JAAS

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/jaas

1	Effects of Mercury and Thallium Concentrations on High Precision Determination of
2	Mercury Isotope Composition by Neptune Plus Multiple Collector Inductively Coupled
3	Plasma Mass Spectrometry
4	
5	Runsheng Yin ^{a, b, *} , David P. Krabbenhoft ^c , Bridget A. Bergquist ^d , Wang Zheng ^e , Ryan F.
6	Lepak ^b , James P. Hurley ^{b, f, *}
7	
8	^a State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese
9	Academy of Sciences, Guiyang 550002, China
10	^b Environmental Chemistry and Technology Program, University of Wisconsin-Madison,
11	Madison, WI, 53706, USA
12	^c U.S. Geological Survey, Mercury Research Laboratory, Middleton, WI, 53562, USA
13	^d University of Toronto, Department of Earth Sciences, 22 Russell Street, Toronto, Ontario
14	M5S 3B1,Canada
15	^e Arizona State University, School of Earth and Space Exploration, Tempe, AZ 85287, USA
16	^f Department of Civil and Environmental Engineering, University of Wisconsin-Madison,
17	Madison, WI, 53706, USA
18	
19	*contact author: Runsheng Yin (yinrunsheng2002@163.com) and James P. Hurley
20	(jphurley@wisc.edu)
21	

6

23	Thallium (Tl) has been widely used as an internal standard for mass bias correction during
24	high precision mercury (Hg) isotope ratio measurements using multi-collector inductively
25	coupled plasma mass spectrometry (MC-ICP-MS). However, a recent study by Georg and
26	Newman ¹ indicated the potential for Hg hydrides formation (HgH _x , $x=1, 2$) during Hg
27	isotope measurements using the X skimmer cone with the Neptune Plus MC-ICP-MS.
28	Mercury hydride formation could result in an artificial change in 205 Tl/ 203 Tl. Due to this
29	observation, the applicability of using Tl as an internal standard for instrumental mass bias
30	correction during high precision Hg isotope measurements has been questioned. In this study,
31	using an adapted gas/liquid phase separator for Hg introduction and NIST SRM 997 Tl
32	standard for mass bias correction, mercury isotope measurements were performed by the
33	Neptune Plus MC-ICP-MS. While we confirm Georg and Newman's ¹ observations, we show
34	that Hg hydride formation is less important when Hg isotope measurements are conducted
35	with high Tl and low Hg concentrations. With careful sample-standard bracketing (with Hg
36	concentration matching within 10%), we demonstrate that measuring 20 to 50 ng mL ⁻¹ of Tl
37	and 0.5 to 3.0 ng mL ⁻¹ of Hg, high precision Hg isotope ratio measurements are achievable.
38	We caution researchers using other Hg inlet systems to recognize the importance of Hg and
39	Tl concentrations, and encourage optimization of these values during their Hg isotope
40	measurements.

42 1. Introduction

43 Multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has enabled 44 simultaneous determination of Hg's seven natural stable isotopes (196, 198, 199, 200, 201, 45 202 and 204)¹⁻⁹. Both mass dependent fractionation (MDF, reported as δ values) and mass 46 independent fractionation (MIF, reported as Δ values) have been observed during a variety 47 of chemical, physical, and biological processes. Large variations of δ^{202} Hg (~10‰), Δ^{199} Hg 48 (~10‰) and Δ^{200} Hg (~1‰) have been reported in environmental samples¹⁰⁻¹². Mercury

