Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/foodfunction

Genistein promotes the metabolic transformation of acetaminophen to glucuronic acid in human L-O2, HepG2 and Hep3b cells via the Nrf2/Keap1 pathway

FAN Yuan-jing*, WEI Wei, LUO Jian-ping, JIN Yu-xia, DAI Zi-ling

School of Food science and Engineering, Hefei University of Technology, Hefei 230009,

China

*Corresponding Author:

Dr. FAN Yuan-jing

School of Food science and Engineering

Hefei University of Technology

Tel/Fax: +86-551-62902955

E-Mail: swf89105@hfut.edu.cn

Abstract: This study aimed to explore the effects of genistein on regulating the activation of UGTs via the Nrf2/Keap1 pathway and to elucidate the underlying mechanisms of detoxification and hepatic protection. Experiments monitoring genistein-induced protection against acetaminophen-induced cell damage were performed in L-02, HepG2 and Hep3b cells. The results of the MTT, AST, ALT, LDH, GSH and GSSG assays showed that genistein evidently protected the cells from acetaminophen-induced injury in a dose-dependent manner. The control cells were treated with 10 mM acetaminophen without genistein to compare with the effects of

the combination of acetaminophen and genistein on the expression of UGT1A1, 1A6 and 1A9, Nrf2 and Keap1 mRNAs, as well as the expression of Nrf2 and Keap1 proteins, which were tested by western blotting. The results showed that the expression of the Nrf2 mRNA and protein increased; in contrast, the expression levels of the Keap1 mRNA and protein were obviously reduced by genistein in a dose-dependent manner. Meanwhile, the expression of the UGT mRNA was increased, and UGT1A9 exhibited the highest expression among the three UGTs. Accordingly, the residual acetaminophen content was obviously reduced and acetaminophen glucuronidation increased after 24 hours of treatment with genistein in a dose-dependent effect.

Keywords: genistein, Uridine Diphosphate glucuronosyltransferases, Nrf2/Keap1, acetaminophen, glucuronidation

Abbreviations:

- UGTs: uridine diphosphate glucuronosyltransferase;
- UDPGA: uridine diphosphate-glucuronic acid;
- APAP: acetaminophen, paracetamol;
- ALT: alanine aminotransferase;
- AST: aspartate aminotransferase;
- LDH: lactate dehydrogenase;
- GSH: glutathione;

- GSSG : glutathione disulfide;
- GR: Glutathione reductase
- Nrf2 : nuclear factor erythroid 2-related factor 2;
- Keap1: Kelch like-ECH-associated protein 1;

Gen: genistein;

- APAP: acetaminophen, paracetamol;
- Nrf2: nuclear factor erythroid 2-related factor 2;
- Keap1: Kelch-like ECH-associated protein 1;

1 1. Introduction

2

Soybean isoflavones (genistein and daidzein) possess many biological functions; besides functioning as antioxidant and anthelmintic, many isoflavones have been shown to interact with animal and human estrogen receptors, causing effects in the body similar to those caused by the hormone estrogen. Isoflavones also produce non-hormonal and redox-active effects. Isoflavones may also interact with specific intracellular signalling proteins and with nucleic acids ^[1].

9 The activation of phase Π detoxifying enzymes, such as UDP-glucuronyltransferase (UGTs), glutathione S-transferase (GST), and NAD(P)H: 10 quinone oxidoreductases (NQR), by isoflavones results in the detoxification of 11 carcinogens and represents one of their anticarcinogenic mechanisms^[2]. Recently, it 12 was documented that genistein prevents and protects against acetaminophen (also call 13 paracetamol, APAP)-induced liver toxicity by inhibiting APAP biotransformation and 14 15 the resistance to oxidative stress via modulation of the activities of the antioxidant and phase I/II metabolic enzymes ^[3]. 16

It was shown that the expression of UGTs was up-regulated and APAP glucuronidation was enhanced, while genistein protected against APAP-induced hepatotoxicity in our normal animal experiments; however, APAP glucuronidation was reduced in nuclear factor erythroid 2-related factor 2 (Nrf2) null mice ^[4]. Nrf2-deficient mice were more susceptible to APAP toxicity ^[5]. Based on studies in animal models and cultured cells, the transcription factor Nrf2 is rapidly being

recognized as a critical regulator of the cellular stress response ^[6], and the Nrf2 23 antioxidant response pathway is the primary cellular defence mechanism against the 24 25 cytotoxic effects of oxidative stress. Nrf2 is retained in the cytoplasm by Kelch-like ECH-associated protein 1 (Keap1). Under normal or quiescent conditions, Nrf2 is 26 anchored in the cytoplasm through its interaction with Keap1. However, under 27 28 oxidative stress, Nrf2 is not degraded, but instead travels to the nucleus, where it 29 binds to a DNA promoter and initiates the transcription of genes encoding 30 antioxidative and phase II metabolic enzymes.

31 Genistein may act as direct antioxidant, similar to many other isoflavones, and thus may alleviate damaging effects of free radicals in tissues, human cells turn on 32 beneficial, detoxifying Nrf2 factor in response to genistein insult. This pathway may 33 34 be responsible for observed health maintaining properities of small doses of genistein^[7]. Although some reports have shown that isoflavones (genistein and 35 daidzein) can activate the Nrf2/Keap1 signalling pathway and up-regulate the 36 detoxifying and antioxidant defence genes to prevent cardiovascular disease^[8], 37 cancer^[9], and catecholaminergic neurotoxicity ^[10], antioxidative enzymes, that are 38 described in these literatures, such as superoxide dismutase (SOD), catalase (CAT), 39 40 glutathione peroxidase (GSH-Px), glutathione reductase (GR), and glutamate cysteine ligase (GCL) are rarely involved in the activation of detoxification 41 enzymes, such as UGTs and GST, the precise mechanisms of activation of 42 43 detoxifying enzymes by which polyphenols (e.g., flavonols, flavones, isoflavones,

Food & Function Accepted Manuscript

and anthocyanidins) promote the beneficial effects of Nrf2 remain to be elucidated
^[11].

In the present study, we showed that genistein activates UGTs and protects against APAP-induced cytotoxicity. In addition, it regulates the expression and dissociation of Nrf2 and the Keap1 signal pathway in human L-O2, HepG2 and Hep3b cells. We have attempted to focus this study on the more well-known and well-studied roles of genistein that are associated with the Nrf2/Keap1 pathway, the activation of UGTs and the level of APAP glucuronidation.

