Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/foodfunction

Page 1 of 23

1

Chemical Characterization of the Main Bioactive

2	Constituents from Fruits of Ziziphus jujuba						
3 4 5	Lu Bai, ^a Hai Zhang, ^b * Qingchao Liu, ^a Yong Zhao, ^b Xueqin Cui, ^a Sen Guo, ^a Li Zhang, ^a Chi-Tang Ho, ^c and Naisheng Bai ^a *						
6	^a College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest						
7	University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China						
8	^b Laboratory Animal Center, Fourth Military Medical University, 169 Changle West Road, Xi'an,						
9	Shaanxi, 710032, China						
10	^c Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey						
11	08901, USA						
12	Corresponding Author						
13	*(N.B.) To whom correspondence should be addressed.						
14	Telephone: 0086-29-88305682						
15	Fax: 0086-29-88302223						
16	E-mail: <u>nsbai@nwu.edu.cn</u>						
17	Corresponding Author						
18	Telephone: 0086-29-84774789						
19	Fax: 0086-29-83242045						
20	E-mail: <u>hzhang@fmmu.edu.cn</u>						
21							
22							
23							
24							
25							
26							

27 Abstract

28	The fruit of Ziziphus jujuba Mill., also called hongzao in Chinese, has long history of						
29	cultivation in China. From the fruit of Z. jujuba, twenty-seven known compounds						
30	were isolated and identified as the main constituents of the fruits. They were						
31	3-O-(<i>trans-p</i> -coumaroyl)-alphitolic acid (1), 3-O-(<i>cis-p</i> -coumaroyl)-alphitolic acid (2),						
32	3β-O-(trans-p-coumaroyl) maslinic acid (3), pomonic acid (4), 2-oxo-pomolic acid						
33	(5), benthamic acid (6), terminic acid (7), oleanic acid (8), betulinic acid (9), quercetin						
34	3-O-rutinoside (10), quercetin 3-O-robinobioside (11), apigenin (12), traumatic acid						
35	(13), (Z)-4-oxotetradec-5-enoic acid (14), $7(E)$ -9-keto-hexadec-7-enoic acid (15),						
36	9(E)-11-oxo-octadecenoic acid, (9CI) (16), and magnoflorine (27), etc. The HPLC						
37	fingerprint of Z. jujuba fruits was established at the same time. The compounds 4, 5, 7,						
38	11, 14, 15 and 16 were isolated from Z. jujuba for the first time. Compound 14 was						
39	isolated from the nature for the first time. Furthermore, cytotoxicity against four						
40	human tumor cell lines (MCF-7, A549, HepG2 and HT-29) of the isolated compounds						
41	(1-17 and 27) was evaluated. Among these compounds, compounds 1, 2, 3, 6, 7, 9 and						
42	12 had strong growth inhibitory effects on cancer cell lines. These results indicated						
43	that jujube extracts exhibited cytotoxicity on these cancer cell lines.						
44	KEYWORDS: Ziziphus jujuba Mill., triterpenoids, cytotoxicity						

1. Introduction

The fruit of *Ziziphus jujuba* Mill., also called hongzao in Chinese, has long history of cultivation in China. *Ziziphus jujuba* Mill., belonging to the Rhamnaceae family, was widely distributed in northern China. Hongzao is commonly used as food and in Chinese folk medicine for the treatment of fatigue, anorexia, and other health problems for thousands of years.¹

Phytochemical studies have revealed that *Z. jujuba* contains various chemical constituents, including triterpenic acids,²⁻⁴ flavonoids,⁵ saponins,⁶ alkaloids,⁷ amino acids,⁸ phenolic acids,^{9,10} polysaccharides¹¹ and other constituents. The fruits of *Z. jujuba* were reported to have a variety of biological activities such as anti-tumor,¹²⁻¹⁴ antioxidant,^{8,15,16} anti-inflammatory,^{17,18} hepatoprotective property,¹⁹ gastrointestinal protective property,²⁰ and sedative effects.²¹