49	stable isotopes have been successfully used as tracers to understand the sources and fates of
50	Hg in the environment ^{$10-12$} .
51	Mercury isotope measurements have been performed by two commercial MC-ICP-MS
52	systems, Nu-Plasma ^{3, 7} and Thermo Finnigan Neptune ^{1-2, 4-5, 8-9} . To enhance the ion sampling
53	efficiency and overall sensitivity, the new generation Neptune Plus MC-ICP-MS have
54	combined modified skimmer and sample cone geometries with enhanced interface pumping
55	configuration ¹³ . Compared to the H cone geometry, the X skimmer cone has been shown to
56	result in a seven-fold increase in sensitivity for Tl, and a 10-20% increase in sensitivity for
57	Hg ¹ . Thus, the sample quantity needed for isotope ratio measurements can be significantly
58	reduced. However, concern has been recently raised by the observation of Hg hydride
59	formation (HgH_x) when using the high-sensitivity X skimmer cones with a Neptune
60	MC-ICP-MS equipped with the Plus upgrade ¹ . Hg hydride formation has shown to result in
61	increased ²⁰³ Tl beam intensities. Due to close isotopic mass to Hg, Tl has been widely used
62	as an internal standard for instrumental mass bias correction of Hg isotopes ¹⁻⁹ , using the
63	Russell equation to determine the instrumental mass bias factor (β):
64	$\beta = \ln[({}^{205}\text{Tl}/{}^{203}\text{Tl}_{\text{true}})/({}^{205}\text{Tl}/{}^{203}\text{Tl}_{\text{measured}})]/\ln(m^{205}/m^{203}) $ (1)
65	where ${}^{205}\text{Tl}/{}^{203}\text{Tl}_{true}$ and ${}^{205}\text{Tl}/{}^{203}\text{Tl}_{measured}$ is the true (mass bias corrected) ratio (2.38714) and
66	the measured ratio of 205 Tl/ 203 Tl for NIST SRM 997 Tl standard, respectively; and m 205 and
67	m^{203} are the masses of ^{205}Tl and ^{203}Tl , respectively. The estimated β is applied to the mass
68	bias correction of Hg isotopic ratios (equation 2):
69	${}^{xxx}Hg/{}^{198}Hg_{true} = {}^{xxx}Hg/{}^{198}Hg_{measured} \times (m^{xxx}/m^{198})^{\beta} $ (2)
70	where $^{xxx}Hg/^{198}Hg_{true}$ and $^{xxx}Hg/^{198}Hg_{measured}$ is the true and measured ratio of $^{xxx}Hg/^{198}Hg$,
71	respectively; m ^{xxx} and m ¹⁹⁸ are the masses of ^{xxx} Hg and ¹⁹⁸ Hg, respectively; and xxx are
72	199-204 amu. According to Georg and Newman ¹ , the increase of ²⁰³ Tl beam intensity due to
73	Hg hydride formation could result in decreased 205 Tl/ 203 Tl _{measured} , which would unavoidably
74	cause artificial effect of the β (according to equation 1) and Hg isotope ratios (according to
75	equation 2). As a result, mercury hydride formation has raised significant concerns not only
76	to users of Neptune Plus MC-ICP-MS, but also to others using Tl for mass bias correction
77	for Hg isotope measurements ¹ .

Journal of Analytical Atomic Spectrometry

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1 2 3

78	In order to confirm whether the concerns of Hg hydride formation were directly
79	applicable to our analyses, we performed a series of independent tests based on well known
80	Hg standard solutions. It is worth noting that measurements by Georg and Newman ¹ were
81	mainly based on high Hg concentrations (e.g., 5, 10 and 25 ng mL ⁻¹). To our knowledge,
82	most Hg isotope data reported to date were mainly measured at low Hg concentrations (0.5
83	to 5 ng mL ⁻¹) ¹⁻⁹ . Theoretically, effects of Hg hydride formation may be reduced by
84	measuring low Hg concentrations. To test this speculation, we performed Hg isotope
85	analysis at much lower Hg concentrations (0.3 to 3.0 ng mL^{-1}). We acknowledge the
86	potential for discrepancies between the Georg and Newman ¹ and our own system due to
87	inlet system differences. The Cetac HGX-200 cold vapor system was used by Georg and
88	Newman ¹ and others ^{1-2, 4-5, 8-9} , however we used a adapted gas-liquid phase separator (Figure
89	1) which initially developed at University of Toronto, Department of Earth Sciences
90	laboratory. Our study, however, was designed to investigate the potential for artifact
91	formation using conditions typical of our laboratory's protocol for geological and
92	environmental samples.

93 2. Experimental methods

94 **2.1 Instrumentation and mercury isotope determination**

95 Mercury isotopic measurements were conducted on a Neptune Plus MC-ICP-MS housed at 96 the University of Wisconsin-Madison's State Laboratory of Hygiene. The instrument was 97 equipped with the gas-liquid phase separator (Figure 1) and an Apex-Q nebulizer (Elemental 98 Scientific Inc., USA) for Hg and Tl introduction, respectively. Briefly, stannous chloride 99 (SnCl₂) was continually pumped along with Hg(II) solutions and allowed to mix prior to 100 being introduced to a frosted glass phase separator, producing gaseous elemental Hg(0). The 101 Hg(0) was then mixed with the dry Tl aerosol generated by the Apex-Q nebulizer before 102 being introduced into the plasma. The Apex-Q nebulizer (free flow-mode) and the glass 103 phase separator were flushed with the "sample" gas (Ar) and "additional" gas (Ar) of the MC-ICP-MS, respectively. NIST SRM 997 Tl standard (205 Tl/ 203 Tl = 2.38714) was used as 104 an internal standard for simultaneous instrumental mass bias correction of Hg. Seven of the 105 nine faraday cups were used to monitor the 198 Hg, 199 Hg, 200 Hg, 201 Hg, 202 Hg, 203 Tl and 205 Tl 106

