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Q = 160, 320, 640, and 960µL/min, corresponding to a range of

channel Reynolds numbers Re = 30− 180 and particle Reynolds

numbers Rep = 0.08 − 3.2. The maximum Reynolds number of

180 was chosen to avoid delamination of the PDMS from the glass

slide, while the minimum Reynolds number of 30 was chosen so

that the inertial particle migration rate would be observable in

the channel of length of 1.5cm.

Particle velocities were tracked by high speed imaging (14000

frames per second and 2µs exposure time, using a Phantom V710

camera) over the first and last 1 mm of the channel. The mi-

crochannel was viewed from above using a microscope (Nikon Ti-

U) with 4x objective with effective pixel size of 3µm. The depth

of field is listed to be 50 µm by the manufacturer, however blurry

particles are still observable even for a range of upwards of 200

µm, so that the particles can be observed over the entire channel

depth. For all diameters and velocities, particles were eventually

focused to two streamlines on the mid-plane x = 0 (Fig. 1B-C).

Determining the particle migration velocity

High speed videography provided only x- and z- (lateral and

streamwise) coordinates for each particle, and provided no direct

measurement of the particle depth (y-coordinate). We measured

the x- and z- velocities by hybridizing particle image velocimetry

(PIV) and particle tracking, similar to an algorithm previously de-

veloped for tracking fluorescent organelles23. First, we use the

PIV code MatPIV24 to develop a vector field representing the dis-

placements of all particles from one frame to the next. Second,

template matching is used to align a template consisting of a sin-

gle 8×8 pixel image of a particle with both the first frame and

the next. The template matching process gives a single correla-

tion value for every pixel in the image, representing how closely

the template matches the real image centered at that pixel. Then

we use cubic polynomials to interpolate the correlation data and

find each particle location with sub-pixel precision. After locating

particles in both frames, the PIV velocity field is used to predict

the particles’ locations in the subsequent frame. We identify the

detected particle in the next frame that is closest to this predicted

location. The particle tracking adjustment allows us to correct PIV

velocity fields to obtain sub-pixel accurate particle displacements

(Fig. 1D).

Multiple frames are needed to measure the migration velocity

since the lateral displacements of particles over a single frame

are typically sub-pixel. Indeed, inertial migration velocities are

typically two orders of magnitude smaller than particle down-

stream velocities (3 mm/s in a typical experiment compared to

0.6 m/s downstream velocity). To accurately measure the migra-

tion velocities, we track single particles over at least 10 consecu-

tive frames, and average their total lateral displacement over all

of these frames (Fig. 1E).

We reconstruct the y−positions of the particles using a numer-

ical prediction of the downstream velocity. We used a finite-

element model built in Comsol Multiphysics (Comsol, Los An-

geles) to compute the downstream velocities for force-free and

torque-free finite particles whose size matched the experiments5

located anywhere within the channel (Fig. 1F). The Stokes

timescale τs = 2ρa2/9µ, gives a measure of the time needed for

a particle at any point in the channel cross-section to accelerate

until it is both force and torque free. For the particles in our study

τs = 5−80 µs, is much less than a typical tracking time of 700 µs,

so particles are effectively force-free and torque-free throughout

their migration. Downstream velocities vary across the depth of

the channel, with no slip boundary conditions on the upper and

lower walls of the channel and fastest velocities attained on the

mid-plane of the channel. For each x-position there is a two-to-

one mapping of downstream velocity to particle depth, allowing

particles to be assigned one of two y−coordinates that are sym-

metric about the depth mid-plane y = 0 (Fig. 1F).

We measured the two dimensional probability density function

(PDF) for the x− and y− coordinates of particles at the entrance

to the microchannel and after 1.5cm of inertial focusing (Fig. 1B-

C). Particles within 1mm of the microchannel entrance are not

uniformly dispersed in channel depth but instead are focused to a

thin band of y− coordinates (Fig. 1B). We call this phenomenon

pre-focusing because it is a consequence of inertial migration that

occurs in the contracted inlet region before the particle enters the

channel. Along the channel, particles move laterally within this

band until they are also focused close to the channel center-line,

with typically 71% of particles focused to within 4 µm of the fo-

cusing streamline after traveling 1.5cm through the microchannel

(Fig. 1C).