52

53 **2. Materials and methods**

54

55 **2.1 Chemicals and reagents**

56

57 Genistein from soybean (Gen, 4,5,7-trihydroxyisoflavone, PCode: 58 1001537637, purity: 98%, Sigma-Aldrich Chemie GmbH, Riedstr. China, Beijing) 59 was dissolved in dimethylsulfoxide (DMSO, Sigma Co., Ltd., U.S.A) and diluted to 60 its final concentrations in each culture medium. Acetaminophen (Paracetamol, 61 APAP; C₈H₉NO₂, CAS: 103-90-2) was obtained from Aladdin Reagents Industrial 62 Inc., (China, Shanghai) and was dissolved in DMSO to its final concentrations. MTT (3-4,5-dimethylthiahiazo-2-y1-2,5-diphenyl tetrazolium bromide) was purchased 63 64 from Amresco, U.S.A; the ρ -acetamidophenyl β -D-glucuronide sodium salt

65	(APAP-Glu, PCode: 100157797) was purchased from Sigma-Aldrich Chemie GmbH,
66	Riedstr. (U.S.A).
67	
68	2.2 Cell lines and cell culture
69	
70	The normal, immortalized human hepatic cell line L-O2 (HL-7702) and the
71	human hepatocellular carcinoma cell lines HepG2 and Hep3b were all purchased
72	from The Cell Bank of the Type Culture Collection of Chinese Academy of Sciences
73	(Shanghai, China). The L-O2 cells were cultured in Roswell Park Memorial Institute
74	(RPMI, Mediatech Inc., Manassas, USA) medium with L-glutamine supplemented
75	with 20% foetal bovine serum (FBS). The HepG2 and Hep3b cells were cultured in
76	Dulbecco's modified Eagle medium (DMEM, Mediatech Inc., Manassas, USA) with
77	4.5 g L^{-1} D-glucose and L-glutamine and supplemented with 10% FBS. The cells
78	were maintained at 37° C in a humidified atmosphere of 5% CO ₂ and 95% air in an
79	incubator; and their respective media were changed every 48 hours.
80	
81	2.3 Assaying the proliferation and viability of cells treated with APAP and
82	Genistein
83	
84	The effects of genistein and APAP on cell proliferation were measured with a
85	modified MTT assay, based on the ability of live cells to cleave the tetrazolium ring
86	in active mitochondria to a produce a molecule that absorbs at a wavelength of 570

87	nm. The cells were plated in 96-well microtiter plates at an initial density of 2×10^5
88	cells per well.
89	
90	2.3.1 Genistein treatments
91	The L-O2, Hep3b and HepG2 cells were treated with genistein (0, 15, 30, 60,
92	and 120 μM in medium) for 48 hours and then washed in PBS. The supernatant was
93	removed, and 180 μl of fresh RPMI (L-O2) or DMEM (Hep3b and HepG2) and 20
94	μl of MTT solution (MTT was dissolved in PBS at 5 mg ml^-1) were added to each
95	well and incubated for 4 hours to detect cell viability. The blank was treated with a
96	uniform concentration of DMSO as the control.
97	
98	2.3.2 APAP treatments
99	The L-O2, Hep3b and HepG2 cells were treated with APAP (0, 5 mM, 10 mM,
100	or 20 mM in medium) and incubated for 48 hours. Then, the same MTT method as
101	used for the genistein treatments was used to detected cell viability, with the same
102	concentration of DMSO as the control.
103	
104	2.3.3 Combined Genistein and APAP treatments
105	The L-O2, Hep3b and HepG2 cells were treated with 0, 15 μ M, 30 μ M, 60 μ M,
106	or 120 μ M genistein in medium. Subsequently, 0, 5 mM, 10 mM, or 20 mM APAP
107	was added to the medium, respectively, and incubated for 48 hours. Then, the MTT
108	solution was added to the cells and incubated for 4 hours to detect cell viability.

1	$\Delta \Delta$	
L	nu	
L	V2	

110 2.4 Tests for AST, ALT, LHD, GSH and GSSG

111

112	The cells were treated with APAP (10 mM) plus genistein (15, 30, 60, and 120
113	μM in medium separately) and incubated for 48 hours. Then, the levels of alanine
114	aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase
115	(LDH) were measured to determine whether the liver cells were damaged. The levels
116	of ALT, AST and LDH were tested using specific assay kits (the ALT, AST and LDH
117	kits were purchased from Jiancheng Bioengineering Institute., Nanjing, China),
118	according to the manufacturer's instructions; the sample from each concentration was
119	repeated in triplicate.

120 The levels of glutathione (GSH) and glutathione disulfide (GSSG) in the 121 experimental cells were determined using an assay kit (GSH and GSSG Assay Kit, 122 purchased from the Beyotime Institute of Biotechnology, Shanghai, China) after the 123 cells were treated with APAP and genistein, as described above. After treatment, each 124 group of cells was lysed at intervals of 0.5, 1, 2, 4, 8, 24 and 48 hours to analyse the 125 GSH and GSSG levels. According to the manufacturer's instructions, the total 126 glutathione levels can be determined colourimetrically by reacting GSH with DTNB 127 (Ellman's reagent) in the presence of glutathione reductase. Glutathione reductase 128 reduces GSSH to GSH, which then reacts with DTNB to produce a yellow coloured 129 5-thio-2-nitrobenzoic acid (TNB), which absorbs at 412 nm.

