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streamlines due to inertial lift forces. Theories predict different scaling laws for these forces an!
there is little experimental evidence by which to validate theory. Here we experimentally measur 3

the three dimensional positions and migration velocities of particles. Our experimental methce
relies on a combination of sub-pixel accurate particle tracking and velocimetric reconstruction ui
the depth dimension to track thousands of individual particles in three dimensions. We show the.
there is no simple scaling of inertial forces upon particle size, but that migration velocities agrer.
well with numerical simulations and with a two-term asymptotic theory that contains no unmes

sured parameters.

Introduction

Inertial migration; the systematic movement of particles across
streamlines due to finite Reynolds number forces, is exploited in
systems to separate, focus and filter particles and cells!. Though
there are many theories for the magnitudes of inertial focusing
forces, direct experimental measurement of these forces remains
an unmet challenge. Indeed existing theory®™, numerical simu-
68 and indirect experimental measurements® have pro-
duced contradictory scalings for the dependence of forces on par-
ticle size and velocity. In this paper, we directly measure inertial
migration velocities by tracking the motion of particles in a rect-
angular channel over Reynolds numbers ranging from 30 to 180,
and find that their measured migration velocities agree well with
existing asymptotic theory>.

lations

Inertial migration of neutrally buoyant particles was first re-
ported in flows through circular pipes'®. In a pipe with ra-
dius R, particles are inertially focused into a ring with radius
approximately 0.6R. Furthermore, particles with different sizes

are focused at different rates and to rings with slightly different
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radii''-1>. However, microfluidic channels are more readily buil.
with a rectangular geometry, in which particles are inertially fo-
cused to either two or four stable equilibrium streamlines®. F.-
cusing occurs in two phases, with apparently well-separated nat-
ural time scales: (Fast phase) first particles quickly focus to &
two-dimensional manifold of streamlines and then (Slow phase®
particles travel within the manifold to one of the focusing stream-
lines. Two stage focusing has been experimentally measured !,
and is consistent with numerical simulations of the spatial patterr
of lift forces across the channel cross-section®7-817,

Focusing in rectangular channels has been studied asymptoti-
cally, generating disagreement over the scaling of the inertial lift
force. Recent asymptotic studies®*1® predicted that the inertia:
lift force Fy. is proportional to the fourth power of the particle ra
dius a, i.e. Fj ~ a* This scaling hinges on the assumption that
the particle radius is asymptotically smaller than the channel size,
a < H. Di Carlo et al showed that the ¢* scaling did not agree with
6, Rather, the numerical data suggested
Fy ~a®. Hood et al® extended the asymptotic analysis of Ho &
Leal®. The resulting scaling law F; ~ cia® +¢5a°, reconciles the
asymptotic scaling F; ~ a* in the limit « < H with the numerical
data of Di Carlo et al® up to experimentally used particle sizes, in
which a ~ H. By contrast, Saffman’s asymptotic study of inertial
lift force assumes that the particle experiences an external force
in the direction of flow in addition to the inertial lift force2. Using

numerical simulations
3
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Fig. 1 Reconstruction of particle focusing velocities and three dimensional positions in a rectangular channel. (A) Schematic of the inlet of the
channel. (B} Reconstructed probability density function (PDF) of particle distributions across the channel cross-section for 10 um particles at Re = 30
shows that within the first 1 mm of the channel particles are initially focused to two narrow bands of sireamlines (density shown in grayscale). (C) After
1.5 cm of inertial focusing, the same particles are fully focused to two streamlines on the channel mid-line. (D) A hybrid PIV-particle tracking scheme
is used to track the particles, green circles show particles in present frame, magenta circles show the particles in the next frame. (inset) Template
matching (blue circle) allows particle center to be located with sub-pixel accuracy. (E) Representative trajectories of six particles tracked over 700 us.
(F) Numerically computed downstream particle velocity as a function of x and y positions across the channel cross-section: using this plot and the

particle velocity in the z-direction, we can compute its y—position.

an indirect experimental measurement of inertial focusing, Zhou
and Papautsky? report that F; ~ 42, in agreement with Saffman.
But they do not explain why Saffman’s result applies to particles
that are traveling freely with the flow of fluid.

Here we present the first reconciliation of predictive theory and
direct experimental measurement of inertial migration velocities.
While holographic techniques have been used to measure 3D par-
ticle distributions and velocities in microfluidic capillaries 16:19-21
but to the best of our knowledge holographic techniques have not
been used to measure inertial migration velocities. In this paper
we propose an alternative to holographic techniques for measur-
ing the 3D positions and velocities in PDMS microchannels. Our
method allows accurate measurement of particle migration veloc-
ities in two dimensions, and via a velocity-based reconstruction
method, of their position in the third dimension. This method
provides position readouts for thousands of particles and allows
particle positions and particle trajectories to be measured. Thus,
our method provides the first direct measurement of inertial mi-
gration velocities. In addition to verifying the existence of a slow-
focusing manifold, our position measurements show that signifi-
cant inertial focusing occurs while particles are funneled into the
channel, and that once this contribution is accounted for, inertial
migration velocities agree fully with an asymptotic theory>.

