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Insight, innovation, integration 

 

In many tumour cases, a need for more accurate delineation of tumour infiltration area in a 

patient-specific manner has arisen. The objective of this study was to build a mathematical 

model able to describe the growth and the real invasion pattern of multicellular tumour 

spheroids immersed in a collagen matrix. The model may be used in a descriptive (case-

specific) as well as in a predictive (population-dependent) way, depending on the type of the 

input parameters (a shape function obtained from a given experimental case or an aleatory 

shape function generated by data mining and Monte Carlo tools from the entire dataset, 

respectively). This kind of empirical-numerical interaction has wide application potential at 

the basic research and at the clinical level. 
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Mathematical modelling of microtumour infiltration

based on in vitro experiments

Emmanuel Luján,a Liliana N. Guerra,b Alejandro Soba,c Nicolás Visacovsky,a Daniel

Gandía,d Juan C. Calvo,b and Cecilia Suárez ∗a

Present mathematical models of microtumours consider, in general, volumetric growth and spher-

ical tumour invasion shapes. Nevertheless in many cases, such as in gliomas, a need for more

accurate delineation of tumour infiltration areas in a patient-specific manner has arisen. The ob-

jective of this study was to build a mathematical model able to describe in a case-specific way as

well as to predict in a probabilistic way the growth and the real invasion pattern of multicellular tu-

mour spheroids (in vitro model of an avascular microtumour) immersed in a collagen matrix. The

two-dimensional theoretical model was represented by a reaction-convection-diffusion equation

that considers logistic proliferation, volumetric growth, a rim with proliferative cells at the tumour

surface and invasion with diffusive and convective components. Population parameter values of

the model were extracted from the experimental dataset and a shape function that describes the

invasion area was derived from each experimental case by image processing. New possible and

aleatory shape functions were generated by data mining and Monte Carlo tools by means of a

satellite EGARCH model that were feed with all the shape functions of the dataset. Then the main

model is used in two different ways: to reproduce the growth and invasion of a given experimental

tumour in a case-specific manner when feed with the correspondent shape function (descriptive

simulations) or to generate new possible tumour cases that respond to the general population

pattern when feed with an aleatory-generated shape function (predictive simulations). Both types

of simulations are in good agreement with empirical data, as it was revealed by area quantification

and a Bland-Altman analysis. This kind of experimental-numerical interaction has wide applica-

tion potential at the moment of designing new strategies able to predict as much as possible the

invasive behaviour of a tumour in base on its particular characteristics and microenvironment.

1 Introduction

Computational oncology is a generic term that encompasses any

form of computer-based modelling relating to tumour biology

and cancer therapy1,2. The recent expansion of quantitative

models in cancer research addresses many questions regarding

tumour initiation, progression and metastasis as well as intra-

tumour heterogeneity, treatment responses and resistance3. Lat-

est mathematical models of tumour growth tends to be multi-

scaled and patient-specific4. Also, relatively simple models based
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on reaction-diffusion equations describing tumour proliferation

and invasion into peripheral host tissue have proved to be of clin-

ical relevance5. In a recent work we have developed a model of

this kind to describe a human glioma growth in a patient-specific

way6. There are also many mathematical approaches tending to

predict the growth and invasion of avascular microtumours made

in vitro, as is the case of multicellular tumour spheroids. Last

approaches of this kind apply continuum, discrete or hybrid tech-

niques7.

Multicellular tumour spheroids provide a physiologically useful

tool for cancer-related studies concerning tumourigenicity, drug

delivery and therapeutic resistance, among others8–10. A deriva-

tion of this in vitro model consists on spheroids immersed in a

three-dimensional matrix of gel where the microtumour is able

to invade, being this one of the most evolved experimental mod-

els to study key aspects of tumourigenesis, like tumour migra-

tion and invasion in response to environmental factors11,12. The

re-creation of the tumour microenvironment including a three-
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dimensional structure with tumour-stroma interactions, cell-cell

adhesion and cellular signaling is essential for a deeper under-

standing of the invasion process.

Loessner et al.13 presented a mathematical model that de-

scribes the growth of multicellular tumour spheroids from hu-

man epithelial ovarian carcinoma in a bioengineered three-

dimensional microenvironment. Stein et al.14 presented a

quasi-three-dimensional model based on a reaction-diffusion-

convection equation to describe the growth and invasion of multi-

cellular tumour spheroids from a glioblastoma cell line assuming

spherical symmetry. This group also proposed an heuristic algo-

rithm to estimate automatically the invasion radius in base on

local fluctuations of the image intensity15. Taking aside some

specific cases (see for example16,17) models related to avascular

microtumours have in general centered in the description of the

volumetric growth of the tumour core and of spherical tumour

invasion areas. Nevertheless it is necessary at present to develop

new strategies to better determine tumour infiltration borders as

well as to predict as much as possible tumour spread characteris-

tics in order to optimize treatments such as surgery or radiother-

apy.