131 **2.5 Tests for APAP and APAP-Glu**

133	The experimental cells were treated with APAP (10 mM) plus genistein (15, 30,
134	60, and 120 μM in medium) and incubated for 24 hours. To generate standard curves,
135	APAP-Glu (0.125, 0.25, 0.5, 2, and 3 $\mu M)$ and APAP (0.5, 1, 2.5, 5, and 10 mM)
136	were dissolved in methanol. APAP-Glu and APAP were detected by HPLC using a
137	Waters RP-18 column (4.6 mm×150 mm, 5 $\mu m)$ and a mobile phase composed of a
138	phosphate buffer solution (pH 4.5) and acetonitrile (90 : 10) at a flow rate of 1.0 ml
139	min ⁻¹ . The detection wavelength was 250 nm. The APAP-Glu and APAP
140	concentrations were calculated based on the prepared standard curves.
141	
142	2.6 Analysis of the expression of the UGT1A1, 1A6, 1A9, Nrf2 and Keap1
143	mRNAs
143 144	mRNAs The expression levels of the UGT1A1, 1A6, 1A9, Nrf2 and Keap1 mRNAs were
143 144 145	mRNAs The expression levels of the UGT1A1, 1A6, 1A9, Nrf2 and Keap1 mRNAs were measured to determine their catalytic effects on the glucuronidation of APAP and
143 144 145 146	mRNAs The expression levels of the UGT1A1, 1A6, 1A9, Nrf2 and Keap1 mRNAs were measured to determine their catalytic effects on the glucuronidation of APAP and genistein. The L-O2, Hep3b and HepG2 cells were treated with different
 143 144 145 146 147 	mRNAs The expression levels of the UGT1A1, 1A6, 1A9, Nrf2 and Keap1 mRNAs were measured to determine their catalytic effects on the glucuronidation of APAP and genistein. The L-O2, Hep3b and HepG2 cells were treated with different concentrations of genistein (0, 15, 30, 60, and 120 μM) and APAP (10 mM) and
 143 144 145 146 147 148 	mRNAs The expression levels of the UGT1A1, 1A6, 1A9, Nrf2 and Keap1 mRNAs were measured to determine their catalytic effects on the glucuronidation of APAP and genistein. The L-O2, Hep3b and HepG2 cells were treated with different concentrations of genistein (0, 15, 30, 60, and 120 μM) and APAP (10 mM) and incubated for 24 hours. The cells were sampled and tested separately. To determine
 143 144 145 146 147 148 149 	mRNAsThe expression levels of the UGT1A1, 1A6, 1A9, Nrf2 and Keap1 mRNAs weremeasured to determine their catalytic effects on the glucuronidation of APAP andgenistein. The L-O2, Hep3b and HepG2 cells were treated with differentconcentrations of genistein (0, 15, 30, 60, and 120 μM) and APAP (10 mM) andincubated for 24 hours. The cells were sampled and tested separately. To determinethe expression of the UGT1A1, 1A6, and 1A9 mRNAs in the L-O2, Hep3b and
 143 144 145 146 147 148 149 150 	mRNAsThe expression levels of the UGT1A1, 1A6, 1A9, Nrf2 and Keap1 mRNAs weremeasured to determine their catalytic effects on the glucuronidation of APAP andgenistein. The L-O2, Hep3b and HepG2 cells were treated with differentconcentrations of genistein (0, 15, 30, 60, and 120 μM) and APAP (10 mM) andincubated for 24 hours. The cells were sampled and tested separately. To determinethe expression of the UGT1A1, 1A6, and 1A9 mRNAs in the L-O2, Hep3b andHepG2 cells by qRT-PCR (quantitative real-time PCR) and RT-PCR analysis. The
 143 144 145 146 147 148 149 150 151 	mRNAs The expression levels of the UGT1A1, 1A6, 1A9, Nrf2 and Keap1 mRNAs were measured to determine their catalytic effects on the glucuronidation of APAP and genistein. The L-O2, Hep3b and HepG2 cells were treated with different concentrations of genistein (0, 15, 30, 60, and 120 μM) and APAP (10 mM) and incubated for 24 hours. The cells were sampled and tested separately. To determine the expression of the UGT1A1, 1A6, and 1A9 mRNAs in the L-O2, Hep3b and HepG2 cells by qRT-PCR (quantitative real-time PCR) and RT-PCR analysis. The total RNA was isolated using TRIZOL Reagent (Beyotime Institute of Biotechnology.,

- 153 using a Revert AidTM First Strand cDNA Synthesis Kit (Thermo Scientific Fermentas,
- 154 vicegerent Jiancheng Bioengineering Institute., China, Nanjing). The primers used in
- this study were based on the GenBank primer sequences (KeyGen Biotech, Sangon
- 156 Biotech Co. Ltd., China, Shanghai). The primer sequences were as follows:
- 157 UGT1A1 (F): 5- AACAAGGAGCTCATGGCCTCC-3,
- 158 (R): 5- GTTCGCAAGATTCGATGGTCG-3;
- 159 UGT1A6 (F): 5- CTTCCTGCAGGGTTTCTCTCC-3,
- 160 (R): 5- CAACGATGCCATGCTCCCC-3;
- 161 UGT1A9 (F): 5- GAACATTTATTATGCCACCG -3,
- 162 (R): 5-ATTGATCCCAAAGAGAAAACCAC -3;
- 163 Nrf2 (F): 5- TGCCCCTGGAAGTGTCAAACA -3,
- 164 (R): 5- CAACAGGGAGGTTAATGATTT-3;
- 165 Keap1 (F): 5- CATCCACCCTAAGGTCATGGA-3,
- 166 (R): 5- GACAGGTTGAAGAACTCCTCC-3;
- 167 The primers for the human β -actin sequence were: (F): 5-
- 168 GGGAAATCGTGCGTGACAT-3,
- 169 (R): 5- CTGGAAGGTGGACAGCGAG -3.
- 170

171 **2.7 Western blot analysis of the Nrf2 and Keap1 proteins**

- 172
- 173 The L-O2, HepG2 and Hep3b cells were pre-incubated with five different 174 concentrations of genistein (0, 15, 30, 60, and 120 μ M) for 48 hours, then fresh

175 medium was added, and each sample was treated with 10 mM APAP for 24 hours. 176 After being washed in PBS and removal of the supernatant, the cells were lysed, and 177 the total protein concentrations were determined using the Bradford protein assay. 178 The cytoplasmic and nuclear fractions extracted from L-O2, HepG2 and Hep3b cells 179 were subjected to immunoblot experiments of Keap1, Nrf2 and cellular proteins 180 were isolated using whole cell protein extraction kit according to the manufacturer's 181 instruction. Cytosolic and nuclear proteins were isolated as described in NE-PERs 182 nuclear and cytoplasmic extraction kit. Protein concentration was detected by BCA 183 Kits, and all the samples in the same experiment were normalized to the equal 184 protein concentration. The extracted proteins (20 µg/well) were separated with an 185 SDS-PAGE Gel Preparation Kit (Beyotime Institute of Biotechnology, China, 186 Shanghai). The fractionated proteins were transferred onto a 0.45-µm PVDF 187 membrane (Millipore, Germany) using a Trans-Blot Cell System (Bio-Rad, USA). 188 Cruz Marker Molecular Weight Standards were purchased from Santa Cruz 189 Biotechnology; the Nrf2 and the Keap1 proteins were detected using goat polyclonal 190 IgG antibodies (sc-772 and sc-33569, respectively, Santa Cruz Biotechnology, 191 USA).