The thin band on which particles are concentrated in the first

1 mm of the channel coincides with an asymptotic calculation for

the slow manifold, described in more detail below (Fig. 3A-D).

Since the particles are already focused to their slow manifold, the

observed lateral migration within the microchannel represents

only the second phase of particle focusing, i.e. the migration

of particles along the slow manifold to their eventual focusing

streamline (Fig. 4).

Validation of the reconstruction algorithm

In order to validate the measurement of particle heights via the

velocimetric method, we ran the following experiment to inde-

pendently measure the particle heights. Since particles outside

the focal plane appear blurry, we exploit this blurriness to dis-

tinguish particle heights. We will call this method the laplacian

algorithm, because it uses the discrete Laplacian to measure the

sharpness of the edges of the particle.

The experiment is designed as follows: we vary the focal plane

height of the microscope and at each height measure the number

of particles that appear to be in-focus. In this experiment there
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cusing forces. We find the migration velocity um = (um,vm) of a

force-free particle by equating the lift force (2) with the drag force

computed for a particle translating with a general velocity um
26.

This drag force can be evaluated by the method of reflections, to

the same order of accuracy as equation (2):

6πµa[um(x0)+uim(x0)] = FL(x0), (3)

where uim is the leading order backflow created at x0 due to the

walls of the microchannel. Furthermore, uim(x0) is the first or-

der correction calculated by the method of reflections for a small

sphere migrating across streamlines and therefore is linearly re-

lated to the lift force FL(x0), namely there exists a matrix S(x0)

such that uim(x0) ≃ S(x0) ·FL(x0). The terms of S(x0) are deter-

mined by computing the reflection û2 of the test velocity û and

evaluating at the center of the particle x0. More specifically, de-

note the method-of-reflections correction for a point force located

at x0 and and pointing in the direction ei by û2,i(x0). In this case

S(x0) = Si j(x0) is defined as:

Si j(x0) = (û2,i(x0) · e j). (4)

Rearranging the terms above for the migration velocity gives:

um(x0) =
[

I+
a

H
S(x0)

] FL(x0)

6πµa
. (5)

The pre-factor here represents the tensorial mobility of the parti-

cle.

We are interested in how particles travel due to this migration

velocity, which can be computed at any point x0 in the channel.

Let X(t) = (X(t),Y (t)) be the location of a given particle in the

channel cross-section as a function of time t. For a particle mi-

grating due to inertial lift forces:

dX

dt
= um , X(0) = (x0,y0). (6)

The slow-focusing manifold is evaluated numerically by advect-

ing particles according to (6) and finding the curve Λ which is

invariant under (6). Note that Λ depends on the relative parti-

cle size a
H . At any point x0 in the channel, the migration velocity

satisfies

um(x0)∼
ρU2a3

6πµH2

[

I+
a

H
S(x0)

]

·
[

c4(x0)+
a

H
c5(x0)

]

. (7)

where the coefficients c4(x0) and c5(x0) are the same as those

calculated in (2).

The limiting assumptions in the development of equation (7)

are twofold: (i) in order to make our regular perturbation expan-

sion we assume Rep ≪ 1 and (ii) in order to represent the particle

by a singularity we assume that the particle is much smaller than

h the distance from the particle to the wall, a ≪ h ∼ 1
6 H. How-
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Fig. 3 PDF of particle location in the upper half of the channel, with the

gray scale indicating density. The predicted manifold (solid yellow line) is

a good approximation of the measured manifold (dashed orange line).