Here we present a two-dimensional mathematical model able

to describe the growth and real invasion shape of individual mul-

ticellular tumour spheroids (descriptive simulations) as well as

to generate new possible tumour cases that respond to the same

population pattern in this specific environment (predictive sim-

ulations). This kind of theoretical/experimental framework has

wide application potential both at the basic research and at the

clinical level.

2 Methods

2.1 In vitro model

Multicellular tumour spheroids of the LM3 cell line (mouse ep-

ithelial and metastatic mammary tumour cells18), were gener-

ated by the hanging drop method19. This technique has the ad-

vantage of producing homogeneous spheroids and consists on

seeding drops of 20 µl with 1500 cells each in the inner sur-

face of a Petri dish cap. Once seeded, phosphate buffer solution

was placed in the dish to maintain humidity and the cap returns

to their natural position over the dish. After four days in cul-

ture at 37
◦
C and 5% CO2, one spheroid is formed at the bottom

of each drop. Once formed, spheroids were recovered and im-

mersed in a collagen I gel20. For this, a rat tail collagen I (Gibco)

solution 2 mg/ml in Dulbecco’s modified Eagle medium (DMEM,

Sigma-Aldrich) with 10% fetal bovine serum (Natocor) and an-

tibiotic/antimycotic (Invitrogen) was prepared and placed on the

wells of a six multi-well plate (0.5 ml/well). Ten spheroids were

placed on the surface of each well. After half an hour of incuba-

tion at 37
◦ C, collagen solution becomes a gel and spheroids get

immersed in it. Spheroids begin to invade the surrounding gel a

day after seeding. Photographs were taken daily with an inverted

optical microscope (Olympus) for five days. Spheroid core and

invasion areas were measured from photographs through the Im-

ageJ software (http://imagej.nih.gov/ij). Experiments were re-

peated three independent times.

2.2 In silico model

The two-dimensional mathematical model represents an invading

microtumour as a composition of two tumour cell populations

with different phenotype and behaviour: proliferative core cells

and invasive peripheral cells. The model initiates from a unique

tumour cell and considers two stages: an initial benign stage with

only proliferation and a later malignant stage where invasion is

also included. The benign stage lasts until the spheroid reaches

the population mean radius (rinv) when collagen seeding takes

place. The model can be described in cylindrical coordinates by a

two-dimensional reaction-convection-diffusion equation14:

∂C(r,θ)

∂ t
= P C(r,θ)

[

1−
C(r,θ)

Cmax

]

+∇ ·

[

D(r,θ) ~∇C(r,θ)
]

−Vr(θ) ∇r ·C(r,θ)+S δ (r− rcore) (1)

where C(r,θ) is the concentration of tumour cells (cells/µm
2), r

the radius from the spheroid center (µm,rmin ≤ r ≤ rmax), θ the an-

gle correspondent to the azimuthal coordinate (0 ≤ θ < 2π), t the

time (h), P the net cell proliferation index (cells/h), Cmax the max-

imum cell concentration (carrying capacity, cells/µm
2), D(r,θ)

the cell diffusion coefficient (µm
2/h), Vr(θ) the radial cell veloc-

ity (µm/h, the angular component is negligible for the model), S

the cell source (cells/µm
2

h),δ (r−rcore) the Dirac’s delta function

and rcore the spheroid core radius (µm). This δ function locates

the cell source at the spheroid surface (rcore). The rcore is time-

dependent and defines at each time point the limit between the

spheroid core area (0.0019 cells/µm
2 ≤ C(r,θ) ≤ Cmax) and the

invasion area (0 ≤C(r,θ)< 0.0019 cells/µm
2).

The first term represents the net cell proliferation (logistic law).

The second term is a diffusive term based on the Fick’s law that

achieves both the volumetric growth of the spheroid as well as

a non-directional component of the tumour invasion. The third

term represents a radial convective component of the tumour in-

vasion. Finally, the fourth term considers a source of tumour cells

located at the spheroid surface. The final expression of equation

1 is:

∂C(r,θ)

∂ t
= P C(r,θ)

[

1−
C(r,θ)

Cmax

]

+
1

r

∂

∂ r

[

r D(r,θ)
∂C(r,θ)

∂ r

]

+
1

r2

∂

∂θ

[

D(r,θ)
∂C(r,θ)

∂θ

]

−
Vr(θ)

r

∂ (r C(r,θ))

∂ r
+S δ (r− rcore)

(2)

The boundary condition at r = rmax is ∂C

∂ r
(rmax,θ) = 0. Initial

condition at t = 0 is C(r,θ) = 0. The model was solved in a two-

dimensional domain by finite differences with standard relaxation

techniques and coded in Fortran 95. Main parameter values are

presented in table 1. Following Stein at al.14, we set at first P,

D and Vr as constants depending only on the type of cell (Pcore

and Dcore for core cells, Pinv and Dinv for invasive cells, Vr has no

null values only for invasive cells). This initial approach provided

an approximation to experimental invasion areas with spherical

symmetry. For a more realistic description of invasion shapes,
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we made in a second instance Dinv and Vr spatially variable. At

this point the model may be used in two different ways: in a

descriptive or a predictive manner.