Experimental methods

Inertial focusing was measured in a 1.5 c¢cm long PDMS mi-
crochannel fabricated using Sylgard 184 PDMS kit (Dow Corning
Corp.) bonded to a glass slide as shown in Duffy et al?2. The mi-
crochannel mold was fabricated using KMPR 1025 (MicroChem).
The channel cross-section dimensions were 90um x 45um (W x
H), respectively, with the shortest dimension identified as the

2| Journal Name, [year], [vol.],1—11

depth (y) dimension (Fig. 1A) and the longer dimension as the
width or lateral dimension (x). The schematics of the channel
are displayed in Fig. 1A. Particles enter the channel through an
contracting inlet region whose depth is constant (45um) and ta-
pers in width from 1.5 mm to 90 pum over a 2.4 mm downstream
length.

The particles were dispersed at 0.004 volume fraction in a sus-
pending fluid composed of deionized water and 0.002 (wt/vol)
triton X-100. This suspension was pumped into the channel at
controlled flow rate using a syringe pump (Harvard Apparatus,
Holliston MA). The solutions were infused using PEEK tubing
(Idex: 1/32” OD*0.02” ID*5ft). The polystyrene spherical par-
ticles were chosen to be near-neutrally buoyant with a particle
density of 1.05 g/cm>. The particle density does not match the
density of the suspending fluid (density 1.00g/cm?), never the
less the effects of sedimentation can be ignored in this experi-
ment. The sedimentation velocity can be determined by balanc-
ing buoyancy force with the drag force for a sphere. For this ex-
periment, the sedimentation velocity is at most 10um/s, meaning
that the particles sediment a distance of less than 0.3 gm over the
entire length of the channel. Therefore, sedimentation effects are
negligible compared to the downstream velocity (~0.6m/s) and
inertial migration velocity (~3mm/s).

The channel Reynolds number is defined by Re = UH /v, where
v =1 x 107® m?/s is the kinematic viscosity of deionized water at
room temperature, H = 45um is the short dimension of the chan-
nel, and U is the average fluid velocity in the channel. The ratio
of particle size to channel size is defined by a = a/H, where a is
the particle radius, and the particle Reynolds number is given by
Rep, = o’Re = Ua?/vH. Four particle radii were separately used,
a=24,5,6,and 9.5um, along with four different total flow rates
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0 = 160, 320, 640, and 960uL/min, corresponding to a range of
channel Reynolds numbers Re = 30 — 180 and particle Reynolds
numbers Re, = 0.08 —3.2. The maximum Reynolds number of
180 was chosen to avoid delamination of the PDMS from the glass
slide, while the minimum Reynolds number of 30 was chosen so
that the inertial particle migration rate would be observable in
the channel of length of 1.5cm.

Particle velocities were tracked by high speed imaging (14000
frames per second and 2us exposure time, using a Phantom V710
camera) over the first and last 1 mm of the channel. The mi-
crochannel was viewed from above using a microscope (Nikon Ti-
U) with 4x objective with effective pixel size of 3um. The depth
of field is listed to be 50 um by the manufacturer, however blurry
particles are still observable even for a range of upwards of 200
um, so that the particles can be observed over the entire channel
depth. For all diameters and velocities, particles were eventually
focused to two streamlines on the mid-plane x = 0 (Fig. 1B-C).

Determining the particle migration velocity

High speed videography provided only x- and z- (lateral and
streamwise) coordinates for each particle, and provided no direct
measurement of the particle depth (y-coordinate). We measured
the x- and z- velocities by hybridizing particle image velocimetry
(PIV) and particle tracking, similar to an algorithm previously de-
veloped for tracking fluorescent organelles23. First, we use the
PIV code MatPIV24 to develop a vector field representing the dis-
placements of all particles from one frame to the next. Second,
template matching is used to align a template consisting of a sin-
gle 8x8 pixel image of a particle with both the first frame and
the next. The template matching process gives a single correla-
tion value for every pixel in the image, representing how closely
the template matches the real image centered at that pixel. Then
we use cubic polynomials to interpolate the correlation data and
find each particle location with sub-pixel precision. After locating
particles in both frames, the PIV velocity field is used to predict
the particles’ locations in the subsequent frame. We identify the
detected particle in the next frame that is closest to this predicted
location. The particle tracking adjustment allows us to correct PIV
velocity fields to obtain sub-pixel accurate particle displacements
(Fig. 1D).

Multiple frames are needed to measure the migration velocity
since the lateral displacements of particles over a single frame
are typically sub-pixel. Indeed, inertial migration velocities are
typically two orders of magnitude smaller than particle down-
stream velocities (3 mm/s in a typical experiment compared to
0.6 m/s downstream velocity). To accurately measure the migra-
tion velocities, we track single particles over at least 10 consecu-
tive frames, and average their total lateral displacement over all
of these frames (Fig. 1E).