Journal of Analytical Atomic Spectrometry

107	isotopes, respectively (Table 1). The nickel X skimmer cone was combined with a jet cone.
108	Hg and Tl concentrations in solutions were monitored by ²⁰¹ Hg and ²⁰³ Tl signals. The signals
109	for 201 Hg and 203 Tl were 0.6×10 ⁻² and 0.2×10 ⁻² V for acid blanks, respectively. Isobaric
110	interferences of ¹⁹⁶ Pt, ¹⁹⁸ Pt and ²⁰⁴ Pb were evaluated by measuring the peak intensities of
111	194 Pt and 206 Pb, and no signals above background were observed (< 10^{-4} V).
112	Gains of the amplifier associated with each Faraday collector were calibrated for
113	efficiency on a daily basis. Instrumental parameters (e.g., Ar gas flows, torch settings, and
114	lens system) were tuned for a maximum ion intensity of Hg and Tl in standard solutions
115	(Table 2). Data was acquired using 3 blocks each of 60 cycles, 2.097 seconds per cycle. An
116	initial uptake of sample solution for 3 min ensured stable signals before isotope analyses
117	were initiated. Between samples, the glass phase separator was rinsed using 3% (v/v) HNO ₃
118	for 6 minutes until the signal intensity returned to background level. A sample-standard
119	bracketing (SSB) approach was used to compare relative per mil (‰) deviation (using the δ
120	notation) of all our measurements to NIST SRM 3133, according to Blum and Bergquist ³ :
121	$\delta^{xxx} Hg(\%) = \{({}^{xxx} Hg/{}^{198} Hg_{sample})/({}^{xxx} Hg/{}^{198} Hg_{NIST SRM 3133}) = 1\} \times 1000 $ (3)
122	were xxx are 199, 200, 201 and 202 amu. Hg-MIF is reported in Δ notation (Δ ^{xxx} Hg,
123	deviation from mass dependency in units of permil, ‰) and is the difference between the
124	measured Δ^{xxx} Hg and the theoretically predicted Δ^{xxx} Hg value following equations by Blum
125	and Bergquist ³ :
126	$\Delta^{199} \text{Hg} \approx \delta^{199} \text{Hg} - \delta^{202} \text{Hg} \times 0.2520 $ (4)
127	$\Delta^{200} \text{Hg} \approx \delta^{200} \text{Hg} - \delta^{202} \text{Hg} \times 0.5024 $ (5)
128	$\Delta^{201} \text{Hg} \approx \delta^{201} \text{Hg} - \delta^{202} \text{Hg} \times 0.7520 $ (6)
129	2.2 Reagents.
130	$SnCl_2$ (3%, w/w) was prepared in 10% (v/v) HCl. In sections 2.3 and 2.4, all Hg solutions
131	were prepared by 3% HCl. We observed that using HCl is necessary to prevent the
132	volatilization of Hg from acidic solutions, whereas using 3%HNO ₃ is insufficient. In section
133	2.5, acid mixtures (HCl, HNO ₃ and H_2SO_4) were used to prepare the different standard
134	reference materials (SRMs). All acids used in this study were of ultrapure grades (certified
135	ACS Plus, Fisher Scientific), and 18.2 M Ω ·cm water (ELGA LabWater) was used for the
136	preparation of reagents and solutions.

Journal of Analytical Atomic Spectrometry

3
4
5
6
7
1
8
9
10
11
12
13
14
14
15
16
17
18
19
20
21
21 22
~~
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
27
31
38
39
40
41
42
43
<u>4</u> 4
7- 1 /5
40
46
47
48
49
50
51
52
52
55
5 4
55
56
57
58
59
60
50

1 2

137	2.3 Measurements of varied Hg concentrations with consistent Tl concentrations.
138	Four sequences were conducted to evaluate the effect of Hg concentration on Hg isotope
139	ratios. We prepared four different NIST SRM 997 standard solutions with variable Tl
140	concentrations (2, 20, 30 and 50 ng mL ⁻¹). For each sequence, the concentration of Tl was
141	held constant, whereas we measured UM-Almadén secondary standard Hg solutions
142	containing 0.3, 0.5, 0.8, 1.2, 1.7, 2.3 to 3.0 ng mL ^{-1} of Hg. The bracketed NIST SRM 3133
143	Hg solutions were diluted to have same Hg concentrations of the UM-Almadén standard.
144	With the SSB approach, replicate measurements of UM-Almadén (n=4) and NIST SRM
145	3133 (n=5) of each specific Hg concentration were measured, which enabled measurement
146	reproducibility (n=4).
147	2.4 Measurements of varied Tl concentrations with consistent Hg concentrations.
148	Two sequences were performed to evaluate the effect of Tl concentrations on Hg isotope
149	ratios. We prepared two different NIST SRM 3133 Hg solutions with Hg concentrations of
150	0.5 and 1.0 ng mL ⁻¹ . The concentrations of NIST SRM 3133 was held constant during each
151	sequence, however, instrumental mass bias correction were performed by measuring NIST
152	SRM 997 with variable Tl concentrations $(1, 2, 3, 4, 7, 15, 20, 30, 40, 50, 60, 100 \text{ ng mL}^{-1})$.
153	Replicate measurements (n=4) for a specific Tl concentration were conducted.
154	2.4 Measurements of standard reference materials.
155	For biological SRMs such as TORT-2 (Lobster), DORM-2 (Fish protein), DORM-3 (Fish
156	protein) and DOLT-2 (dogfish liver), about 0.2 g of each SRM was weighed and digested at
157	95 °C for 3 h with a 4 mL acid mixture (HNO ₃ :H ₂ SO ₄ = 7:3, v/v) following method by Pfeil
158	and Stalvey 15 . BrCl (200 $\mu L)$ was later added to each sample and kept for 12 h to allow the
159	conversion of Hg to Hg(II). Hydroxylamine (400 μ L) was added to the biological solutions
160	prior to Hg isotope measurements. For other SRMs such as NIST SRM 2711 (Montana Soil
161	II) and MESS-1 (marine sediment), about 0.2 g of ground sample was digested (95 °C, 1
162	hour) in a 2 mL aqua regia (HCl:HNO ₃ = $3:1$, v:v) according to Yin et al. ¹⁶ . For each SRM,
163	triplicate digests were prepared (n=3).
164	On basis of the certified total Hg concentrations for SRMs, about 5 and 10 ng Hg were
165	taken up and diluted to 0.5 and 1.0 ng mL ⁻¹ of Hg, respectively. The acid solutions used for
166	dilution of biological SRMs were 10% HNO ₃ :H ₂ SO ₄ mixture (7:3, v/v), whereas that used