192

193 **2.8 Statistical analysis**

194

All statistical analyses were performed using SPSS, Version 19.0 software. The data are expressed as the means \pm standard deviation from at least three separate

197	replicates. The differences in response to the genistein and APAP treatments were
198	analysed by one-way analysis of variance (ANOVA) in combination with Tukey's
199	t-test. Significant differences were designated in instances where p was less than 0.05.
200	
201	3. Results
202	
203	3.1 Genistein and APAP influence cell viability, as determined by the MTT method
204	
205	Cell damage was determined by measuring the MTT reduction ability of the
206	L-O2, HepG2 and Hep3b cells treated with APAP or Gen alone for 48 h, The cells
207	were seeded at 2×10^5 cells ml ⁻¹ and then treated with APAP (5, 10 and 20 mM) or
208	with genistein (15, 30, 60 and 120 μ M) for 48 hours. The number of cells and the cell
209	viability were determined using the metabolic dye-based MTT assay (Fig.1.a and
210	b). The cells that were not treated with APAP or genistein but were treated with
211	DMSO alone were used as controls (100%). APAP inhibited cell viabilities in a
212	dose-dependent manner and damaged the normal L-O2 cells (88.36% \pm 0.05, 77.32%
213	\pm 0.04 and 55.69% \pm 0.02 and all was p < 0.05, corresponding to APAP concentration
214	5mM, 10mM, 20mM, respectively), and the inhibition of cells viabilities of HepG2
215	and Hep3b respectively were 43.58% \pm 0.04 (<i>p</i> < 0.05) and 43.34% \pm 0.02 (<i>p</i> < 0.05)
216	at 20mM of APAP (Fig. 1.a). Genistein (120 μ M) significantly decreased cancer cell
217	viability of Hep3b (66.07% \pm 5.19, $p < 0.05$) and HepG2 (68.68% \pm 1.94, $p < 0.05$),
218	However, in the normal L-O2 cells, genistein (120 μ M) does not impacte on cell

219 growth compared with DMSO ($87.19\% \pm 7.18$, p < 0.05) (Fig.1.b).

220	The interaction of APAP and genistein showed abnormal changes in the cells
221	activities (Fig.2). Genistein (15, 30, 60 and 120 μ M) enhance resistance to APAP (5,
222	10 and 20mM) in a dose-dependent manner; the cells viabilities at concentrations of
223	120µm genistein and 20mM APAP respectively were $84.65\% \pm 4.18$ ($p < 0.05$, L-O2,
224	Fig.2.a), $85.64\% \pm 1.88 \ (p < 0.05, \text{HepG2}, \text{Fig.2.b})$ and $81.18\% \pm 4.72 \ (p < 0.05, \text{HepG2}, \text{Fig.2.b})$
225	Hep3b, Fig.2.c); the viabilities of L-O2 cells respectively were $58.51\% \pm 4.17$, 69.8%
226	\pm 3.41 and 80.89% \pm 3.42 corresponding concentration of genistein 15, 30 and 60 μM
227	respectively mixed with 20mM of APAP (Fig.2.a); for cancer cells of HepG2 and
228	Hep3b, at lower concentration of genistein (15 μ M and 30 μ M) with 20mM APAP, and
229	the viabilities of HepG2 were $51\% \pm 2.68$ and $52.66\% \pm 3.42$ (Fig.2.b), the viabilities
230	of Hep3b were $43.24\% \pm 4.85$ and $46.46\% \pm 2.9$ (Fig.2.c).

231 APAP significantly decreased the number of live cells (Fig.1.a), indicating the 232 cytotoxicity of APAP-induced cells necrosis (\leq 80% viability in 5, 10 and 20mM of 233 APAP, checked by trypan blue staining). Genistein (15µM-120µM) non cytotoxic 234 reaction was observed (>80% viability) for the normal human cells of L-O2, genistein 235 at high concentration $(120\mu M)$ resulted in the cells viability of HepG2 and Hep3b of 236 cancer cells apoptotic death (Fig.1.b, $66\% \sim 68\%$ viability); However, the capacity of 237 genistein (120µM) induced cancer cells apoptosis attenuated in the presence of high 238 concentration of APAP (20mM) (viability of HepG2, $85.64\% \pm 1.88$, p < 0.05, Hep3b, 239 81.19 ± 4.71 , p < 0.05) (Fig 2. HepG2 & Hep3b). This result was consistent with the 240 effect of caffeic acid prevention against the hepatotoxicity induced by APAP in cells

241	of L-02 and HepG2 ^[12] .
-----	-------------------------------------

242

- 243 3.2 Tests for ALT, AST, LDH
- 244

245	The ALT and AST levels were measured to determine if the cells were
246	damaged or diseased because ALT and AST or their ratio (AST/ALT ratio) is
247	commonly measured in the clinic as a part of a diagnostic evaluation of
248	hepatocellular injury to determine liver health. LDH is released during tissue damage;
249	it is a marker of common liver injuries and diseases ^[13] . Compared with control
250	(LDH activity ≤ 37 U L ⁻¹), the activity of LDH were 50.28 U L ⁻¹ ±4.74, 46.14 U
251	$L^{-1}\pm 3.47$ and 52.04 U $L^{-1}\pm 2.2$ respectively corresponding L-O2, HepG2 and Hep3b
252	treated with APAP (10mM) alone; in the treatment of APAP (10mM) added with
253	genistein (120 μ M), LDH activity were 30.25 U L ⁻¹ ± 2.23 (L-O2, Fig.3.a), 32.06 U
254	$L^{-1} \pm 2.45$ (HepG2, Fig.3.b) and 35.26 U $L^{-1} \pm 1.36$ (Hep3b, Fig.3.c). The release
255	levels of AST, ALT and LDH were in agreement with the experimental results of
256	MTT test.

257

258 **3.3 Detection of GSH and GSSG**

259

APAP is mostly converted to pharmacologically inactive glucuronide and sulfate conjugates, with a minor fraction being oxidized to a reactive metabolite NAPQI (5-10%). Detoxification of NAPQI occurs through its binding to the sulfhydryl

Food & Function Accepted Manuscript

263 group of glutathione (GSH) to form APAP-GSH, which is ultimately excreted in the urine as cysteine and mercapturic acid conjugates ^[14]. The ratio of GSSG to GSH is a 264 265 dynamic indicator of the oxidative stress of an organism. In healthy cells and tissue, 266 more than 90% of the total glutathione pool is in the reduced form (GSH), and less 267 than 10% exists in the disulfide form (GSSG).