The particle size and Reynolds number in each figure are: (A)

a/H = 0.053 Re = 30; (B) a/H = 0.11 Re = 30; (C) a/H = 0.13 Re = 30;

and (D) a/H = 0.13 Re = 60.

ever, in practice conditions (i) and (ii) can be relaxed to a larger

set of values for Rep and α. Hood et al5 show that, because the

presence of the walls diminishes the size of the inertial term in

the NSE, empirically this model is accurate up to Rep ≤ 7. Fur-

thermore, Hood et al5 empirically that the particle size limitation

can be relaxed to α ≤ 0.2. In our experiments we have Rep ≤ 3.2

and α ≤ 0.21, so equation (7) should be a good approximation of

the migration velocity.

The prediction of the focusing manifold Λ compares well to the

measured manifold in experiments (Fig. 3A-D). The measured

manifold is found by fitting a quadratic polynomial to the mea-

sured (x,y) locations of all the particles. Even though our theory

assumes that Rep ≪ 1, the predicted manifold Λ is a fair approx-

imation even when Rep = 1.01 (Fig. 3D). Additionally, deforma-

tion of the PDMS channel has been reported at higher Reynolds

numbers27, which is not taken into account in our theory.

Lateral migration velocities along the manifold quantitatively

agree with the asymptotic theory in equation (7). We filtered the

measured velocities to select particles that were within a distance

2.25µm of the slow manifold. We then binned these particles into

3 µm x−intervals, and averaged migration velocities for particles

within the same bin. Experimental measurements of migration

velocity along the slow manifold agree almost exactly with the

asymptotic prediction of the migration velocity along the theoret-

ical manifold (Fig. 4A-D) including different particle sizes and

flow speeds.
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Fig. 4 The measured migration velocity along the measured manifold

(black markers) agrees quantitatively with the asymptotic theory (blue

line) in equation (7) and numerical solution of the NSE (orange dashed

line). The particle size and Reynolds number in each figure are: (A)

a/H = 0.053 Re = 30; (B) a/H = 0.11 Re = 30; (C) a/H = 0.13 Re = 30;

and (D) a/H = 0.13 Re = 60.

There are no free parameters in the prediction of the migration

velocity in equation (7). The asymptotic result supports that um ∝

U2, just as was found in previous numerical simulations6. The

asymptotic theory also shows that migration velocity has no clear

power law dependence on particle size. This asymptotic theory

is most accurate for small particle sizes and moderate Reynolds

numbers; in practice requiring that a
H < 0.2, and that channel

Reynolds number Re . 80.

Dependence of focusing forces on particle

size and Reynolds number

We performed similar analysis of migration velocities for parti-

cles of different sizes and for different flow velocities. Note that

the migration velocity is a vector field um = (um,vm), and recall

that in our experimental setup, we can only measure the slow

phase of inertial migration. This corresponds to measuring the

x-component um of the migration along the manifold. We define

the average migration velocity 〈um〉 as the average of −sign(x)um

over all bins, where um is first averaged in each bin. The −sign(x)

factor prevents left and right sides of the channel from canceling

since um is an odd function across x = 0.

Average migration velocity 〈um〉 does not have a power law de-

pendence upon particle size a, but agrees quantitatively with (7).
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Fig. 5 (A) Over the range of measured particle sizes there is no simple

power law for the dependence of migration velocity upon particle size, a.

Here we fixed Re = 30 and varied particle diameter (dashed green line:

a3 scaling law, blue line: Equation (7), black circles: measured average

migration velocity ± s.e., orange stars: numerical prediction of average

migration velocity). Zhou and Papautsky’s 9 indirect measurements

(purple squares) show a similar trend, but are an order of magnitude

smaller. (B) Average migration velocities scale like U2. Here we fixed

particle diameter at d = 12µm and varied the flow rate (blue line:

Equation (7), dashed orange line: numerical fit of U2 with one free

parameter, black circles - measured average migration velocity± s.e.).

For very small particles, migration velocities increase with a3 scal-

ing law, as predicted asymptotically3,4, but this power law breaks

down even at small particle sizes. Incorporating an extra term in

the series expansion produces good fit up to a
H = 0.16 in our data.