60

167 for other SRMs are 10% HCI:HNO₃ (3:1, v/v). UM-Almadén and NIST SRM 3133 solutions containing 0.5 and 1.0 ng mL⁻¹ of Hg were also prepared by 10% HNO₃:H₂SO₄ mixture (7:3. 168 169 v/v) and 10% HCl:HNO₃ (3:1, v/v) acid mixtures. During analysis, Hg concentrations and 170 acid matrices of the NIST SRM 3133 solutions were matched to the bracketed samples. THg concentrations in the digest solutions were measured by the ²⁰¹Hg intensities, which showed 171 that the recoveries of Hg for the SRMs were 94 to 109%. 172 173 2.5 Reporting uncertainties. 174 For isotope ratios of Hg and Tl, uncertainties were reported using the theoretical statistical 175 errors (SE) of all cycles, which was automatically calculated by online data acquisition 176 software of the instrument. For δ and Δ values of UM-Almadén, uncertainties were reported using the standard deviation (SD) of repeated measurements of the same solution; for δ and 177

- 178 Δ values of SRMs, uncertainties were reported using the SD values of the duplicate sample 179 digests.
- 180 **3. Results and discussion**

181 **3.1 Hg and Tl sensitivities during Hg isotope analysis.**

182 Sample uptake rates for Hg and Tl solutions in this study were about 0.65 and 0.05 mL min⁻¹, 183 respectively. Intensities of Hg and Tl showed linear correlations with Hg and Tl 184 concentrations as shown in Figure S1 of Supplemental Information (SI). The sensitivity of ²⁰¹Hg (~0.56 V per ng mL⁻¹ Hg) of our study is higher than previous studies^{1-2, 4-5, 8-9}. 185 186 Sensitivity differences can be caused by a variety of factors, such as the type of cones and 187 the operating conditions of individual instrument, and the inlet system used for Hg introduction^{1-2, 4-5, 8-9, 14, 17}. 188 189 3.2 Effects of Hg and Tl concentrations on Tl isotope ratios. 190 Our data confirm that varied Tl and Hg concentrations have a large effect on ²⁰⁵Tl/²⁰³Tl_{measured} ratios (Figure 2A-C). When Tl concentration was held constant, increased 191 Hg concentration resulted in decreased ²⁰⁵Tl/²⁰³Tl_{measured} (Figure 2A). When measuring Hg 192 standards with similar Hg concentrations, the increase of Tl concentration resulted in 193

- 194 increased 205 Tl/ 203 Tl_{measured}, but such an increase was smaller at higher Tl concentration
- 195 (Figure 2B). The increase of 205 Tl/ 203 Tl_{measured} was small at higher Tl/Hg ratios (Figure 2C).

Journal of Analytical Atomic Spectrometry Accepted Manuscript

1
2
3
4
5
6
7
0
0
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
20
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
54
00
00
5/
58
59
60