The experimental results showed that the GSH levels were at the lowest 268 269 concentration at 1 hour (Fig.4.a, b and c which were corresponding the cells of L-O2, 270 HepG2 and Hep3b), which represents the concentration of the compound that caused approximately 50% GSH depletion after 30 min to 1 hour ^[15]. Then, the 271 272 concentration of GSH increased for 8 hours. The decrease in the GSH levels at 24 hours may be related to the contabescence of some of the cells. GSSG and GSH 273 274 showed a dynamic relationship, which indicated the relationship between growth and 275 decreased activity of the oxidation system. The GSH and GSSG levels did not 276 change significantly in the control groups. The GSH level and the GSH/GSSG ratio 277 were significantly decreased in the APAP group, while the GSSG level was acutely 278 increased within 1 hour. Compared with the control group and the APAP group, the 279 short-term depletion of GSH was recovered in the genistein-treated cells in a 280 dose-dependent manner. The data suggest that genistein may restore the normal redox balance ^[16]. 281

282

283 **3.4 Measuring APAP and APAP-G**

285	Glucuronidation pathway of APAP metabolism (APAP-glu, 52-57% of urinary
286	metabolites) is catalyzed by UGTs, which make APAP molecule more water-soluble
287	by transferring the glucuronosyl group from UDP-glucuronic acid ^[17] . APAP and its
288	glucuronide conjugate (APAP-Glu) were detected in the experimental L-O2, HepG2
289	and Hep3b cells using HPLC chromatograms in the present study. The concentrations
290	of APAP and APAP-Glu were zero in the untreated experimental cells and the control
291	groups treated with APAP (10 mM) alone compared with the groups treated APAP
292	plus Genistein (15 $\mu\text{M-120}$ $\mu\text{M})$ for 24 hours. The results showed that the residual
293	APAP levels were reduced (Fig.5.a), for example, after 24 hours APAP surviving
294	were 7.76 mmol $L^{-1} \pm 0.21$, 7.87 mmol $L^{-1} \pm 0.13$ and 8.08 mmol $L^{-1} \pm 0.15$
295	respectively corresponding L-O2, HepG2 and Hep3b at $120\mu M$ of genistein with
296	10mM of APAP, comparated with control, the remaining percentage of APAP
297	respectively were 85.27%, 81.81% and 84.87%. On the other hand,
298	APAP-glucuronide (APAP-Glu) transformation was increased (Fig. 5 b) in the cells
299	that were treated with different concentrations of genistein, the percent conversion of
300	APAP-Glu increased by 184.84%, 184.21% and 174.77% respectively corresponding
301	L-O2, HepG2 and Hep3b at 120µM of genistein with 10mM of APAP.

302

303 3.5 The expression levels of related the UGT mRNAs following genistein
304 treatment

Food & Function Accepted Manuscript

306	It has been well documented that genistein decreases the residual free APAP
307	levels and enhances the transformation of APAP-glucuronide in an organism's liver
308	because it activates UGTs. UGT1a1, 1a6 and 1a9 are involved in conjugating APAP
309	and the metabolites of phenolic compounds ^[18] and are highly expressed in hepatic
310	tissue. The results of qRT-PCR analysis revealed that the expression levels the
311	UGT1a1, 1a6 and 1a9 mRNA were down-regulated by APAP treatment alone,
312	whereas, they were up-regulated by genistein + APAP treatment; for instance, the
313	expression levels of UGT1a1, 1a6 and 1a9 mRNA of L-O2 cells (Fig.6.a), the
314	following is expressed in the median and the active units of mRNA are represented
315	by arbilitrary units, respectively were 1.29,1.61 and 1.39 corresponding untreated as
316	a control group, 1.12, 1.23 and 1.12 by APAP (10mM) treatment alone, 6.81, 9.45
317	and 13.93 treated by genistein $120\mu M + 10mM$ APAP; for HepG2 cells (Fig.6.b),
318	their expression levels of mRNA respectively were 1.34, 1.49 and 1.32 in the control
319	group, 1.1, 1.09 and 1.12 by APAP (10mM) alone, 6.58, 8.98 and 5.51 by genistein
320	120µM + 10mM APAP treatment; for Hep3b cells(Fig.6.c), their expression levels
321	of mRNA respectively were 1.32, 1.74 and 1.4 in the control group, 1.1, 1.09 and
322	1.12 by APAP (10mM) alone, 6.53, 6.67 and 7.3 by genistein 120 μ M + 10mM
323	APAP treatment.

324

325 3.6 Analysis of Nrf2/Keap1 by PCR and western blotting

326

327 The Nrf2/Keap1 system is now recognized as one of the major cellular defence

mechanisms against oxidative and xenobiotic stresses ^[19]. In this article, we focused on determining whether the Nrf2/Keap1 mRNA and protein levels were regulated by genistein using qRT-PCR (Fig.7) and western blotting (Fig.8), respectively, to study genistein's potential impact on the expression levels and activation of the UGTs through the Nrf2/Keap1 pathways ^[20].

333 The expression level of Nrf2 mRNA was up-regulated and Keap1 was 334 down-regulated by APAP with genistein treatment, this is consistent with the 335 expression of UGTs activities affected by APAP with genistein treatment. Compared 336 with control, APAP alone treatment down-regulated the expression level of Nrf2 337 (86.82%, 82.09% and 84.85% corresponding L-O2, HepG2 and Hep3b) and Keap1 (76.39%, 84.84% and 63.16%, same as above cells), APAP treatment in presence of 338 339 genistein enhanced Nrf2 (238.39%, 252.73% and 152.57%, L-O2, HepG2 and 340 Hep3b, APAP 10mM added genistein 120µM vs APAP 10mM alone) and attenuated 341 Keap1 (48.34%, 37.96% and 63.26%, same as above treatment) mRNA expression 342 with dose dependent (Fig, 7. below).

Normally, Nrf2 binds to Keap1 and is sequestered in the cytoplasm, when cells are exposed to oxidative or xenobiotic stress, Nrf2 escapes Keap1-mediated repression and translocates into the nucleus to activate targets genes. However, Nrf2 accumulation did not accompany an increase in Nrf2 mRNA in cytoplasm, this is because Keap1 directly promotes degradation of Nrf2 in cytoplasm and Nrf2 translocates into the nucleus ^[21]. Therefore, the Nrf2 protein in the nuclear fraction and of the Keap1 protein in the cytoplasmic fraction were detected and compared by

Food & Function Accepted Manuscript

350	Western blotting (Fig.8.a, b and c), the result showed that the nuclear Nrf2 protein
351	were increased and the cytoplasmic Keap1 protein were reduced with dose-dependent
352	manner while genistein protection against APAP-induce cytotoxicity. The results are
353	in agreement with the literatures of fenofibrate, coffee acid and so on ^[12, 21] .
354	
355	
356	4. Discussion
357	
358	Our previous animal studies have shown that genistein regulates the expression of
359	antioxidant enzymes in the liver, and it also regulates phase II metabolic enzymes to
360	promote the transformation of xenobiotics ^[3] . This regulatory pathway may require
361	Nrf2/Keap1 signalling. In this study, we used three types of human liver cells to
362	further confirm the detoxification mechanism through this pathway.
363	Nrf2 is a key transcriptional regulator of antioxidant defence and detoxification
364	through regulating a number of antioxidant signalling and detoxification genes. In
365	higher organisms, a more sophisticated means of tightly regulating Nrf2 activity was
366	introduced via Keap1, which modulates Nrf2 activity ^[22] . Nrf2 activation results in the
367	induction of many cytoprotective proteins. These include, but are not limited to, the
368	glutathione S-transferase family (GSTs), Glutathione reductase (GR) and the
369	UDP-glucuronosyltransferase family (UGTs). GSTs catalyse the conjugation of GSH
370	with endogenous and xenobiotic electrophiles, are induced by Nrf2 activation and