We reconstruct the y—positions of the particles using a numer-

This journal is © The Royal Society of Chemistry [year]

Lab on a Chip

ical prediction of the downstream velocity. We used a finite-
element model built in Comsol Multiphysics (Comsol, Los An-
geles) to compute the downstream velocities for force-free and
torque-free finite particles whose size matched the experiments®
located anywhere within the channel (Fig. 1F). The Stokes
timescale 7, = 2pa®/9u, gives a measure of the time needed for
a particle at any point in the channel cross-section to accelerate
until it is both force and torque free. For the particles in our study
Ty = 5 — 80 us, is much less than a typical tracking time of 700 us,
so particles are effectively force-free and torque-free throughou:
their migration. Downstream velocities vary across the depth o~
the channel, with no slip boundary conditions on the upper anc
lower walls of the channel and fastest velocities attained on the
mid-plane of the channel. For each x-position there is a two-to
one mapping of downstream velocity to particle depth, allowing
particles to be assigned one of two y—coordinates that are sym-
metric about the depth mid-plane y =0 (Fig. 1F).

We measured the two dimensional probability density function
(PDF) for the x— and y— coordinates of particles at the entranc:
to the microchannel and after 1.5cm of inertial focusing (Fig. 1B-
C). Particles within 1mm of the microchannel entrance are no.
uniformly dispersed in channel depth but instead are focused to «
thin band of y— coordinates (Fig. 1B). We call this phenomenor
pre-focusing because it is a consequence of inertial migration thai
occurs in the contracted inlet region before the particle enters the
channel. Along the channel, particles move laterally within this
band until they are also focused close to the channel center-line,
with typically 71% of particles focused to within 4 um of the fc
cusing streamline after traveling 1.5cm through the microchannel
(Fig. 10).

The thin band on which particles are concentrated in the firs.
1 mm of the channel coincides with an asymptotic calculation frr
the slow manifold, described in more detail below (Fig. 3A-D).
Since the particles are already focused to their slow manifold, thc:
observed lateral migration within the microchannel represents
only the second phase of particle focusing, i.e. the migratior.
of particles along the slow manifold to their eventual focusing
streamline (Fig. 4).

Validation of the reconstruction algorithm

In order to validate the measurement of particle heights via tlic
velocimetric method, we ran the following experiment to inde-
pendently measure the particle heights. Since particles outside
the focal plane appear blurry, we exploit this blurriness to dis-
tinguish particle heights. We will call this method the laplacian
algorithm, because it uses the discrete Laplacian to measure the
sharpness of the edges of the particle.

The experiment is designed as follows: we vary the focal plane
height of the microscope and at each height measure the number
of particles that appear to be in-focus. In this experiment there

Journal Name, [year], [vol.], 1113
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Fig. 2 Validation measurement for Re = 1 and a = 6um. (A) Raw image
of particles with focal plane height of 6um above the bottom of the
channel. The laplacian algorithm measures only one particle to be in
focus (inside green box). (B) Experimental calibration of the particle
height measurement. The PDF of particle height compares well
between the velocimetric algorithm (blue square) and the laplacian
algorithm (orange asterisk).

are two potential sources of blur: out-of-focus blur and motion
blur. In order to reduce the motion blur, we ran this experiment
at Re = 1 and flow rate Q = 5ul/min. We used 12um diameter
particles and kept the exposure time constant (2us) and reduced
the frame rate to 500fps. During the experiment the focal plane
is raised in 6um increments. We measured these increments us-
ing a Nikon inverted microscope with programmable focus, which
allows the focal plane to be precisely controlled.

The laplacian algorithm works as follows. We average the dis-
crete Laplacian on a 7 x 7 pixel sub-image around the particle to
get a single laplacian measurement for each particle. A larger
value indicates the particle is more in focus, and we can refer-
ence each value against a calibration measurement to measure
the relative height of the particle to the focal plane. The calibra-
tion measurement comes from running the laplacian algorithm
on stationary particles resting on the bottom of the channel at
various focal plane heights.

At each focal plane height we count the number of particles
that are measured to be within 3um of the focal plane via both
the laplacian and velocimetric algorithms. Recall that the recon-
struction algorithm cannot distinguish between particles in the
top half of the channel and the bottom half, so we use the lapla-
cian algorithm to make that distinction.

A comparison of the PDF of particles via the velocimetric algo-
rithm and particles via the laplacian algorithm shows good agree-
ment (Figure 2). We observe that the particles are much more
likely to be in the bottom half of the channel. This is to be ex-
pected, since at Re = 1 sedimentation is a significant effect, indeed
we predict that particles should sediment 9um over the length of
the channel.

The two algorithms produce consistent results in experiments
where both algorithms can be used. The velocimetric algorithm

4| Journal Name, [year], [vol.],1-11

has two major advantages over the laplacian algorithm. First,
the velocimetric algorithm is much more precise: we can mea-
sure heights to a precision of less than a micron, whereas the
laplacian algorithm depends on the precision of the focal plane
height (in this case, 3um). Second, the velocimetric algorithm
can be used at much larger Reynolds numbers than the laplacian
algorithm since motion blur does not interfere with the height
measurements.

Theory of inertial migration

We adapt the asymptotic theory developed by Hood et al® for
square channels to predict the inertial forces in rectangular chan-
nels. Since numerical experiments show that viscous stresses
dominate momentum flux terms over the entire fluid filled do-
main, V, we can perform a regular perturbation expansion in the
particle Reynolds number Re,,, treating the viscous and pressure
stresses as dominant terms, and the inertial stress as a perturba-
tive correction.