196	These results are consistent with the observation by Georg and Newman ¹ , which showed
197	that the formation of Hg hydride could result in increased ²⁰³ Tl intensities and decreased
198	²⁰⁵ Tl/ ²⁰³ Tl, when using Neptune Plus MC-ICP-MS with an X skimmer cone. By measuring
199	0.3 to 3.0 ng mL ⁻¹ of Hg and without Tl introduction (only 3% HNO ₃) by the Apex-Q, we
200	monitored the ²⁰³ Tl and ²⁰⁵ Tl intensities to evaluate the rate of Hg hydride formation. All our
201	measurements showed increased ²⁰³ Tl intensities but no increase for ²⁰⁵ Tl (Figure 3). This is
202	consistent with previous prediction that Hg hydride is mainly formed in HgH_2^+ rather than
203	HgH ⁺ species ¹ . A positive linear correlation was observed between ²⁰¹ Hg and ²⁰³ Tl
204	intensities, which indicated a rate of ~0.07% for HgH_2^+ formation in our study (Figure 3)
205	and was comparable to that reported by Georg and Newman $(0.1\%)^1$.
206	According to equation 1, artificial changes of ²⁰⁵ Tl/ ²⁰³ Tl _{measured} due to Hg hydride
207	formation should cause the shift of β values. Our results showed that when Tl concentrations
208	were held constant, increased Hg concentrations resulted in the increase of β (Figure 2D).
209	When measuring Hg standards with similar Hg concentrations, an increase in Tl
210	concentration caused negative shift of β , but the shift was small at high Tl concentration
211	(Figure 2E). For instance, measurements of high Tl solutions (20 to 50 ng mL ⁻¹) resulted in
212	small shifts of <0.3 for β (Figure 2E), whereas measuring low Tl solutions (2 ng mL ⁻¹)
213	resulted in a large shift of β of ~1 (Figure 2D). The shift of β was much smaller at high
214	Tl/Hg ratios (Figure 2F).
215	3.3 Effects of Hg and Tl concentrations to Hg isotopic ratios.
216	The mass-bias corrected $^{xxx}Hg/^{198}Hg_{true}$ ratios (e.g. $^{199}Hg/^{198}Hg_{true}$, $^{200}Hg/^{198}Hg_{true}$,
217	201 Hg/ 198 Hg _{true} and 202 Hg/ 198 Hg _{true}) are summarized in Table S1 (SI) and Figure 4. The mean
218	ratios for NIST SRM 3133 measurements (Table S1, SI) are in the range of previous results ³ ,
219	$^{4, 9, 18}$. The uncertainties of ^{xxx} Hg/ ¹⁹⁸ Hg _{true} ratios are of the same magnitude with those
220	reported by Blum and Bergquist ³ , and Ridley and Stetson ¹⁸ , but smaller than those reported
221	by Berni et al. ⁹ . The larger uncertainties reported by Berni et al. ⁹ are representative of a very
222	much longer period of time, accounting for variability within several measurement sessions
223	(480 measurements). Yang and Sturgeon ⁴ also reported larger uncertainties of the
224	^{xxx} Hg/ ¹⁹⁸ Hg _{true} ratios, but their uncertainties were estimated as random error propagation, and
225	uncertainty from ²⁰⁵ Tl/ ²⁰³ Tl ratio was included in their reported Hg ratios. According to

Journal of Analytical Atomic Spectrometry

226	equation 2, artificial shifts of β could unavoidably cause changes in mass-bias corrected Hg
227	isotope ratios. In our study, positive linear correlations between Hg concentrations and
228	$^{xxx}Hg/^{198}Hg_{true}$ ratios (e.g. $^{199}Hg/^{198}Hg_{true}$, $^{200}Hg/^{198}Hg_{true}$, $^{201}Hg/^{198}Hg_{true}$ and $^{202}Hg/^{198}Hg_{true}$)
229	were observed (Figure 4). When Tl concentration was constant, the rates of increase for
230	mass-bias corrected Hg isotope ratios were similar for UM-Almadén and NIST SRM 3133.
231	The slopes between $^{xxx}Hg/^{198}Hg_{true}$ and Hg concentrations were much higher at lower Tl
232	concentrations (Figure 4), consistent with the observation that lower Tl concentrations tend
233	to result in more artificial shift of β (Figures 2D and 2E). This observation confirms that
234	measuring lower Hg and higher Tl solution is necessary for Hg isotope measurements, and
235	that concentrations of Hg between samples and standards must be carefully matched, is
236	necessary for Hg isotope measurements.
237	3.4 Optimization of Hg and Tl concentrations for Hg isotope measurement.
238	Changes in Hg and Tl concentrations also affect the SE values of ^{xxx} Hg/ ¹⁹⁸ Hg _{true} ratios
239	(Figure 5). Using low Tl standard of 2 ng ml ⁻¹ , the SE of $^{xxx}Hg/^{198}Hg_{true}$ ratios is much higher
240	than high Tl standards (20, 30, and 50 ng mL ⁻¹). The high SE of $^{xxx}Hg/^{198}Hg_{true}$ ratios using
241	low Tl standard (2 ng ml ⁻¹) could be explained by the fact that the precision of
242	205 Tl/ 203 Tl _{measured} is compromised at lower Tl concentrations (Figure 6B). Using higher Tl
243	standards (20, 30, and 50 ng mL ⁻¹), the SE of $^{xxx}Hg/^{198}Hg_{true}$ ratios decreased as Hg
244	concentration increased (Figure 5), similar to previous observations by Foucher and
245	Hintelmann ² . The SE of 202 Hg/ 198 Hg _{true} decreased from 0.00008 to 0.00004 as Hg
246	concentrations increased from 0.3 to 3.0 ng mL ⁻¹ , which is only equivalent 0.02‰ to 0.03‰
247	changes for δ^{202} Hg. No significant decreases of the SE for xxx Hg/ 198 Hg _{true} were observed
248	when Hg concentrations were above 0.5 ng mL ⁻¹ , whereas increasing Hg concentrations
249	would (1) increase the rinsing time and the risk of carry over between samples; and (2)
250	increase the sample quantities for measurements. We suggest that Hg concentrations of 0.5
251	to 1.0 ng mL ⁻¹ should be the best compromise between obtainable precision, rinsing time and
252	analyte consumption.
253	Varied Tl concentrations (1, 2, 3, 4, 7, 15, 20, 30, 40, 50, 60,100 ng mL ⁻¹) were
254	measured to evaluate the optimum concentrations of Tl when measurements were performed
255	at specific Hg concentrations of 0.5 and 1.0 ng mL ⁻¹ . We observed that the 205 Tl/ 203 Tl _{measured}