- 371 represent an important route of detoxification ^[23]. UGTs catalyse the conjugation of a

372	glucuronic acid moiety to a variety of endogenous and exogenous substances, making
373	them more water soluble and enabling them to be readily excreted, important
374	substrates for glucuronidation include bilirubin and acetaminophen. Nrf2 has been
375	shown to induce UGT1A1 and UGT1A6 expression ^[24] . In addition, Multidrug
376	resistance-associated proteins (Mrps) have been shown to be upregulated by Nrf2, and
377	alterations in their expression levels can dramatically alter the pharmacokinetics and
378	toxicity of compounds ^[25,4] . Nrf2 activation may promote the de novo development of
379	cancerous tumours ^[26] , as well as the development of atherosclerosis by increasing the
380	plasma cholesterol levels and cholesterol content in the liver ^[27] , which may
381	overshadow the potential antioxidant effects of Nrf2 activation ^[28] . Nrf2 is
382	ubiquitously expressed, with the highest concentrations in the kidney, muscle, lung,
383	heart, liver, and brain ^[29] .

384 The human diet provides a wide variety of bioactive nutrients that possess 385 beneficial effects on health and are able to activate the Nrf2 signalling pathway; 386 isothiocyanates, organosulfur compounds, polyphenols, and isoflavones have been characterized as potent Nrf2 activators ^[30]. Many chemopreventive chemicals can 387 activate the Nrf2 promoter ^[31]. Genistein protected the liver cells from damage 388 389 induced by oxidative stress, which was accompanied by decreases in the intracellular 390 glutathione levels that could be explained by the generation of glutathionyl conjugates 391 of the oxidized genistein metabolite. Genistein increased the expression of the γ -glutamylcysteine synthetase-heavy subunit (γ -GCS-HS) and Glutathione reductase 392 (GR)^[32] protein and increased the cytosolic accumulation and nuclear translocation of 393

394 Nrf2. Genistein also increased the cytosolic accumulation and nuclear translocation of Nrfl and increased the expression and activity of glutathione peroxidase (GSH-Px). 395 396 The genistein-induced protective effects primarily depend on the activation of 397 GSH-Px by Nrf1, and not Nrf2 or increased glutathione synthesis ^[33]. Accordingly, the 398 genistein-induced recovery of the depleted GSH from γ -GCS-HS, GR will require 399 further in-depth studies in the future. Genistein appears to mediate an increase of the 400 phosphorylation and activation of the cell signalling pathway, with subsequent 401 activation of the antioxidant and detoxification Nrf2/Keap1 transcription system, with 402 a corresponding nuclear accumulation and enhanced DNA binding activity of Nrf2. 403 Genistein also increased the levels of the antioxidant proteins that are downstream of Nrf2^[34]. 404

405 Genistein produce non-hormonal effects of activation cell signaling and 406 transcriptional factor, which trigger the activation of the genes related to the 407 enzymes of antioxidant and detoxification. In the present study demonstrated that 408 genistein protects from APAP induced-injure liver cells through the promotion of 409 antioxidant and metabolic pathways and is associated with the activation of 410 Nrf2/Keap1 signalling. Cellular GSH is critical for the detoxification of APAP when 411 conjugating with its metabolic product NAPQI. Thus, the accumulation of NAPQI will deplete cellular GSH, so generating oxidative stress-induced liver injury ^[12]. 412 413 The study results show that genistein induced the intracellular GSH level increased 414 in a dose and time-dependent manner while APAP challenged, cellular GSH rapidly 415 decreased within 1 hour after APAP treatment, and then the GSH level was

416	recovered slowly. The relationship between the changes of the intracellular GSH and
417	GSSG was related to the growth and decline. The results indicate that genistein
418	activate the enzymes related to GSH synthesis and GSSG reduction, which were
419	γ -GCS-HS, GR and GSH-Px, via impaction on the Nrf2/Keap1 transcription factor
420	pathway. The increase of APAP-glucuronidation and the decrease of the residual
421	amount of APAP, as a specific substrate for UGT1a1, 1A6, and 1A9, were directly
422	related to the activation of UGTs activity derived from regulatory pathway by
423	genistein rather than the antioxidant properties of genistein itself, the hypothesis was
424	confirmed by the synchronous enhancement of the UGTs activation, the expression
425	mRNA level of UGTs and Nrf2/Keap1, as well as the expression of Nrf2 protein.
426	Genistein has multiple biological effects, such as inducing apoptosis of cancer
427	cells, however, the impaction of APAP and/or genistein on cells activity have
428	different biological effects. At low concentration (15, 30μ M), genistein and APAP
429	synergistically injured cells in a dose-dependent, including cancer cells of HepG2
430	and Hep3b; at high concentration (60, 120μ M), genistein protected cells from APAP
431	damage and made cancer cell lost the characteristic of apoptosis. The part results of
432	flow cytometry method showed that the apoptotic cells by treatment with genistein
433	(60 μ M) mixed APAP (10mM) were less than those by genistein or APAP alone,
434	suggesting that the biological effect of genistein protection against xenobiotic have a
435	strong dosage biological effect for cancer cells. The detailed reason is not clear and
436	need to be further tested and explored.

437 In summary, the data presented in our study showed that genistein had a very

important effect on the antioxidant activity and detoxification via the Nrf2/Keap1 transcription system, with a corresponding increase in the activation of UGT1, UGT6 and UGT9, as well as replenished intracellular GSH levels in the antioxidant and detoxification system to balance the ratio of GSH/GSSG. Based on the hepatoprotection effects of genistein, we conclude that these findings provide important insights into the molecular mechanisms by which genistein detoxifies or metabolizes xenobiotics or carcinogens to promote health benefits. Acknowledgements

This study was supported by the National Natural Science Foundation Committee of China (Grant No. 31071535) and the University Natural Science Research Project of Anhui Province of China (Grant No. KJ2012ZD10)