We use the Lorentz reciprocal theorem?2® to represent the iner-
tial lift force Fy, as a volume integral that involves the following
three solutions of Stokes equations (Re, = 0): (1) @, the undis-
turbed flow through the channel, (2) u, the solution for a force-
free and torque-free sphere moving through the microchannel,
and (3) a test velocity i for the slow (Re, = 0) movement of a
particle in the lateral direction in a quiescent fluid. The total force
on a particle that is constrained from migrating across streamlines
can be written as an integral:

FL:Rep/ﬁ-(ﬁ-Vu+u~Vﬁ+u-Vu)dv. (1)
1%

To expose the role played by particle size in determining the lift
force,we expanded u and ii as a two-term series in £, the ratio of
the particle radius to the channel depth. The lift force Fy at the
point X, in the channel can be expressed as a two term asymptotic
expansion with coefficients ¢4(x;) and e5(xg). Specifically,
2 4
FL (XO) = lljiza

[C4(Xo) + %Cs (xo)|, (2)

where p is the fluid density, H is the channel depth, and U is the
average velocity of the undisturbed flow. The coefficients e4(xg)
and ¢5(x() are dimensionless constants including both analytical
and numerically computed components, and that depend on the
location of the particle xy and the aspect ratio of the rectangular
cross-section. A text file giving the values of ¢4(xy) and e5(xp)
for a grid of particle locations is included in the supplemental
materials.

The method above, which adapts the results from Hood et al®
for a channel with aspect ratio two, gives only the focusing force
on a particle that is not free to migrate across streamlines. The
particles in our experiments are free to migrate under inertial fo-

This journal is © The Royal Society of Chemistry [year]
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cusing forces. We find the migration velocity u,, = (u,v,) of @
force-free particle by equating the lift force (2) with the drag force
computed for a particle translating with a general velocity u,, 26.
This drag force can be evaluated by the method of reflections, to
the same order of accuracy as equation (2):

6mpaluy,(Xo) +uin(xo)] = Fr(xo), (3)

where u;,, is the leading order backflow created at xy due to the
walls of the microchannel. Furthermore, w;,(X¢) is the first or-
der correction calculated by the method of reflections for a small
sphere migrating across streamlines and therefore is linearly re-
lated to the lift force F(xp), namely there exists a matrix S(xg)
such that w;, () ~ S(x¢) - F(x¢). The terms of S(xp) are deter-
mined by computing the reflection @, of the test velocity @ and
evaluating at the center of the particle xy. More specifically, de-
note the method-of-reflections correction for a point force located
at xo and and pointing in the direction e; by i, ;(xp). In this case
S(x9) = S;j(xo) is defined as:

Sij(x0) = (li2,i(x0) - ). )
Rearranging the terms above for the migration velocity gives:

FL(x0)
6mua

a
wn(x0) = [1+ 5S(x0)| ®)
The pre-factor here represents the tensorial mobility of the parti-
cle.

We are interested in how particles travel due to this migration
velocity, which can be computed at any point xq in the channel.
Let X(r) = (X(¢),Y(r)) be the location of a given particle in the
channel cross-section as a function of time 7. For a particle mi-
grating due to inertial lift forces:

o =i, X(0)=(.0). ©)
t

The slow-focusing manifold is evaluated numerically by advect-
ing particles according to (6) and finding the curve A which is
invariant under (6). Note that A depends on the relative parti-
cle size f;. At any point X in the channel, the migration velocity
satisfies

2.3

Ula [I+ gS(xo)] . [C4(x0)+ %CS(XQ)} .

uy(Xo) ~ 671'[1H2 H

where the coefficients ¢4(x¢) and ¢s(xp) are the same as those
calculated in (2).

The limiting assumptions in the development of equation (7)
are twofold: (i) in order to make our regular perturbation expan-
sion we assume Re,, < 1 and (ii) in order to represent the particle
by a singularity we assume that the particle is much smaller than
h the distance from the particle to the wall, a < h ~ %H . How-
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Fig. 3 PDF of particle location in the upper half of the channel, with th_
gray scale indicating density. The predicted manifold (solid yellow line) =
a good approximation of the measured manifold (dashed orange line).
The particle size and Reynolds number in each figure are: (A)

a/H = 0.053 Re =30; (B) a/H = 0.11 Re = 30; (C) a/H = 0.13 Re = 30;
and (D) a/H = 0.13 Re = 60.

ever, in practice conditions (i) and (ii) can be relaxed to a large
set of values for Re, and a. Hood et al® show that, because thc.
presence of the walls diminishes the size of the inertial term ir
the NSE, empirically this model is accurate up to Re, < 7. Fur-
thermore, Hood et al® empirically that the particle size limitatior
can be relaxed to o < 0.2. In our experiments we have Re,, < 3.2
and a < 0.21, so equation (7) should be a good approximation ~*
the migration velocity.

The prediction of the focusing manifold A compares well to the
measured manifold in experiments (Fig. 3A-D). The measurec
manifold is found by fitting a quadratic polynomial to the mea
sured (x,y) locations of all the particles. Even though our theorv
assumes that Re, < 1, the predicted manifold A is a fair approx-
imation even when Re, = 1.01 (Fig. 3D). Additionally, deforma-
tion of the PDMS channel has been reported at higher Reynold-
numbers2’, which is not taken into account in our theory.