Journal of Analytical Atomic Spectrometry

256	increased exponentially with the increase of Tl concentrations, whereas the SE of
257	205 Tl/ 203 Tl _{measured} and β decreased (Figure 6). As shown in Figure S2, the SE of xxx Hg/ 198 Hg _{true}
258	is positive correlated with the SE of 205 Tl/ 203 Tl _{measured} . Hg isotope ratios and their SE values
259	decreased significantly with the increase of Tl concentrations until the Tl concentrations
260	were beyond 20 ng mL ⁻¹ (Figure 7). For our instrument therefore, we suggest at least 20 ng
261	mL ⁻¹ of Tl should be used during high precision Hg isotope measurement.
262	3.5 Importance to match Hg concentrations between Hg solutions and NIST SRM
263	3133.
264	The SSB approach is a common practice to correct for mass bias of Hg isotope measurement
265	with the assumption that samples and bracketing standards are subjected to similar mass
266	bias ³ . However, our results showed that mass bias is in fact, concentration dependent (Figure
267	4), so the SSB requires concentration match between sample and standard. We evaluated the
268	effect of mismatch in Hg concentrations between UM-Almadén and NIST SRM 3133
269	[termed as $THg_{UM-Almadén}/THg_{NIST SRM 3133}$ - 1 (%)] on Hg isotopic compositions. Mean Hg
270	isotope ratios of UM-Almadén and NIST SRM 3133 with the same Hg concentrations were
271	calculated, then mean Hg isotope ratio of UM-Almadén with a certain Hg concentration
272	were bracketed by that of NIST SRM 3133 with other Hg concentrations. As shown in
273	Figure 8, the isotopic composition of Hg for concentrations matched within 10% agreed with
274	published values ³ , whereas the THg mismatched results show large deviations in both $\delta^{202}\text{Hg}$
275	values and Δ values (Figure 8). It appears as though bracketing with higher NIST SRM 3133
276	concentration results in more negative δ^{202} Hg, whereas bracketing with lower NIST SRM
277	3133 concentration results in δ^{202} Hg that is larger than the reported number. This can be
278	explained by positive linear correlations between Hg concentrations and measured
279	202 Hg/ 198 Hg (Figure 4). The calculated values for UM-Almadén (Figure 8) highlight the
280	importance of concentration matching while using the SSB method.
281	The δ and Δ values of UM-Almadén, based on Hg concentration matched NIST SRM
282	3133, were estimated (Table S2, SI). With the exception of the analysis using a 2 ng mL ⁻¹ Tl
283	internal standard, all analysis showed consistent δ and Δ values that is in well agreement
284	with previous results ³ . Our results suggest that high precision measurements of Hg isotopes
285	should be performed based on higher Tl internal standards. Typically, for low Hg solutions
	10

2
3
4
5
5
0
1
8
9
10
11
12
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
20
20
27
28
29
30
31
32
22
33
34
35
36
37
38
30
40
40
41
42
43
44
45
46
47
47
4ð
49
50
51
52
53
50
54
55
56
57
58
59

60

286	(0.3 to 3.0 ng mL ⁻¹) measured in our study, results of δ and Δ values were consistent for
287	internal standards containing ≥ 20 ng mL ⁻¹ of Tl. Theoretically, accurate Hg isotope
288	measurements for high Hg solutions may be also achieved by increasing the concentrations
289	of Tl for mass bias correction. However, this is not necessary considering that higher Hg and
290	Tl concentrations will result in larger rinsing time and analyte consumption. In previous
291	studies from our laboratory, most measurements are based on 0.5 to 1 ng mL ⁻¹ Hg and 20 ng
292	mL ⁻¹ Tl solutions. A minimum of at least 4 to 8 ng of Hg per measurement (an initial uptake
293	of 3 min for signal stabilization plus \sim 7 min of acquisition, sample solution uptake: 0.65 mL
294	min ⁻¹) is required to reach precise determination of δ^{202} Hg (within ±0.10‰, 2sd).
295	3.6 Mercury isotope composition of standard reference materials.