It has been reported that *Z. jujuba* fruit possesses hundreds of nutrients. Polysaccharides, cAMP and triterpenoid acids are the most characteristic and functional constituents.²² The structure of triterpenoids is diversified, and it has a wide range of biological activities.^{23,24} Much effort has been devoted to verify the effectiveness of *Z. jujuba* against cancer and the result shows that *Z. jujuba* exerts anticancer activities on several tumor cell lines.²⁻⁴

As part of our continuing research for bioactive components from nutritional fruits, we studied the jujube plant cultivated in Jiaxian, Shaan'xi province of China and isolated 27 compounds including nine triterpenoids (1-9) and 18 other compounds (10-27) as major constituents in the fruits of *Z. jujuba*. The HPLC fingerprint of *Z. jujuba* fruits was established at the same time. Structures of compounds 1-9, 11 and

- 71 14-17 are shown in Figure 1. Cytotoxicities against several human tumor cell lines
- 72 (MCF-7, A549, HepG2, HT-29) of 18 isolated compounds are reported.

Fig. 1 Structure of compounds 1-9, 11 and 14-17 from Ziziphus jujuba.

75 **2. Materials and methods**

76 **2.1 General experimental procedures.**

77 Optical rotations were determined with a Perkin-Elmer Model 241 MC polarimeter.

VV spectra were recorded on a Shimadzu UV-2401A. ¹H and ¹³C nuclear magnetic

resonance (NMR) spectra were measured on a Bruker Avance 400 spectrometer
(Bruker BioSpin GmbH, Beijing, China) with tetramethylsilane (TMS) as the internal
standard, and chemical shifts were recorded in δ values. 2D NMR spectra include
homonuclear ¹ H correlation spectroscopy (COSY), through-space ¹ H correlation
spectroscopy (ROESY), one-bond heteronuclear ¹ H- ¹³ C correlation spectroscopy
(HSQC), heteronuclear multiple-bond correlation spectroscopy (HMBC). Low- and
High-resolution ESIMS were recorded on a Q-TOF Global mass spectrometer.
Analytical HPLC was performed on an Agilent 1260 separation module connected to
a G1315D DAD detector using a Phenomenex Luna C_{18} HPLC column (150 \times 4.6
mm, 5 µm, 100 Å). Preparative HPLC was performed on a Shimadzu LC-20AD
preparative chromatography system connected to an SPD-M20A DAD detector using
Phenomenex Luna Silica and C ₁₈ HPLC columns (250 \times 21.2 mm, 5 μ m, 100 Å).
LC-MS analysis was carried out on a Agilent 1200 series LC, equipped with G1367B
Hip-ALS, G1315D DAD detector and 6110 Quadrupole MS. HPLC analysis was
performed on an Agilent 1260 LC Series using Luna C-18 column (5 micron, 4.6 mm
I.D. \times 250, Phenomenex, Inc., Torrance, CA, USA) with a flow rate of 1.0 mL/min,
and the column temperature was maintained at 30 °C. The mobile phase was
composed of A (0.2% (v/v) phosphoric acid-water solution) and B (acetonitrile) with a
gradient elution: 0 min, 100% A; 0-25 min, 100-85% A; 25-35 min, 85-80% A; 35-38
min, 80-75% A; 38-45 min, 75-70% A; 45-55 min, 70-45% A; 55-60 min, 45-30% A;
60-62 min, 30-95% A; 62-65 min, 95% A.