Lateral migration velocities along the manifold quantitatively
agree with the asymptotic theory in equation (7). We filtered the
measured velocities to select particles that were within a distance
2.25um of the slow manifold. We then binned these particles into
3 um x—intervals, and averaged migration velocities for particles
within the same bin. Experimental measurements of migration
velocity along the slow manifold agree almost exactly with the
asymptotic prediction of the migration velocity along the theoret-
ical manifold (Fig. 4A-D) including different particle sizes and
flow speeds.

1-1115
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Fig. 4 The measured migration velocity along the measured manifold
(black markers) agrees quantitatively with the asymptotic theory (blue
line) in equation (7) and numerical solution of the NSE (orange dashed
line). The particle size and Reynolds number in each figure are: (A)
a/H =0.053 Re = 30; (B) a/H = 0.11 Re =30; (C) a/H = 0.13 Re = 30;
and (D) a/H = 0.13 Re = 60.

There are no free parameters in the prediction of the migration
velocity in equation (7). The asymptotic result supports that uy, o«
U?, just as was found in previous numerical simulations®. The
asymptotic theory also shows that migration velocity has no clear
power law dependence on particle size. This asymptotic theory
is most accurate for small particle sizes and moderate Reynolds
numbers; in practice requiring that {; < 0.2, and that channel
Reynolds number Re < 80.

Dependence of focusing forces on particle
size and Reynolds number

We performed similar analysis of migration velocities for parti-
cles of different sizes and for different flow velocities. Note that
the migration velocity is a vector field w,, = (u,vm), and recall
that in our experimental setup, we can only measure the slow
phase of inertial migration. This corresponds to measuring the
x-component u,, of the migration along the manifold. We define
the average migration velocity (u,) as the average of —sign(x)uy,
over all bins, where u,, is first averaged in each bin. The —sign(x)
factor prevents left and right sides of the channel from canceling
since u,;, is an odd function across x = 0.

Average migration velocity (u,,) does not have a power law de-
pendence upon particle size a, but agrees quantitatively with (7).

2
B 10 7
1 10 :
i 10° 3
=102 101 &£ :
102 10" 10° 10’ 102
a/H Re

Fig. 5 (A) Over the range of measured particle sizes there is no simple
power law for the dependence of migration velocity upon particle size, a.
Here we fixed Re = 30 and varied particle diameter (dashed green line:
a® scaling law, blue line: Equation (7), black circles: measured average
migration velocity + s.e., orange stars: numerical prediction of average
migration velocity). Zhou and Papautsky’s® indirect measurements
(purple squares) show a similar trend, but are an order of magnitude
smaller. (B) Average migration velocities scale like U2. Here we fixed
particle diameter at d = 12um and varied the flow rate (blue line:
Equation (7), dashed orange line: numerical fit of U? with one free
parameter, black circles - measured average migration velocity+ s.e.).

For very small particles, migration velocities increase with a3 scal-
ing law, as predicted asymptotically>#, but this power law breaks
down even at small particle sizes. Incorporating an extra term in
the series expansion produces good fit up to # = 0.16 in our data.
To clarify that there is no conflict between numerical data and ex-
perimental data we computed the migration forces on a particle
using the same finite element simulation that was used to extract
the downstream velocity of the particle over a range of particle
sizes (§ = 0.04,0.08,0.17, and 0.23) that covered the entire ex-
perimental range. Numerical migration velocities averaged over
the slow manifold agreed with experimental measurements and,
over their range of validity, with the asymptotic series also (Fig.
5A).

Migration velocities scale like U2. Asymptotic studies agree 3~
that if particle size is fixed while the flow rate through the mi-
crochannel is varied then since in (1) both u and a vary in pro-
portion to U, the total migration force F; and total migration ve-
locity u,, will scale like U%. Our experimental measurements con-
firm this scaling (Fig. 5B). Experiments at much higher Reynolds
numbers have shown that additional focusing positions appear in
channel corners28-29, but we find no evidence of alternate focus-
ing positions over the range Re = 30 — 180.

Our direct measurements of particle migration show that
asymptotic theory adapted for rectangular micro-channels can
quantitatively predict inertial lift forces on particles, including
their dependence on particle size and channel velocity. Why have
indirect measurements of migration velocities by Zhou and Pa-
pautsky® contradicted theory? First we note that our inertial mi-
grational velocities are an order of magnitude larger than pre-

5
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Fig. 6 Particles enter the microchannel prefocused to a thin band of y—
coordinates, so only slow focusing dynamics can be measured. (A) The
particle x-position PDF is nearly uniform at channel entry (thick blue line)
becoming focused after traveling 1.5cm through the channel (orange
line). (B) However, the particle y-position PDF is strongly focused both
at entry (blue), and after particles have reached their focusing
streamline. Recall that the reconstruction algorithm cannot decipher
between +y and —y values, we have made the distribution symmetric to
illustrate that both positive and negative y—values can be achieved.
(Relative particle size a/H = 0.11, channel Reynolds number Re = 30).

vious experiments (Fig. 5A), likely because indirect focusing
measurements do not equally weight trajectories across the en-
tire slow manifold, but rather only the slowest focusing that oc-
curs as particles approach the focusing streamline. Additionally,
Zhou and Papautsky?® assume that particles are uniformly spread
across the microchannel cross-section before focusing. We found
that particles appeared to be uniformly dispersed (Fig. 6A) at
the inlet. However, our reconstruction of particle depth showed
that particles entered the microchannel already focused in their y-
coordinate (Fig. 1B and 6B). Thus, our in-channel measurements
showed only the second phase of inertial migration along a single
slow manifold. Thus, pre-focusing makes it impossible to sepa-
rate fast and slow phases of focusing in the manner attempted by
Zhou and Papautsky®.