To clarify that there is no conflict between numerical data and ex-

perimental data we computed the migration forces on a particle

using the same finite element simulation that was used to extract

the downstream velocity of the particle over a range of particle

sizes ( a
H = 0.04,0.08,0.17, and 0.23) that covered the entire ex-

perimental range. Numerical migration velocities averaged over

the slow manifold agreed with experimental measurements and,

over their range of validity, with the asymptotic series also (Fig.

5A).

Migration velocities scale like U2. Asymptotic studies agree3–5

that if particle size is fixed while the flow rate through the mi-

crochannel is varied then since in (1) both u and ū vary in pro-

portion to U , the total migration force FL and total migration ve-

locity um will scale like U2. Our experimental measurements con-

firm this scaling (Fig. 5B). Experiments at much higher Reynolds

numbers have shown that additional focusing positions appear in

channel corners28,29, but we find no evidence of alternate focus-

ing positions over the range Re = 30−180.

Our direct measurements of particle migration show that

asymptotic theory adapted for rectangular micro-channels can

quantitatively predict inertial lift forces on particles, including

their dependence on particle size and channel velocity. Why have

indirect measurements of migration velocities by Zhou and Pa-

pautsky9 contradicted theory? First we note that our inertial mi-

grational velocities are an order of magnitude larger than pre-

6 | 1–11
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Fig. 6 Particles enter the microchannel prefocused to a thin band of y−

coordinates, so only slow focusing dynamics can be measured. (A) The

particle x-position PDF is nearly uniform at channel entry (thick blue line)

becoming focused after traveling 1.5cm through the channel (orange

line). (B) However, the particle y-position PDF is strongly focused both

at entry (blue), and after particles have reached their focusing

streamline. Recall that the reconstruction algorithm cannot decipher

between +y and −y values, we have made the distribution symmetric to

illustrate that both positive and negative y−values can be achieved.

(Relative particle size a/H = 0.11, channel Reynolds number Re = 30).

vious experiments (Fig. 5A), likely because indirect focusing

measurements do not equally weight trajectories across the en-

tire slow manifold, but rather only the slowest focusing that oc-

curs as particles approach the focusing streamline. Additionally,

Zhou and Papautsky9 assume that particles are uniformly spread

across the microchannel cross-section before focusing. We found

that particles appeared to be uniformly dispersed (Fig. 6A) at

the inlet. However, our reconstruction of particle depth showed

that particles entered the microchannel already focused in their y-

coordinate (Fig. 1B and 6B). Thus, our in-channel measurements

showed only the second phase of inertial migration along a single

slow manifold. Thus, pre-focusing makes it impossible to sepa-

rate fast and slow phases of focusing in the manner attempted by

Zhou and Papautsky9.

Pre-focusing in the channel inlet

Pre-focusing is due to inertial lift forces acting in the channel in-

let. We can use asymptotic theory to predict the ammount of

prefocusing, which occurs primarily in the depth (y-) dimension

where velocity shear is largest. In this section we will derive an

expression for the y-distance a particle migrates in the channel

inlet.

We model the inlet region as a linear contraction in the

x−direction, with maximum width Wi at z = −Li and minimum

width W0 at the opening of the channel at z = 0, and constant

depth H (Fig. 7). Assuming constant flow rate Q throughout

the channel, and self-similar velocity profiles across each cross-

section of the channel inlet, the downstream characteristic veloc-

ity in the inlet region takes the form: U(z) = U0W0

W (z)
, where W (z) is

the width of the channel inlet, specifically,

W (z) =W0 −
z

Li
(Wi −W0). (8)

For a particle lying on the symmetry plane x = 0, then the time-

evolution of the y-component of the particle location obeys the

ODE:
dy

dt
= vm(x = 0,y)∼

ρU2a3

6πµH2
cL(x = 0,y). (9)

Here we take the first order approximation of the migration ve-

locity um = (um,vm) in equation (7). By Taylor expanding the mi-

gration velocity around the equilibrium position yeq, and making

the change of variables Y = y− yeq we obtain the following ODE:

Ẏ =−Γ(z)Y, (10)

where −Γ(z) = d
dy vm. Let Γ0 = Γ(0) be the rate of change of the

migration velocity at the widest point of the channel z = 0, then

since the migration velocity scales with U2 we have:

Γ(z) =
W 2

0

W (z)2
Γ0. (11)

So:
dY

dz

dz

dt
=

dY

dz

U0W0

W (z)
=−

W 2
0

W (z)2
Γ0Y (12)

Integrating and rearranging gives:

Y0

Yi
=

(

W0

Wi

)ηLi

, where η =
Γ0W0

U0(Wi −W0)
. (13)

From equation (7) we estimate:

Γ0 =−120.3

(

a3ReU0

6πH4

)

. (14)

Using the channel dimensions from this experiment, with Re =

30 and a = 5µm, we find that particles are within 1.5µm of the

equilibrium position yeq by the end of the inlet region, z = 0, con-

sistent with our measurements (Fig. 6B). However, little focusing

occurs in the x−direction, so that if particle x− positions only are

measured, as in Zhou & Papautsky9 particles appear to be uni-

formly dispersed across the channel (Fig. 6A).

Can a microchannel inlet be designed to measure fast-focusing

dynamics? Equation (13) shows that shorter inlet regions

(smaller values of Li) lead to less particle pre-focusing. To enforce

that focusing produces a less than 10% disturbance of particle

depths during their passage through the inlet, i.e. that Y0

Yi
> 0.9,

we invert (13) and find that if the particle radius a is measured in

microns, then the maximum inlet length, also in microns, is given

by Li = 2100/a3. In particular for a particle with radius a = 5µm,

the maximum channel inlet length is only Li = 17 µm.

However, to see fast-focusing dynamics there must also be fully
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series expansion in the relative particle size α = a
H , assumed to be

asymptotically small. As α → 0, the reciprocal theorem integral

must be calculated by dividing it into two subdomains, in which

different terms dominate within the integrand, we call the contri-

butions from these two regions the inner and outer integrals. We

must combine the inner and outer integrals to find the inertial lift

force FL.

Perturbation Expansion

For small particle sizes, the particle Reynolds number Rep = α2Re

is a small parameter. While a priori estimates suggest that in-

ertial stresses will become co-dominant with viscous and pres-

sure forces sufficiently far from the particle4, numerical exam-

ination of the terms of (16) shows that the inertia is subdomi-

nant throughout the channel; because of this, we can treat iner-

tial stresses as a small perturbation to the solution produced by

balancing viscous and pressure stresses across the entire channel

cross-section, i.e. perform a regular perturbation expansion in

Rep
5. We then expand further in the small parameter α, follow-

ing for this second part, the method proposed by Ho & Leal3, but

using numerical PDE methods to compute boundary corrections

that arise in the solution, and extending the solution to include

the next correction from α, to capture the fact that the particle

migration velocity has no simple power law dependence on par-

ticle size.

We expand the fluid velocity u, pressure p, particle velocity Up,

and particle rotation Ωp in the small parameter Rep,

u = u(0)+Repu(1)+ . . . , (17)

p = p(0)+Rep p(1)+ . . . , etc.,

and substitute into (16) and collect like terms in Rep. The first

order velocity and pressure solve the homogeneous Stokes prob-

lem:

∇
2u(0)−∇p(0) = 0, ∇ ·u(0) = 0,

u(0) = Up
(0)+Ωp

(0)× r− ū on r = 1,

u(0) = 0 on channel walls and as z →±∞,

(18)

while the second order velocity and pressure solve the inhomoge-

neous Stokes problem:

∇
2u(1)−∇p(1) = (ū ·∇u(0)+u(0) ·∇ū+u(0) ·∇u(0)), (19)

∇ ·u(1) = 0,

u(1) = Up
(1)+Ωp

(1)× r on r = 1, (20)

u(1) = 0 on channel walls and as z →±∞.

This is a regular perturbation expansion: the right hand side of

(19) is the inertial stress associated with the solution of (18).