100 **2.2 Chemicals and reagents.**

101	CD ₃ OD, CDCl ₃ , and CF ₃ COOH (HPLC grade) were obtained from Merck (Darmstadt,					
102	Germany). CH ₃ OH (HPLC grade), CH ₃ CH ₂ OH (HPLC grade), and CH ₃ CN (HPLC					
103	grade) were purchased from Sigma-Aldrich (St. Louis, MO, USA). All other organic					
104	solvents used in the current study, such as CH ₃ OH, ethyl acetate (EtOAc), acetone,					
105	and chloroform (CHCl ₃) were of analytical grade. They are commercially available					
106	from Hengxing Chemical Reagent Co., Ltd. (Tianjin, China). CCK-8 and Annexin					
107	V/PI apoptosis detection kit were purchased from Qihai Biological Technology Ltd.					
108	(Shanghai, China).					
109	2.3 Cell culture.					
110	Human breast cancer cell line MCF-7, human alveolar basal epithelial cell line A549,					
111	human liver carcinoma cell line HepG2 and human colorectal adenocarcinoma cell					
112	line HT-29 were purchased from Type Culture Collection of Chinese Academy of					
113	Sciences (Shanghai, China). These cells were cultured in RPMI 1640 supplemented					
114	with 10% fatal boying some (ERS) in a humidified atmosphere of 5% CO at 37 %					
	with 10% retai bowine serum (FDS) in a number damosphere of 5% CO ₂ at 5% C.					
115	2.4 Materials.					
115 116	 2.4 Materials. The fruits of hongzao (<i>Z. jujuba</i>) were collected in October 2013 from Jiaxian, 					

Shaan'xi Province, China. Their botanical origins were identified by the
corresponding author, and voucher specimens were deposited in the herbarium of
Northwest University, under number ZJ-01. Thin-layer chromatography (TLC)
analysis was performed on precoated E. Merck Silica Gel 60 GF254 plates. Flash
column chromatography (CC) was performed on silica gel (200-300 mesh, Qingdao
Marine Chemical Factory, Qingdao, China), reversed phase C18 (octadecylsilyl, ODS)

123	silica gel (Silicycle, 50 µm, Canada), or Sephadex LH-20 (Sigma-Aldrich, St. Louis,
124	MO, USA). CCK-8 and PI detection kit were purchased from Qihai Biological
125	Technology Ltd. (Shanghai, China).

126 **2.5 Extraction and isolation.**

After the cores had been removed, the dried hongzao (20 kg) were pulverized to 127 128 homogeneous powders. The powders were extracted with EtOAc under cold soak for 129 two times (each for 48 h) and the ratio of material to solvent was 1:3. The resulting 130 solution was then filtered, and the filtrate was combined and concentrated under 131 vacuum at 40 °C to give an extracts (157 g). The crude residue was then extracted with 60% EtOH under reflux for 2 hours and extracted twice with EtOAc, finally 132 133 combined the two EtOAc solutions and concentrated under vacuum to give the EtOAc extract (167 g). The combined water solution was concentrated under vacuum to give 134 135 the water extract (200 g).

The EtOAc extract was subjected to a normal-phase silica gel column chromatography (600 g of silica gel, 200-300 mesh), eluted with a stepwise gradient of petroleum ether - acetone (from 50:1 to 0:1), to yield four major fractions (A-D). The fractions were monitored using Agilent 1200 LC-MS and thin-layer chromatography (TLC) with the developing solvent petroleum ether-EtOAc (from 20:1 to 0:1).

Fraction B (15 g) was purified by a flash ODS C_{18} silica gel column, eluted with a gradient of CH₃CN-H₂O to afford three subfractions, B-1, B-2, and B-3. Fraction B-1 was passed through a Sephadex LH-20 column to obtain **8** (90 mg), and **9** (5 mg).

145	Fraction B-2 was separated by preparative HPLC to yield 14 (27 mg, t_R = 52.05 min),
146	15 (160 mg, t_R = 54.12 min), 16 (33 mg, t_R = 58.53 min), and 17 (20 mg, t_R = 59.67
147	min). Fraction B-3 was passed through a Sephadex LH-20 column to give 18 (190 mg,
148	$t_{\rm R}$ = 31.82 min), and 19 (150 mg, $t_{\rm R}$ = 44.39 min).
149	Fraction C (9.8 g) was separated into four subfractions (C-1, C-2, C-3 and C-4) by a
150	silica gel column chromatography using a stepwise gradient of petroleum
151	ether-acetone (from 5:1 to 1:1) as an eluent. Fraction C-2 was separated by a flash
152	ODS C ₁₈ silica gel column, eluted with CH ₃ CN-H ₂ O to afford two subfractions, C-2-1,
153	and C-2-2. Fraction C-2-1 was subsequently purified by a Sephadex LH-20 column to
154	give compound 13 (24 mg). C-2-2 was passed through a Sephadex LH-20 column to
155	give 21 (23mg, t_R = 30.43 min) and 24 (195 mg, t_R = 11.75 min). Fraction C-3 was
156	purified by a Sephadex LH-20 column to obtain fractions C-3-1 and C-3-2. Fraction
157	C-3-1 was subsequently separated by a preparative HPLC to give compound 4 (4 mg),
158	5 (21 mg), and 7 (9 mg, $t_{\rm R}$ = 50.95 min). Fraction C-3-2 was further purified by a
159	preparative HPLC to obtain 1 (20 mg, $t_R = 61.02 \text{ min}$), 2 (25.3 mg, $t_R = 47.10 \text{ min}$), 3
160	(9.2 mg, $t_{\rm R}$ = 51.89 min) and 6 (11.20 mg).
161	Fraction D (17 g) was also separated by a flash ODS C_{18} silica gel column, eluted