Pre-focusing in the channel inlet

Pre-focusing is due to inertial lift forces acting in the channel in-
let. We can use asymptotic theory to predict the ammount of
prefocusing, which occurs primarily in the depth (y-) dimension
where velocity shear is largest. In this section we will derive an
expression for the y-distance a particle migrates in the channel
inlet.

We model the inlet region as a linear contraction in the
x—direction, with maximum width W; at z = —L; and minimum
width W, at the opening of the channel at z = 0, and constant
depth H (Fig. 7). Assuming constant flow rate Q throughout
the channel, and self-similar velocity profiles across each cross-
section of the channel inlet, the downstream characteristic veloc-

ity in the inlet region takes the form: U(z) = lv/‘?g? , where W (z) is
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the width of the channel inlet, specifically,
W(2) = Wo — 7 (Wi = Wo): ®

For a particle lying on the symmetry plane x = 0, then the time-
evolution of the y-component of the particle location obeys the
ODE: .

dy pU-a’

= =y (x=0,y) ~ —

dt vm(x=0.) 6muH?
Here we take the first order approximation of the migration ve-
locity w,, = (um,vim) in equation (7). By Taylor expanding the mi
gration velocity around the equilibrium position y.,, and makirg
the change of variables Y =y —y., we obtain the following ODE:

cL(x=0,y). 9

Y =-T(2)Y, 1o

where —I'(z) = diyvm. Let I') =I'(0) be the rate of change of the

migration velocity at the widest point of the channel z = 0, ther
since the migration velocity scales with U? we have:

Q) = st an
o dy dz  dY UyW, A
a [vjé)(z)o = WY (124
Integrating and rearranging gives:
Y?? = (Vvﬁ?)nb , where 1= %. (13
From equation (7) we estimate:
a*Rel
Ih=-1203 ( P ) (12,

Using the channel dimensions from this experiment, with Re =
30 and a = 5um, we find that particles are within 1.5um of the
equilibrium position y., by the end of the inlet region, z= 0, con:
sistent with our measurements (Fig. 6B). However, little focusin,
occurs in the x—direction, so that if particle x— positions only are
measured, as in Zhou & Papautsky® particles appear to be uri
formly dispersed across the channel (Fig. 6A).

Can a microchannel inlet be designed to measure fast-focusir.,
dynamics?  Equation (13) shows that shorter inlet regions
(smaller values of L;) lead to less particle pre-focusing. To enforce
that focusing produces a less than 10% disturbance of particle
depths during their passage through the inlet, i.e. that % > 0.9,
we invert (13) and find that if the particle radius a is measured in
microns, then the maximum inlet length, also in microns, is given
by L; = 2100/a3. In particular for a particle with radius a = Sum,
the maximum channel inlet length is only L; = 17 um.

However, to see fast-focusing dynamics there must also be fully
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Fig. 7 Diagram of inlet region (not to scale). (Inset) Plot of ¢z, the
particle lift force coefficient, the slope of the tangent line at the
equilibrium focusing depth is y= —120.3.

developed Poiseuille flow at the channel inlet. The inlet must
therefore be longer than the development length, Z,, required
for viscous boundary layers to diffuse from the channel floor
and ceiling and to fill the entire channel. Ciftlik et al?® give
Ly = ;—OReH =45um at the lowest Reynolds numbers used in
our experiments, exceeding the minimum Z;. These competing
constraints make it impossible to design a microchannel inlet to
measure fast focusing dynamics. Fast focusing dynamics can nev-
ertheless be observed in glass capillaries'® where inlet regions
can be removed, however glass microfluidic capillaries can not be
machined into de novo geometries.

Conclusions

The first reported experimental measurements of inertial migra-
tion velocities show that there is no conflict between asymptotic
theory and the measured inertial migration velocities of particles
in microchannels. However, a theory capable of quantitatively
describing these forces does not produce a simple power law de-
pendence of migration velocities upon particle size, contributing
to previous contradictions between experiments, numerical data
and theory. Additionally, we show that in soft lithography mi-
crochannels, fast focusing dynamics occur in the channel inlet,
causing pre-focusing of particles before they enter the microchan-
nel imposing previously unexamined constraints over the control
that can be exerted over particle focusing trajectories.
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Appendix: Asymptotic Calculation of Migra-
tion Velocity

Here we provide more detail for the asymptotic calculation of the
inertial lift force (Equation (2) in the main text). The details
of this calculation are already described in Hood et al® so our
treatment here emphasizes the modifications nedded for a chan-
nel with non-square cross-section. We consider a single spherical
particle of radius a suspended in a rectangular channel with as-
pect ratio two. The origin is located at the center of the particle,
and the particle is allowed to translate downstream with velocity
U, = Upe; and to rotate with angular velocity Q,. U, and Q,, are
chosen so that the particle is totally torque free and force free in
the downstream direction. It will in general experience forces in
the x— and y— direction. From these forces we can compute the
migration velocity for a particle that is totally force and torque
free.