5. References

- 1 R.M. Han, Y. X. Tian, Y. Liu, C.H. Chen, X.C. Ai, J.P. Zhang, Comparison of Flavonoids and Isoflavonoids as Antioxidants. Journal of Agricultural and Food Chemistry, 2009, 57, 3780-3785.
- 2 J.M. Young, X.D. Wang, E.M. Marilyn, Dietary flavonoids: Effects on xenobiotic and carcinogen metabolism. Toxicology in Vitro, 2006, 20,187-210.
- 3 Y.J. Fan, Y. Rong, P.F. Li, W.L. Dong, D.Y. Zhang, L. Zhang, M.J. Cui, Genistein protection against acetaminophen-induced liver injury via its potential impact on the activation of UDP-glucuronosyltransferase and antioxidant enzymes. Food and Chemical Toxicology, 2013, 55, 172-181.
- 4 A.R. Scott, L.C. Iva'n, M.A. Lauren, D. K. Curtis, Altered Disposition of Acetaminophen in Nrf2-null and Keap1-knockdown Mice. Toxicological Sciences, 2009, 109(1), 31-40.
- 5 H. K. Bryan, A. Olayanju, C.E. Goldring, B. K. Park, The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochemical Pharmacology, 2013, 85, 705-717.
- 6 A. Lau, W. Tian, S.A. Whitman, D.D. Zhang, The predicted molecular weight of Nrf2: it is what it is not. Antioxid Redox Signal, 2013, 18, 91-93.
- 7 E.M. Giovanni, B. Barbara, I. Tetsuro, C. M. S. Richard, Targeting the redox sensitive Nrf2–Keap1 defense pathway in cardiovascular disease: protection afforded by dietary isoflavones. Current Opinion in Pharmacology, 2009,

9,139-145.

- 8 C.M.S. Richard, E. M. Giovanni, Dietary isoflavones and vascular protection: Activation of cellular antioxidant defenses by SERMs or hormesis? Molecular Aspects of Medicine, 2010, 31, 468-477.
- 9 J. H. Lee, T.O. Khor, L. M. Shu, Z.Y. Su, F. Fuentes, A.N.T. Kong, Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression. Pharmacology & Therapeutics, 2013,137,153-171.
- 10 Y.P. Hwang, H.G. Jeong, Ginsenoside Rb1 protects against 6-hydroxydopamine-induced oxidative stress by increasing heme oxygenase-1 expression through an estrogen receptor-related PI3K/Akt/Nrf2-dependent pathway in human dopaminergic cells. Toxicology and Applied Pharmacology, 2010, 242, 18–28.
- 11 F.M.F.C. Ludmila, M.P. Liliana, S. Peter, B.S.P. Milena, B.D. Julio, L.J. Maurilo,
 M. Denise, Nutritional strategies to modulate inflammation and oxidative stress
 pathways via activation of the master antioxidant switch Nrf2. Biochimie, 2013,
 95, 1525-1533.
- 12 C. Pang, Z.Zheng, L.Shi, Y.C.Sheng, H.Wei, Z.T.Wang, L.L.Ji. Caffeic acid prevents acetaminophen-induced liver injury by activating the Keap1-Nrf2 antioxidative defense system. Free Radical Biology and Medicine, 2016, 91, 236–246
- 13 S. Manjinder, K. Maninder, O. Silakari, Flavones: An important scaffold for

medicinal chemistry. European Journal of Medicinal Chemistry, 2014, 84, 206-239.

- 14 J. H. Michael, R. G. Alexander, A Review of Acetaminophen Poisoning. Crit Care Clin, 2012, 28, 499-516.
- 15 J. G. M. Bessems, L. L. P. Van Stee, J. N. M. Commandeur, E. J. Groot, N. P. E. Vermeulen, Cytotoxicity of Paracetamol and 3,5-Dihalogenated Analogues:
 Role of Cytochrome P-450 and Formation of GSH Conjugates and Protein Adducts. Toxicology in Vitro, 1997, 11, 9-19.
- 16 W.W. Ma, L.H. Yuan, H.L. Yu, B.J. Ding, Y.D. Xi, J.F. Feng, R. Xiao, Genistein as a neuroprotective antioxidant attenuates redox imbalance induced by β-amyloid peptides 25-35 in PC12 cells. International Journal of Developmental Neuroscience, 2010, 28, 289-295.
- 17 R. M. Mitchell, J. Hartmut, Metabolism and Disposition of Acetaminophen: Recent Advances in Relation to Hepatotoxicity and Diagnosis. Pharmaceutical research, 2013, 30, 2174-2187.
- 18 W.B. Karl, K. Christoph, UDP Glucuronosyltransferase 1A6: Structural, Functional, and Regulatory Aspects. Methods in Enzymology, 2005, 400, 57-75.
- 19 M.H. Hozumi, Y.M. Masayuki, Nrf2–Keap1 defines a physiologically important stress response mechanism. TRENDS in Molecular Medicine, 2004, 10(11), 549-557.
- 20 K. Rakesh, D. Suman, B. Anindita, B. Sushmita, C. P. Bikas, B. Shelley, P.G. Rao, N.C. Barua, B. Manobjyoti, B. Samir, Carlinoside reduces hepatic bilirubin

accumulation by stimulating bilirubin-UGT activity through Nrf2 gene expression. Biochemical Pharmacology, 2011, 82, 1186-1197

- 21 J.S.Park, D.H.Kang, D.H.Lee, S.H.Bae. Fenofibrate activates Nrf2 through p62-dependent Keap1 degradation. Biochemical and Biophysical Research Communications, 2015, 465, 542-547
- 22 M. Jonathan, Y.M. Masayuki, The rise of antioxidant signaling-The evolution and hormetic actions of Nrf2. Toxicology and Applied Pharmacology, 2010, 244, 4-15.
- 23 J. D. Hayes, S. A. Chanas, N C. J. Henderson, M. McMahon, C. Sun, G J. MofTatt, C. R. Wolfrz, M. Yamamoto, The Nrf2 transcription factor contributes both to the basal expression of glutathione Stransferases in mouse liver and to their induction by the chemopreventive synthetic antioxidants, butylated hydroxyanisole and ethoxyquin. Biochemical Society Transactions, 2000, 28, 233-241.
- 24 M.F. Yueh, R.H. Tukey, Nrf2-Keap1 Signaling Pathway Regulates Human UGT1A1 Expression in Vitro and in Transgenic UGT1 Mice. The Journal of Biological Chemistry, 2007, 282 (12), 8749–58.
- 25 M.M. Jonathan, Z.D. Matthew, M.A. Lauren, L.S. Angela, G. Grace, T.K. Yuji, L.S. George, Y. C. Jefferson, E. M. Jose, C. Ying, P. D. Timothy, Y.M. Masayuki, D. K. Curtis, Oxidative and Electrophilic Stress Induces Multidrug Resistance-Associated Protein Transporters via the Nuclear Factor-E2–Related Factor-2 Transcriptional Pathway. Hepatology, 2007, 46 (5), 1597–610.

