despite the spatial resolution limit, significant progress has been made in the manipulation of 

clusters of particles. Much of this is due the presence of secondary radiation forces which cause 

multiple particles to be held tightly within a trap due to attractive acoustic inter-particles forces.2 

For example, Lee et al.94 trapped and manipulated a hexagonal arrangement of lipid 

microspheres (80 m) at the focus of a 24 MHz ring-shaped micro-beam manipulator. In this 

case the hexagon aligned with the first side-lobe of the focused field. On a larger scale, Figure 5 

shows results from Owens et al.95 in which many spheres and hexagons are assembled in close-

packed arrangements at a nodal plane, due to a combination of self-assembly (i.e. as close-

packing is energetically optimal) and secondary radiation forces, which cause the particles to be 

attracted to each other.  

The above discussion suggests the potential for using ultrasonic manipulation in combination 

with other assembly modalities, e.g. self-assembly. To date these hybrid approaches have 

garnered relatively little attention, but the relevant literature is reviewed by Glynne-Jones and 

Hill.96 The simultaneous operation of optical and acoustic manipulation devices has attracted the 

most attention, perhaps due to the complementary size of the objects these techniques can most 

easily manipulate; optical tweezers performing best in the 0.1-10 m range and acoustic devices 

being most commonly deployed from 1 m upwards.97,70 More recently, Chen et al. used a 
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combination of acoustic radiation forces and forces due to the electrical field present in a SAW 

device to produce a new patterning effect in silver nano-rods which included starbursts patterns 

at the nodes.19 This is particularly interesting as it suggests a route by which ultrasonic 

manipulation could be extended to nano-scale applications. This is an important area as recent 

year have seen much interest in the use of nano-scale additives for a wide range of applications 

including drug delivery and improved mechanical performance.98  

Crane et al. describes the huge diversity of micro- and nano-scale manipulation challenges 

facing modern manufacturing, both in the biomedical and engineering sectors.99 It is apparent 

that ultrasonic manipulation is yet to take its place alongside such technologies such as 

physically contacting micro-grippers and dielectriphoresis (DEP). To date the main industrial 

applications for ultrasound in assembly have been limited to alignment with respect to sensors, 

aggregation, and to a lesser extent patterning. However, the reconfigurable ultrasonic 

manipulation tools that have emerged in recent years have many advantages over current 

manipulation technologies. Perhaps the most important advantage of acoustic methods is their 

ability to manipulate a very wide range of materials including handling cells without causing 

damage. This ability to handle cells without damage stems from the relatively low energies 

associated with ultrasonic particle manipulation, e.g. acoustic pressures in the range 10-100 kPa 

are reported to be sufficient which, assuming plane travelling waves equates to a low intensity of 

0.07-7 nW/m2. Given the emerging capabilities of ultrasonic manipulation devices described 

here and the rapidly expanding requirements for micro- and nano-assembly, it seems highly 

likely that the use of ultrasonic devices will increase dramatically over the coming years. 
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Figure 1. Schematic representations of the different dynamic ultrasonic micro-scale 

manipulators.  With the exception of d) the acoustic fields are shown as normalised Gor’kov 

potentials of dense particles in water. In a)-c) the frequency has been lowered to enable the 

field to be more clearly visualised; d) shows the pressure field at based on the 30 MHz 

device of Lee et al.79 and the particle is approximately to scale w.r.t. the transducer; e) is 

based on the device of Baresch et al.39; f) and g) show half wavelength resonances in the 

vertical direction and are based on the devices of Glynne-Jones et al.86 and Qui et al.88  

respectively. 
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Figure 2. Ultrasonically assisted 3D printing of composite materials - glass fibres (dia. 15 m 

and length 50 m) assembled in photo-curable epoxy resin. The image, which is a small 

region of a larger printed layer, demonstrates the creation of orthogonally aligned 

reinforcement within the same printed layer, with the target microstructure shown in inset. 

For clarity, the region containing fibres has been highlighted in blue. 
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Figure 3. Acoustic fields of various dynamic devices shown as normalised Gor’kov potential 

for dense particles in water; (a) Frequency control in an opposed pair producing a stretch. 

The remaining figures assume 5 MHz. (b) phase control in an opposed pair producing a 

translation; (c) phase control (the average phases, �̃�𝑥 and �̃�𝑦 of each opposed pair is 

controlled) to shift between field patterns in a 4-transducer device; (d) movement of the 

central axis of a first order Bessel beam by controlling the phase of the sinusoidal signal 

applied to the elements in a 64-element circular array. In all cases the fields were produced 

using a 2D Huygen’s model, neglecting reflections, in the plane of the device.  
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Figure 4. [from fig. 2 in Gesellchen et al.15] Composite of fluorescent micrographs taken after 

patterning fluorescently labelled C2C12 cells. Cells are stained with MitoTracker Red, 

MitoTracker Green and Hoechst 33342, scale bar 100 μm. 
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Figure 5. Schematic diagram showing a ray model of a micro-beam manipulation device 

operating in the Mei scattering regime. Rays start in the surrounding medium 1 (typically 

water) and enter the particle of medium 2 (which has a lower speed of sound than the 

surrounding media). Two rays are shown, one of higher intensity (H) than the other (L). The 

refracted ray carries momentum and this means that there is a net force, FT, towards the 

high amplitude rays. Scattering forces, FS, due to reflection cause the particle to be pushed 

axially and an acoustically transparent surface of medium 3 (alternatively a layer) is needed 

to balance this force.  
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Figure 6. [from Fig. 8 in Owens et al.95] Micrographs of acoustically assembled colloidal 

crystallites. (a) Fluorescent micrograph of 10 m spheres assembled into a hexagonally 

close packed arrangement. (b) Optical micrograph of 50 x 10 m circular tiles assembled 

into a hexagonally close packed arrangement. (c) Optical micrograph of 50 x 10 m square 

tiles assembled into a square close packed arrangement. (d) Optical micrograph of 50 x 

10 m hexagonal tiles assembled into a hexagonally close packed arrangement. Scale bars 

are 50 m. 
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