with a gradient of CH₃OH-H₂O, to obtain three subfractions, D-1, D-2 and D-3. Fraction D-1 was purified by a Sephadex LH-20 column to obtain fractions D-1-1 and D-1-2, and fraction D-1-1 was further purified by a preparative HPLC to yield **10** (5.4 mg, t_R = 41.36 min) and **11** (7.0 mg, t_R = 40.66 min). Fraction D-2 was subsequently separated by a preparative HPLC to yield **25** (5 mg, t_R = 39.18 min) and **26** (6.3 mg, t_R

8

Food & Function

177 Fig. 2 HPLC chromatograms of compounds and the extracts of Ziziphus jujuba. Peaks: 1, 178 3-O-(trans-p-Coumaroyl)-alphitolic acid (61.02 min); 2, 3-O-(cis-p-Coumaroyl)-alphitolic acid 179 (47.10 min); **3**, 3β-O-(trans-p-Coumaroyl) maslinic acid (51.89 min); **10**, Quercetin 180 3-O-rutinoside (41.36 min); 11, Quercetin 3-O-robinobioside (40.66 min); 12, Apigenin (15.89 181 min); 14, (Z)-4-oxotetradec-5-enoic acid (52.05 min); 15, 7(E)-9-keto-Hexadec-7-enoic acid 182 (54.12)min); 16. 9(E)-11-oxo-octadecenoic acid, (9CI) (58.53 min); 17. 183 (9Z,12Z,15Z)-Octadeca-9,12,15-trienoic acid (59.67 min); 18, Benzoic acid (31.82 min); 19, 184 2-Hydroxybenzoic acid (44.39 min); 20, 4-Hydroxybenzoic acid (18.17 min); 21. 4-Hydroxybenzaldehyde (30.43 min); 22, 3,4-Dihydroxybenzoic acid (13.22 min); 23, 185 186 4-Hydroxy-3-methoxybenzaldehyde (18.97 min); 24, 1,2,4-Trihydroxybenzene (11.75 min); 25, 187 4-Hydroxycinnamic acid (39.18 min); 26, p-Hydroxycinnamic acid (35.94 min); 27, Magnoflorine 188 (24.92 min).

189 **2.6** Cell inhibitory assay.

190	5×10^3 cells were seeded into 96-well plate one day before incubation. The final
191	concentration of 100 μ g/mL extracts was added into the cells on second day. After
192	incubation for 24 h, 10 μL of CCK-8 was added and incubated for additional 3 h, and
193	then OD value was measured by spectrophotometer under 450 nm. Cell inhibitory rate
194	was calculated as follows: cell inhibitory rate= (OD $_{control}$ - OD $_{experiment}$) / (OD $_{control}$ -
195	OD_{blank}) ×100%.

196 **2.7 Cell death assay.**

 3×10^5 cells were seeded onto 6-well plate, 100 µg/mL extracts were added into the wells after the cell adherent. 24 h later, cells were harvested and washed, and then incubated with PI buffer for 15 min under 4 °C in a dark place, samples were subjected to flow cytometry analyses for cell death.