Since only the force on the particle is required, and not the

complete velocity field u(1), we can use the Lorentz Reciprocal

Theorem25, to express the inertial lift force FL as an integral con-

taining only a solution of (18) u(0):

e ·FL =
∫

V
û ·

(

ū ·∇u(0)+u(0) ·∇ū+u(0) ·∇u(0)
)

dv. (21)

Here to calculate the lift force acting on the particle in the direc-

tion e we must integrate the inertial stresses against the Stokes

(Re = 0) solution, û, for the same particle moving at unit velocity

in the the direction e in a quiescent fluid. In other words û and

an associated pressure p̂ solve the homogenous Stokes problem:

∇
2û−∇p̂ = 0, ∇ · û = 0,

û = e on r = 1, (22)

û = 0 on channel walls and as z →±∞.

If the particle size is known this method reduces the complexity of

finding the focusing force from solving a nonlinear Navier-Stokes

problem for u to solving two linear homogenous Stokes problems

for u(0) and û. However, the dependence of force upon particle

size is not made explicit in the solution, and we analyze the equa-

tions in the limit where α ≪ 1 to find this dependence.

Series Expansion in α

We expand the velocities u(0) and û as power series in α using the

method of reflections.

Specifically, we follow Ho & Leal3 and Happel & Brenner26 and

expand each velocity field as a sum of corrections:

u(0) = u
(0)
1 +u

(0)
2 +u

(0)
3 +u

(0)
4 + . . . , (23)

with similar expansions for p, û, and p̂. Here, u
(0)
1 is the Stokes

solution for a particle in unbounded flow (ignoring the chan-

nel walls), u
(0)
2 is the Stokes solution with boundary condition

u
(0)
2 =−u

(0)
1 applied on the channel walls (but ignoring the parti-

cle boundaries), and u
(0)
3 is the unbounded Stokes solution with

boundary condition u
(0)
3 =−u

(0)
2 on the particle surface, etc. Odd

terms impose the boundary conditions on the particle, whereas

even terms impose the boundary conditions on the channel walls.

The first term in the series, u
(0)
1 , is the solution for a particle

in unbounded flow, can be found analytically using the Lamb’s

solution31,32. Note that we have corrected an error from Hood et

al5 in the series below:

u =−
5αzr

2r2

( x

r
γx +

y

r
γy

) 1

r2
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+
α2δxx

8

(

5

3
ez −3

x2

r2
ez +10

xz

r2
ex +5

zr

r2
−35

x2zr

r4

)

1

r3

+
α2δxy

8

(

−3
xy

r2
ez +5

yz

r2
ex +5

xz

r2
ey −35

xyzr

r4

) 1

r3

+
α2δyy

8

(

5

3
ez −3

y2

r2
ez +10

yz

r2
ey −35

y2zr

r4

)

1

r3
(24)

−
αγx

2

( z

r
ex +

x

r
ez −5

xzr

r3

) 1

r4

−
αγy

2

( z

r
ey +

y

r
ez −5

yzr

r3

) 1

r4

+
α2δxx

8

(

ez −5
x2

r2
ez −10

xz

r2
ex −5

zr

r2
+35

x2zr

r4

)

1

r5

+
α2δxy

8

(

−5
yz

r2
ex −5

xz

r2
ey −5

xy

r2
ez +35

xyzr

r4

) 1

r5

+
α2δyy

8

(

ez −5
y2

r2
ez −10

yz

r2
ey −5

zr

r2
+35

y2zr

r4

)

1

r5
.

Likewise, û1 can be calculated explicitly. Assuming that e = ey,

then:

û1 =
3

4

(

ey +
yr

r2

) 1

r
+

1

4

(

ey −
3yr

r2

)

1

r3
. (25)

The remaining odd order terms can be found similarly. The even

terms in the series expansions of u(0) and û are found numeri-

cally using a Finite Element Model implemented in Comsol Mul-

tiphysics (Comsol, Los Angeles).