First we define the three-dimensional undisturbed flow, @,
which is rectangular channel Poiseuille flow 30 with centerline ve-
locity U, width W, and height H, and takes the form @ = i#(x,y)e_,
where e; is a unit vector pointing in the downstream direction.
The velocity @i and pressure j solve the Stokes equations with
boundary condition @t = 0 on the channel walls. We will also need
the Taylor series expansion for iz around the center of the particle:

(x,y) = B+ %X+ By + Sexx® + Sryxy + Syyy” (15)
+0(3, ¥ xy?, x7y)

where we define our origin of coordinates to coincide with the
center of the sphere.

Within the microchannel, the fluid velocity u and pressure p
are governed by the dimensionless steady-state 3D Navier-Stokes
Equations (NSE) in the reference frame of the moving particle:

VZu—Vp = o?Re(d-Vu+u-Va+u-Vu),
V.o = 0, (16)
u = Up+Qyxr—a on |rff=1,
u = 0 onthe channel walls, and as z — d-.

The dimensionless equations are obtained by scaling lengths by
the particle radius a, velocities by the velocity Ua/H, and pres-
sures are scaled by uU/H where p is the dynamic viscosity.

The calculation of the inertial lift force F;, and consequently
the migration velocity u,, is outlined as follows. First we make
a regular perturbation expansion in the particle Reynolds num-
ber Re;, and use the Lorentz reciprocal theorem to represent the
lift force Fy in terms of the perturbation expansion. Then we
further expand the terms in the reciprocal theorem integral as a

This journal is © The Royal Society of Chemistry [year]
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series expansion in the relative particle size & = {7, assumed to be
asymptotically small. As a — 0, the reciprocal theorem integral
must be calculated by dividing it into two subdomains, in which
different terms dominate within the integrand, we call the contri-
butions from these two regions the inner and outer integrals. We
must combine the inner and outer integrals to find the inertial lift

force Fy.

Perturbation Expansion

For small particle sizes, the particle Reynolds number Re;, = a*Re
is a small parameter. While a priori estimates suggest that in-
ertial stresses will become co-dominant with viscous and pres-
sure forces sufficiently far from the particle4, numerical exam-
ination of the terms of (16) shows that the inertia is subdomi-
nant throughout the channel; because of this, we can treat iner-
tial stresses as a small perturbation to the solution produced by
balancing viscous and pressure stresses across the entire channel
cross-section, i.e. perform a regular perturbation expansion in
Re,°. We then expand further in the small parameter «, follow-
ing for this second part, the method proposed by Ho & Leal3, but
using numerical PDE methods to compute boundary corrections
that arise in the solution, and extending the solution to include
the next correction from «, to capture the fact that the particle
migration velocity has no simple power law dependence on par-
ticle size.

We expand the fluid velocity u, pressure p, particle velocity Up,,
and particle rotation Q,, in the small parameter Re,,,

u:u(0)+Re,,u(l)+..., a7

p :p(o) +Repp(l) +..., etc.,

and substitute into (16) and collect like terms in Re,. The first
order velocity and pressure solve the homogeneous Stokes prob-
lem:

Va0 —vp0 =9, v.u® =0,
u® :UP(O)+QP(O) xr—uaonr=1, (18)

u® = 0 on channel walls and as z — oo,

while the second order velocity and pressure solve the inhomoge-
neous Stokes problem:

v —vp = (@-va® 0@ . va+u® . vu®)  (19)
V.u(l) = 0,
ud = Up“)—i—QP(l)xron r=1, (20)
u) = 0 on channel walls and as 7 — .
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This is a regular perturbation expansion: the right hand side of
(19) is the inertial stress associated with the solution of (18).

Since only the force on the particle is required, and not the
complete velocity field u(!), we can use the Lorentz Reciprocal
Theorem2°, to express the inertial lift force F; as an integral con-
taining only a solution of (18) u©:

eAFL:/ﬁ~ (ﬁAVu(O)qLu(O)~Vﬁ+u(0)-Vu(0)>dv. 1)
1%

Here to calculate the lift force acting on the particle in the direc
tion e we must integrate the inertial stresses against the Stoke:
(Re = 0) solution, , for the same particle moving at unit velocit’
in the the direction e in a quiescent fluid. In other words @ anc
an associated pressure p solve the homogenous Stokes problem:

Via-Vp = 0, V-a=0,
i@ = eonr=1, 22!
i = 0 on channel walls and as z — *oo.

If the particle size is known this method reduces the complexity o,
finding the focusing force from solving a nonlinear Navier-Stokes
problem for u to solving two linear homogenous Stokes problems
for u(® and &. However, the dependence of force upon particle
size is not made explicit in the solution, and we analyze the equa-
tions in the limit where o < 1 to find this dependence.