201 **3. Results and discussion**

202 **3.1 Extraction and isolation.**

The 10 kg air-dried fruit of Z. jujuba was extracted. The separation was conducted by 203 using a combination of column chromatography of silica gel, Sephadex LH-20 and a 204 flash ODS C₁₈ silica gel column together with preparative HPLC to give twenty-seven 205 $(1)^{25}$ 206 compounds. namely 3-O-(*trans-p*-coumaroyl)-alphitolic acid 3-O-(cis-p-coumaroyl)-alphitolic acid (2),²⁵ 3β -O-(trans-p-coumaroyl)-maslinic acid 207 (3),²⁶ pomonic acid (4),²⁷ 2-oxo-pomolic acid (5),²⁸ benthamic acid (6),²⁹ terminic 208 acid (7),³⁰ oleanic acid (8),³¹ betulinic acid (9),³² quercetin 3-O-rutinoside (10),³³ 209 quercetin 3-O-robinobioside (11),³³ apigenin (12),³⁴ traumatic acid (13),³⁵ 210

211	(Z)-4-oxotetradec-5-enoic acid (14), ³⁶ 7(E)-9-keto-Hexadec-7-enoic acid (15), ³⁷					
212	9(E)-11-oxo-octadecenoic acid, (9CI) (16), ³⁸ (9Z,12Z,15Z)-octadeca-9,12,15-trienoic					
213	acid (17),39 benzoic acid (18), 2-hydroxybenzoic acid (19), 4-hydroxybenzoic acid					
214	(20), 4-hydroxybenzaldehyde (21), 3,4-dihydroxybenzoic acid (22),					
215	4-hydroxy-3-methoxybenzaldehyde (23), 1,2, 4-trihydroxybenzene (24),					
216	4-hydroxycinnamic acid (25), <i>p</i> -hydroxycinnamic acid (26), and magnoflorine (27). ⁴⁰					
217	All structures were established by spectroscopic methods, including ¹ H, ¹³ C NMR,					
218	DEPT, 2D correlation spectroscopy, ESI-MS, and chemical properties. The known					
219	compounds were identified by comparing NMR data with those reported in the					
220	literature. Compounds 10-27 were identified by direct comparison with commercial					
221	standards.					

222 **3.2 Structural elucidations.**

223 Compound 1 was obtained as a white powder, and its molecular formula was $C_{39}H_{55}O_6$ according to the ESI-MS (positive) data: m/z 619 $[M + H]^+$. The UV 224 spectrum of 1 exhibited maximum absorptions at 230 and 315 nm. The ¹³C NMR 225 spectrum combined with a DEPT revealed the presence of 39 carbon signals, 226 including a carboxyl carbon (δ 180.0), an ester group (δ 169.8), 10 aromatic or 227 228 olefinic (δ 110.4 - 169.8), and 2 oxygenated methane (δ 68.0, 85.7). All proton resonances were assigned with the aid of ¹H-¹H COSY and TOCSY spectra. The ¹³C 229 NMR signals were assigned by HMQC, HMBC, and DEPT spectra. The ¹H-NMR 230 spectrum exhibited six tertiary methyl signals at $\delta_{\rm H}$ 1.73, 1.18, 1.00, 0.99, 0.95, 0.90. 231 Comparison of the ¹H and ¹³C NMR data of 1 with those of alphitolic acid⁴¹ 232 established the presence of the same backbone, except that position 3 was linked with 233