Evaluation of the reciprocal theorem integral

Given the Stokes velocities u(0) and û we can compute the inertial

lift force FL up to terms of O(Rep) using the reciprocal theorem

(21). It is advantageous to divide the fluid filled domain V into

two subdomains, V1 and V2, where:

V1 = {r ∈V : r ≤ ξ} and V2 = {r ∈V : r ≥ ξ}. (26)

The intermediate radius ξ is any parameter satisfying 1 ≪ ξ ≪ 1
α .

Call the corresponding integrals the inner integral and the outer

integral, and identify their contributions to the lift force as FL1

and FL2
, respectively (FL = FL1

+FL2
). The division of the integral

into inner and outer regions allows one to incorporate varying

length scales (a for the inner region and ℓ for the outer region)

into our model. Note that, distinct from Schonberg & Hinch4,

inertia remains subdominant even in the outer region V2. We will

separately consider the contributions from the inner and outer

integrals.

Inner Integral

Since the odd terms in the method-of-reflections expansions for

u(0) and û are prescribed on the boundary of the particle, each

gives rise to several terms that contribute to the inner integral

FL1
. By contrast, the outer terms influence Up and Ωp, but do not

contribute to the inner integrals directly. Since the odd terms are

derived analytically from the Lamb’s solution, it follows that FL1

can also be computed analytically. We continue to scale lengths

by a, so that 1 ≤ r ≤ ξ ≪ α−1. The inner integral can be expressed

as the following expansion in α.:

FL1
= ρU2a2(h4α2 +h5α3 + . . .) . (27)

In order to calculate the terms h4 and h5, we sort the terms of

the Stokes velocities by leading order in α. We refer the inter-

ested reader to the authors’ previous work5 for the details of this

calculation. The first order contribution evaluates to zero, h4 = 0.

The next order contribution h5 = (h5,x,h5,y) is listed below (note

that we correct an error from5):

h5,x =
26πγxδxx

9
+

11πγyδxy

12
+

19πγxδyy

18
, (28)

h5,y =
26πγyδyy

9
+

11πγxδxy

12
+

19πγyδxx

18
. (29)

Outer Integral

For the outer integral we will consider alternate dimensionless

variables, by using the rescaled distance R=αr. This corresponds

to using H to non-dimensionalize lengths, rather than a. We call

these variables the outer variables, and we will denote them with

uppercase roman letters. In the outer region V2, we must express

our functions in terms of R and rearrange our functions by order

of magnitude in α. Then the reciprocal theorem integral takes

the following dimensional form:

fL2
= ρU2

mℓ
2
∫

VC

Û ·
(

Ū ·∇U(0)+U(0) ·∇Ū+U(0) ·∇U(0)
)

dv, (30)

where we have expanded our domain of integration from V2 =

{R ∈V : R ≥ ξ} to the entire empty channel VC. As we did for the

inner integral, we can write the outer integral as an expansion in

α.

FL2
= ρU2ℓ2(k4α4 +k5α5 + . . .) . (31)

Likewise, in order to calculate the terms k4 and k5, we sort the

Stokes velocities by leading order in α. Both even terms and odd

terms from the method-of-reflections expansion contribute to the

outer integral. In particular, since the even terms are computed

numerically, the outer integral must also be computed numeri-

cally, rather than as a closed analytic formula.
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Inertial Lift Force

The total lift force is the sum of the inner and outer integrals FL =

FL1
+FL2

; combining the results from inner and outer expansions,

we can then calculate the coefficients of the series expansion to

obtain the following scaling law for the lift force

FL(x0) =
ρU2a4

H2

[

c4(x0)+
a

H
c5(x0)

]

+O(a6) . (32)

Recall that ρ is the fluid density, H is the channel height, U is the

centerline velocity of the undisturbed flow, a is the particle ra-

dius, and c4(x0) and c5(x0) are dimensionless constants including

both analytical and numerically computed components, and that

depend on the location of the particle x0 and the aspect ratio of

the rectangular cross-section. A text file with the values of c4 and

c5, as well as the backflow correction S described in the main text

for different particle locations is included in the ESI.
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