Series Expansion in o

We expand the velocities u®) and @ as power series in o using thc
method of reflections.

Specifically, we follow Ho & Leal® and Happel & Brenner 26 ard
expand each velocity field as a sum of corrections:

O

ul” 4 ul? 4l a4 (23)
with similar expansions for p, @, and p. Here, ugm is the Stoke,
solution for a particle in unbounded flow (ignoring the chan-
nel walls), u;o) is the Stokes solution with boundary conditic:

(0) (0)

u,’ = —u; " applied on the channel walls (but ignoring the parti

cle boundaries), and ugo)

boundary condition ug()) = ﬂlgo) on the particle surface, etc. Odd
terms impose the boundary conditions on the particle, whereas
even terms impose the boundary conditions on the channel walls.

The first term in the series, ugo), is the solution for a particle

in unbounded flow, can be found analytically using the Lamb’s
solution31:32. Note that we have corrected an error from Hood et
al® in the series below:

is the unbounded Stokes solution wit:

Sazr /x y 1
u=-"5 (Gurin)
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Likewise, @i can be calculated explicitly. Assuming that e = ey,

then:
. 3 yry 11 3yr 1
U]:Z(ey+r*2>;+z(ey*r72>rf3. (25)
The remaining odd order terms can be found similarly. The even
terms in the series expansions of u® and @ are found numeri-

cally using a Finite Element Model implemented in Comsol Mul-
tiphysics (Comsol, Los Angeles).

Evaluation of the reciprocal theorem integral

Given the Stokes velocities u®) and @ we can compute the inertial
lift force F; up to terms of O(Re,) using the reciprocal theorem
(21). It is advantageous to divide the fluid filled domain V into
two subdomains, V; and V,, where:

Vi={reV:r<&} and Vo={reV:r>¢&}. (26)

The intermediate radius € is any parameter satisfying 1 < & < é.
Call the corresponding integrals the inner integral and the outer
integral, and identify their contributions to the lift force as Fy,
and Fy,, respectively (F;, =Fy, +Fy,). The division of the integral
into inner and outer regions allows one to incorporate varying
length scales (a for the inner region and ¢ for the outer region)
into our model. Note that, distinct from Schonberg & Hinch#,
inertia remains subdominant even in the outer region V,. We will
separately consider the contributions from the inner and outer
integrals.

Inner Integral

Since the odd terms in the method-of-reflections expansions for
u©® and a are prescribed on the boundary of the particle, each
gives rise to several terms that contribute to the inner integral
F;,. By contrast, the outer terms influence U, and ©,,, but do not
contribute to the inner integrals directly. Since the odd terms are
derived analytically from the Lamb’s solution, it follows that Fy,
can also be computed analytically. We continue to scale lengths
by a, so that 1 <r < & <« a~!. The inner integral can be expressed
as the following expansion in a.:

Fr, = pU%d®(hya® +hsa® +...) . 27)

In order to calculate the terms hy and hs, we sort the terms of
the Stokes velocities by leading order in . We refer the inter-
ested reader to the authors’ previous work?> for the details of this
calculation. The first order contribution evaluates to zero, hy = 0.
The next order contribution hs = (hs ,,hs ) is listed below (note
that we correct an error from?>):

26O 1130 197Y0yy
= 2
hs X 9 12 18 ) (28)
26wy, 0y 11TYbyy | 1976
T 12 18 29

Outer Integral

For the outer integral we will consider alternate dimensionless
variables, by using the rescaled distance R = ar. This corresponds
to using H to non-dimensionalize lengths, rather than a. We call
these variables the outer variables, and we will denote them with
uppercase roman letters. In the outer region V,, we must express
our functions in terms of R and rearrange our functions by order
of magnitude in a. Then the reciprocal theorem integral takes
the following dimensional form:

f, = pURE / (U vy )+U<0>.vﬁ+U<°>.VU<0))dv, (30)
Ve

where we have expanded our domain of integration from V, =
{R €V :R> &} to the entire empty channel V. As we did for the
inner integral, we can write the outer integral as an expansion in
o.

= pU PP (kya* +ksa® +...) . (31)

Likewise, in order to calculate the terms k4 and ks, we sort the
Stokes velocities by leading order in a. Both even terms and odd
terms from the method-of-reflections expansion contribute to the
outer integral. In particular, since the even terms are computed
numerically, the outer integral must also be computed numeri-
cally, rather than as a closed analytic formula.
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Inertial Lift Force

The total lift force is the sum of the inner and outer integrals F; =
F;, +F;,; combining the results from inner and outer expansions,
we can then calculate the coefficients of the series expansion to
obtain the following scaling law for the lift force

pU?%a*
H2

Fi(xo) = ea(x0)+ es(x0) | +0().  (32)

Recall that p is the fluid density, H is the channel height, U is the
centerline velocity of the undisturbed flow, a is the particle ra-
dius, and ¢4(xp) and ¢5(x() are dimensionless constants including
both analytical and numerically computed components, and that
depend on the location of the particle xy and the aspect ratio of
the rectangular cross-section. A text file with the values of ¢4 and
¢s, as well as the backflow correction S described in the main text
for different particle locations is included in the ESI.
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