As mentioned in Section 2.5, SRMs were measured to test the potential isotope bias during measurements of different environmental matrices. All tests were performed with low Hg solutions containing 0.5 and 1.0 ng mL⁻¹ of Hg, and high internal standard containing 20 ng mL⁻¹ of Tl. Based on well-matched THg concentrations and acid matrices between samples and the bracketed NIST SRM 3133, the measured Hg isotope composition and uncertainties for SRMs (Table S3, SI) were in agreement with previous studies^{6, 16, 19-22}. Journal of Analytical Atomic Spectrometry Accepted Manuscript

302 4. Conclusion

While our study agrees with the results by Georg and Newman¹, that measuring Hg isotopes 303 304 by Neptune Plus MC-ICP-MS with high sensitivity X skimmer cones may result in interference to ²⁰⁵Tl/²⁰³Tl ratio and inaccurate mass bias determination due to Hg hydride 305 306 formation. We confirm these interferences can be minimized when higher Tl (20 to 50 ng mL⁻¹) and lower Hg (0.5 to 3 ng mL⁻¹) concentrations are introduced. Based on careful 307 308 optimization of Tl and Hg concentrations, combined with carefully matched Hg 309 concentration between samples and bracketing standards, we demonstrated that accurate Hg 310 isotopic measurements can be achieved. We acknowledge that our measurements were 311 performed using an adapted inlet system, which may not directly apply to other introduction 312 systems such as the Cetac HGX-200. Therefore, we advise other Neptune users perform 313 internal optimization steps to minimize potential for matrix effects when measuring Hg 314 isotopes.

3
4
5
6
7
8
9
10
11
12
12
13
14
15
16
17
18
19
20
21
22
23
24
25
20
20
21
28
29
30
31
32
33
34
35
36
27
20
38
39
40
41
42
43
44
45
46
47
48
10
50
50
51
ວ∠ ≂≏
53
54
55
56
57
58
59
60

1 2

315 *Acknowledgments.* We thank Joel D. Blum (University of Michigan) for providing

- 316 UM-Almadén standard solution, and strengthening this manuscript. This work was
- 317 supported by the Natural Science Foundation of China (No: 41303014). Four anonymous
- 318 reviewers are acknowledged for their constructive comments that have largely improved the
- 319 quality of this paper.

320 References

- 321 1. R. B. Georg, K. Newman, J. Anal. At. Spectrom., 2015, 30, 1935-1944.
- 322 2. D. Foucher, H. Hintelmann, Anal. Bioanal. Chem., 2006, 384: 1470-1478.
- 323 3. J. D. Blum, B.A. Bergquist, Anal. Bioanal. Chem., 2007, 388, 353-359.
- 4. L. Yang, R.E. Sturgeon, Anal. Bioanal. Chem., 2009, 393,377-385.
- 5. N. Estrade, J. Carignan, J.E. Sonke, et al., Geostand. Geoanal. Res., 2010, 34, 79-93.
- 326 6. J. Masbou, D. Point, J.E. Sonke, J. Anal. At. Spectrom., 2013, 28, 1620-1628.
- 327 7. R. S. Yin, X. B. Feng, D. Foucher, et al., Chinese J. Anal. Chem., 2010, 38, 929-934.
- A. Rua-Ibarz, E. Bolea-Fernandez, F. Vanhaecke, Anal. Bioanal. Chem., 2016, 408,
 417-429.
- 330 9. A. Berni, C. Baschieri, S. Covelli, et al., Talanta, 2016, 152, 179-187.
- 331 10. B.A. Bergquist, J.D. Blum, Elements, 2009, 5, 353-357.
- 332 11. J. D. Blum, L.S. Sherman, M.W. Johnson, Annu. Rev. Earth Pl. Sc., 2014, 42, 249-269.
- 333 12. R. Yin, X. Feng, X. Li, et al., TrEAC, 2014, 2, 1-10.
- 334 13. K. Newman, J. Anal. At. Spectrom., 2012, 27, 63-70.
- 335 14. W. Zheng, D. Obris, D. Weis, et al., Environ. Sci. Technol. 2016, In review.
- 336 15. D. L. Pfeil, D. Stalvey, American Laboratory 2004, 36, 11–16.
- 337 16. R. Yin, X. Feng, B. Chen, et al., Environ. Sci. Technol. 2015, 49, 1347-1355.
- 338 17. H. Lin, D. Yuan, B, Lu. et al., J. Anal. At. Spectrom., 2015, 30, 353-359.
- 339 18. W. I. Ridley, S. J. Stetson, Applied Geochemistry, 2006, 21, 1889-1899.
- 340 19. B. A. Bergquist, J. D. Blum, Science 2007, 318, 417-420.
- 20. A. Biswas, J.D. Blum, B.A. Bergquist, et al. Environ. Sci. Technol. 2008, 42, 8303-8309.
- 342 21. S.Y, Kwon, J.D. Blum, M.A. Chirby, et al., Environ. Toxicol. Chem., 2013, 32,
- 343 2322-2330.