- 26 M. D. Gina, A. K. Florian, J. H. Timothy, G. Aarthi, W. Cong, F. Kristopher, M. Dipti, H. Y. Kenneth, J. Y. Charles, S. C. Eric, S. Francesca, M. W. Jordan, H. H. Ralph, I.D. Christine, E. K. Scott, A.B. Ian, A.T. David, Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature, 2011, 475, 106-109.
- 27 B. Berenice, C. Nam, Y. Fen, R. Amir, D. O. Luz, K. W. Gong, X.P. Wang, W. C. Lawrence, R. Karen, J. L. Aldons, A. A. Jesus, NF-E2–Related Factor 2 Promotes Atherosclerosis by Effects on Plasma Lipoproteins and Cholesterol Transport That Overshadow Antioxidant Protection. Arteriosclerosis, thrombosis, and vascular biology, 2011, 31 (1), 58–66.
- 28 A.A. Jesus, Nrf2 and the promotion of atherosclerosis: lessons to be learned. Journal of Clinical Lipidology, 2012, 7(2), 123-126.
- 29 P. Moi, K. Chan, I. Asunis, A. Cao, Y.W. Kan, Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. PNAS., 1994, 91(21), 9926–9930.
- 30 Y. Huang, W.J. Li, Y. S. Zheng, A.N.T. Kong, The complexity of the Nrf2 pathway: Beyond the antioxidant response. The Journal of Nutritional Biochemistry, 2015, 26(12), 1401-1413.
- 31 X.J. Kou, K. Michael, Y. Yang, N. Chen, Natural products for cancer prevention associated with Nrf2-ARE pathway. Food Science and Human Wellness, 2013, 2, 22–28.

- 32 C.L,Shi, X.Zhou, J.Y. Zhang, J.C.Wang, H. Xie, Z.G. Wu. α-Lipoic acid protects against the cytotoxicity and oxidative stressinduced by cadmium in HepG2 cells through regeneration of glutathione by glutathione reductase via Nrf2/ARE signaling pathway. Environmental Toxicology and Pharmacology, 2016, 45, 274–281
- 33 H.M. Eva, E. P. Susan, V. David, J.M. Laia, R. Cristina, R. Gerald, D. W. Peter, P.E.S. Jeremy, Activation of glutathione peroxidase via Nrf1 mediates genistein's protection against oxidative endothelial cell injury. Biochemical and Biophysical Research Communications, 2006, 346, 851-59.
- 34 R. Wang, J. Tu, Q. Zhang, X. Zhang, Y. Zhu, W. Ma, C. Cheng, D.W. Brann, F. Yang, Genistein attenuates ischemic oxidative damage and behavioral deficits via eNOS/Nrf2/HO-1 signaling. Hippocampus., 2013, 23, 634-647.

Figure Legends

Fig. 1. APAP and genistein inhibit the growth and viability of L-O2, HepG2 and Hep3b cells. The cells were seeded at 2×10^5 cells/ml and then treated with 5mM, 10mM, 20 mM APAP (Fig.1.a) or 15µM, 30µM, 60µM, 120µM genistein (Fig.1.b) for 48 hours. The number of cells and the cell viability were determined using the metabolic dye-based MTT assay. Each point represents the mean \pm SD of three independent experiments. The significance was determined using ANOVA (*p < 0.05 vs. the untreated control).

Fig. 2. The L-O2 (Fig.2.a), HepG2 (Fig.2.b), and Hep3b (Fig.2.c) cells were treated with 10 mM APAP in the presence or absence (control) of genistein (15, 30, 60 and 120 μ M) for 48 hours, and cell viability was determined using the MTT assay. The significance was determined using ANOVA (*p < 0.05 vs. the cells treated with 10 mM APAP without genistein).

Fig. 3. The cells were untreated (control) or were treated with 10 mM APAP in the presence or absence of genistein (15, 30, 60 and 120 μ M) for 48 hours, and then the LDH, AST and ALT levels were determined. The AST and ALT units were reported as IU/L (25°C), LDH was reported as U/L (37°C). (**p* < 0.05 vs. the untreated control, # *p* < 0.05 vs. the cells that were treated with 10 mM APAP without genistein).

Fig. 4. The cells were treated with 10 mM APAP and different concentrations of genistein (15, 30, 60 and 120 μ M), as described above. After treatment, each group of cells were lysed at intervals of 0.5, 1, 2, 4, 8, 24 and 48 hours to analyse the GSH and GSSG levels. The untreated cells served as a control.

Fig. 5. The L-02, HepG2 and Hep3b cells were treated with APAP (10 mM) in the presence or absence of genistein and separately incubated for 24 hours. The cells that were treated with 10 mM APAP in the absence of genistein were used as a control. The cells that were treated with 10 mM APAP and genistein (15, 30, 60 and 120 μ M) exhibited reduced levels of residual APAP (Fig.5.a) and increased APAP-glucuronide (APAP-Glu) transformation (Fig.5.b) (**p* < 0.05 vs. the cells that were treated with 10 mM APAP without genistein).

Fig. 6. The L-O2 (Fig.6.a), HepG2 (Fig.6.b), and Hepb3 (Fig.6.c) cells were treated with APAP (10 mM) in the presence or absence of genistein treatment (15, 30, 60 and 120 μ M) for 24 hours. The expression levels of the UGT1A1, 1A6, and 1A9 mRNAs were determined by qRT-PCR analysis and untreated cells were as control. (*p < 0.05 vs. control, # p < 0.05 vs. treatment with 10 mM APAP without genistein).

Fig. 7. The L-O2, HepG2, and Hep3b cells were treated with APAP (10 mM) in the presence or absence of genistein treatment (15, 30, 60 and 120 μ M) for 24 hours. The expression levels of the Nrf2 and Keap1 mRNAs were determined by qRT-PCR analysis. The cells that were untreated with neither APAP nor genistein served as a control. (*p < 0.05 vs. control, #p < 0.05 vs. treatment with 10 mM APAP without genistein).

Fig. 8. Western blot analysis of the Nrf2 (nucleus) and Keap1 (cytoplasm) proteins. The L-O2 (Fig.8.a), HepG2 (Fig.8.b) and Hep3b cells (Fig.8.c) were treated with APAP (10 mM) in the presence or absence of genistein for 24 hours. (*p < 0.05 vs. control, #p < 0.05 vs. treatment with 10 mM APAP without genistein).

Edit sequence of figures:

Fig.1

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Food & Function Accepted Manuscript

Fig. 8.

Graphical Abstract

Genistein can prevent and protect against APAP-induced liver toxicity due to the inhibition of APAP biotransformation and the resistance to oxidative stress via the Nrf2/Keap1 Cell signaling pathway to modulate the activities of UDP-glucuronosyltransferase and the antioxidant enzyme.