Table 1 In silico model parameters

Parameter Value Parameter Value

Cmax 0.002 cells/µm
2

rinv 70 µm

rmin 5 µm rmax 855 µm

Pcore 0.035 cells/h Pinv 0.03 cells/h

Dcore 0.5 µm
2/h Dinv 36 µm

2/h

Vr 5 µm/h S 1.66e
−8

cells/µm
2
h

Descriptive simulations: Descriptive simulations are case-

specific as they reproduce the growth and invasion shape of a

given experimental tumour case. We first generated a shape func-

tion by image processing that described the invasion area contour

of a particular spheroid. This function assigned weight across the

polar angle of the spheroid in the 360
◦ domain based on the dis-

tance from the contour to the spheroid center. Then we normal-

ized the curve of the invasion shape, discretized the angle coor-

dinate and calculated at each point the correspondent invasion

distance. This image processing was performed by a C++ code

written for this purpose. Finally the shape function generated was

used to feed the main model to make Dinv and Vr spatially vari-

able and reproduce each experimental case. The whole process

to make descriptive simulations is shown in figure 1.

Predictive simulations: Predictive simulations are population-

dependent as they are generated aleatory based on the in-

formation taken from our entire database of tumours. For

this, the whole database of shape functions obtained from

our experimental images (more than 30 cases) were used

to feed an EGARCH model (exponential, generalized, autore-

gressive, conditional heteroscedasticity model) taken from a

Matlab toolbox (http://www.mathworks.com/help/econ/egarch-

model.html). The EGARCH model, originated in the econometrix

area for volatility clustering, makes a conditional variance tempo-

ral series analysis of each shape function and extracts a determin-

istic and a random component from the whole dataset. With this

statistics, the toolbox forecasts, by Monte Carlo simulations, new

aleatory shape functions that respond to the general population

pattern. Finally, an aleatory-generated shape function was used

to feed the main model to make Dinv and Vr spatially variable and

predict a new possible tumour case. This approach lets a contin-

uum feedback as new experimental data can be added at any time

to the EGARCH model to improve population statistics.

Then the theoretical package may be used in two ways. We can

feed the main model with a particular shape function to repro-

duce the growth and invasion of a microtumour in a case-specific

way (descriptive simulations) or we can feed the model with an

aleatory shape function elicited by the EGARCH model to gen-

erate new possible tumour cases that respond to the population

pattern of this kind of tumour in these specific medium conditions

(predictive simulations). In all cases Paraview was used for image

visualization (http://www.paraview.org/).

3 Results and Discussion

Examples of the first use of the package (descriptive use) are pre-

sented in figure 2. Here we compare experimental spheroid im-

ages with simulated ones after five days of invasion. Experimental

images show collective invasion into the collagen matrix, with ep-

ithelial cells organized into a laminar pattern. Two main patterns

of cancer cell invasion have been described so far: collective and

individual invasion. Among them, each specific pattern depends

on the tumour cell type but also on the tumour microenvironment

and stroma organization21,22. Human cancer pathology usually

shows tumour cells invading collectively as strands, cords or clus-

ters. On the other hand, experimental studies display from single

isolated cells with round or elongated phenotypes (ameboid and

fibroblast-like shapes, respectively) to loosely streams of cells or

collective migration of cell strands or sheets.

Simulated core sizes of figure 2 were fitted to population data,

while experimental invasion shapes are well reproduced in a case-

specific way by their correspondent simulations. Table 2 presents

invasion areas of both experimental and simulated images, the

percentage difference between them (calculated in relation to to-

tal invasion area) and its average. Averaged difference between

both areas are 17.15 %. Then simulations reproduce both quali-

tatively and quantitatively the experimental cases.

Table 2 Experimental and simulated invasion areas (µm
2) with their per-

centage differences correspondent to the cases of figure 2

Case Experimental Simulated Difference (%)

1 0.259 0.211 18.85
2 0.068 0.088 22.75
3 0.194 0.201 3.76
4 0.117 0.188 37.74
5 0.205 0.206 0.12
6 0.200 0.166 16.95
7 0.283 0.253 10.86
8 0.066 0.097 32.15
9 0.151 0.163 7.55
10 0.260 0.206 20.79

Average 17.15
Stand. dev. 12.46

Examples of the second (predictive) use are presented in fig-

ure 3. Here we generate new possible and aleatory tumour cases

at day five of invasion that respond to the general population

pattern. Figure 4 shows a comparison between experimental and

simulated main shape function statistics (mean, median and stan-

dard deviation) by the Bland & Altman method23,24. This method

gives a good idea of the correspondence degree between model

predictions and experimental data. For this purpose, a new differ-

ent simulated shape function (generated aleatory by the EGARCH

model) was produced to be compared with a given experimental

one (extracted from a tumour case by image processing). It can

be observed that, for the three statistics analyzed, regression in-

tercepts and slopes are not significant (significance level at 0.05).

This means that there are no significant differences between inva-

sion patterns obtained from theoretical and experimental meth-

ods, and that differences are aleatory, not dependent on the mean

between both methods. Then the mathematical model is reliable.

This lets our experimental/numerical approach to be established
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