1 2		
- 3 4	344 22	2. R. Yin, R. F. Lepak, D.P. Krabbenhoft, et al., Elementa: Science of the Anthropocene,
5	345	2016, 4, 000086.
7		
8 9		
10 11		
12 13		
14 15		
16 17		
18		
19 20		
21 22		
23 24		
25 26		
27		
28 29		
30 31		
32 33		
34 35		
36 37		
38		
40		
41 42		
43 44		
45 46		
47		
49		
50 51		
52 53		
54 55		
56 57		
58		
59 60		13

2
3
1
-
5
6
7
8
9
10
10
11
12
13
14
15
16
17
17
IQ
19
20
21
22
23
20
24
25
26
27
28
29
20
30
31
32
33
34
35
36
27
31
38
39
40
41
42
43
11
44 45
45
46
47
48
49
50
50
51
5Z
53
54
55
56
57
57
20
59

60

346	Figure	captions
340	riguit	captions

- **Figure 1** Hg gas phase separator for Hg isotope measurements in this study.
- **Figure 2** Correlations between ²⁰⁵Tl/²⁰³Tl_{measured} and Tl concentrations (A), Hg
- 349 concentrations (B) and Hg/Tl ratios (C); Correlations between mass-bias correction factor (β)
- and Tl concentrations (D), Hg concentrations (E) and Hg/Tl ratios (F).
- **Figure 3** Correlation between ²⁰¹Hg and Tl (²⁰³Tl: black circles; ²⁰⁵Tl: blue circles) beam
- intensities. Measurements were conducted by introducing 0.3 to 3.0 ng mL⁻¹ of Hg without
 of Tl.
- **Figure 4** Correlations between ^{xxx}Hg/¹⁹⁸Hg_{true} ratios and Hg concentrations over varied Tl
- 355 concentrations. Red circles represent UM-Almadén; blue circles represent NIST SRM 3133.
- **Figure 5** Relationship between the standard error of $^{xxx}Hg/^{198}Hg_{true}$ ratios and Hg
- 357 concentration over varied Tl concentrations. Red circles represent UM-Almadén; blue
- 358 circles represent NIST SRM 3133.
- **Figure 6** Variations of ${}^{205}\text{Tl}/{}^{203}\text{Tl}_{\text{measured}}$ (A), standard error of ${}^{205}\text{Tl}/{}^{203}\text{Tl}_{\text{measured}}$ (B), and
- 360 mass-bias correction factor β (C) over varied Tl concentrations. Dark circles represent that
- 361 measurements were based on NIST SRM 3133 of 0.5 ng mL⁻¹ Hg; tubular diamonds
- 362 represent that measurements were based on NIST-3133 of 1.0 ng mL^{-1} Hg;
- **Figure 7** Variations of ^{xxx}Hg/¹⁹⁸Hg_{true} ratios and standard errors (SE) over varied Tl
- 364 concentrations.Dark circles represent that measurements were based on NIST SRM 3133 of
- $0.5 \text{ ng mL}^{-1} \text{ Hg}$; tubular diamonds represent that measurements were based on NIST SRM
 - 366 3133 of 1.0 ng mL⁻¹ Hg;
- **Figure 8** Relationship of Hg isotopic compositions (δ^{202} Hg, Δ^{199} Hg and Δ^{200} Hg) to relative Hg concentration differences between UM-Almadén and NIST SRM 3133 over varied Tl concentrations. Row 2 is an expansion of row 1. Row 3 is a more detailed expansion of row 2. (Blue circles: 3 ng mL⁻¹ Tl; brown circles: 20 ng mL⁻¹ Tl; green circles: 30 ng mL⁻¹ Tl; red
- 371 circles: 50 ng mL⁻¹ Tl).

372 Figure 1

Figure 5

 $\begin{array}{c} 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\end{array}$

Table 1 Faraday cups configuration for Hg isotope ratio measurements

Cups	L4	L3	L2	L1	С	H1	H2	Н3	H4
isotopes		¹⁹⁸ Hg	¹⁹⁹ Hg	²⁰⁰ Hg	²⁰¹ Hg	²⁰² Hg	²⁰³ Tl	²⁰⁵ Tl	

 Table 2 Operating parameters during Hg isotope analysis

MC-ICP-MS Plasma para	ameters
Sample gas	0.82–0.84 L min ⁻¹
Additional gas	0.23–0.25 L min ⁻¹
Cool gas	16.0 L min ⁻¹
Auxiliary gas	0.80 L min ⁻¹
RF power	1400 W
Apex-Q	
Heater temperature	100°C
Chiller temperature	2°C
Nebulizer	PFA-50
Tl solution uptake rate	0.05 mL min ⁻¹
Peristaltic pump	
Hg solution uptake rate	0.65 mL min ⁻¹

24x17mm (300 x 300 DPI)