234	a <i>p</i> -hydroxycinnamic acid. The <i>p</i> -hydroxycinnamic acid group was determined by the
235	signals of C-1' (δ 169.8), C-2' (δ 116.0), C-3' (δ 146.4), C-4' (δ 127.5), C-5' (δ
236	131.0), C-6' (δ 117.0), C-7' (δ 161.3), C-8' (δ 117.0), C-9' (δ 131.2) and H-2' at $\delta_{\rm H}$
237	6.42 (1H, d, $J = 16.0$ Hz), H-3' at $\delta_{\rm H}$ 7.63(1H, d, $J = 16.0$ Hz), H-5', 9' at $\delta_{\rm H}$ 7.49 (2H,
238	d, $J = 8.8$ Hz), H-6', 8' at $\delta_{\rm H}$ 6.83 (2H, d, $J = 8.8$ Hz). From the DEPT, we could
239	clearly see that position 3 (δ 85.7) was a CH and the <i>p</i> -hydroxycinnamic acid group
240	was located here due to the correlation between C-1'(δ 169.8) and H-3 ($\delta_{\rm H}$ 4.63, 1H, s)
241	in the HMBC. There was also HMBC correlation between C-1' (δ 169.8) and H-2' (δ
242	6.42, 1H, d, $J = 16.0$ Hz), H-3' (δ 7.63, 1H, d, $J = 16.0$ Hz) in the spectrum. In
243	addition, H-3 (δ 4.63, 1H, s) had correlations with C-2 (δ 68.0), C-5 (δ 48.6), C-1 (δ
244	42.1), C-4 (δ 39.6), C-24 (δ 29.3), C-23 (δ 18.3) through the HMBC. The relative
245	stereochemistry of 1 was confirmed on the basis of the NOESY correlations. There
246	was no obvious correlation between H-2' at $\delta_{\rm H}$ 6.42 and H-3' at $\delta_{\rm H}$ 7.63 in the
247	NOESY spectrum, and the coupling constant of J is 16.0 Hz in the methanol- d_6 ,
248	suggesting a <i>trans</i> configuration of the double bond. As for compound 2, very similar
249	chemical shifts of all carbon and hydrogen signals to 1 were found, except that H-2' at
250	$\delta_{\rm H}$ 5.88 (1H, d, J = 8.8 Hz) and H-3' at $\delta_{\rm H}$ 6.90 (1H, d, J = 8.8 Hz). There was strong
251	cross-peak between H-2′ at $\delta_{\rm H}$ 5.88 and H-3′ at $\delta_{\rm H}$ 6.90 in the NOESY spectrum, and
252	the coupling constant of J between 2' and 3' is 8.8 Hz in the methanol- d_6 , suggesting
253	that the double bond in 2 is <i>cis</i> configuration. As for compound 3, the 1 H and 13 C
254	NMR spectra reveal that it has the same <i>p</i> -hydroxycinnamic acid group as compound
255	1, but the skeleton was maslinic acid ⁴² and the <i>p</i> -hydroxycinnamic acid group was

256	also located at position 3 due to the correlation between C-1' (δ 169.2) and H-3 ($\delta_{\rm H}$
257	4.63, 1H, s) in HMBC. There was no obvious correlation between H-2' at $\delta_{\rm H}$ 6.39 and
258	H-3', at $\delta_{\rm H}$ 7.63 in the NOESY spectrum, and the coupling constant of J was 16.0 Hz
259	in the methanol- d_6 , suggesting a <i>trans</i> configuration of the double bond. Thus, the
260	structure of compound 1 was determined to be 3-O-(trans-p-coumaroyl)-alphitolic
261	acid, 2 was identified to be 3-O-(cis-p-coumaroyl)-alphitolic acid, and 3 was
262	identified to be 3β -O-(<i>trans-p</i> -coumaroyl)-maslinic acid. The complete ¹ H and ¹³ C
263	NMR of 1 and 2 assignments are given in Table 1.

265 Table 1 ¹H, ¹³C, ¹H-¹H COSY and HMBC Data for 1 and 2 (DMSO- d_6)^{*a*}

No.	1			2		
	$\delta_{ m C}$	$\delta_{\rm H}(J \text{ in Hz})$	HMBC	$\delta_{ m C}$	$\delta_{\mathrm{H}}(J \text{ in Hz})$	HMBC
			(H to C)			(H to C)
1	42.1 t	1.68 m	2,10	42.1 t	1.65 m	2,5,10
2	68.0 d	3.98 dd(12.0,6.0)	3	67.9 d	3.92 dd(12.0,6.0)	3
3	85.7 d	4.63 s	1′,1,2,4,5,23,	85.3 d	4.65 s	1′,1,2,4,5,23,
			24			24
4	39.4 s			39.6 s		
5	48.6 d	1.02 s	3,4,6,10	50.5 d	1.04 s	3,4,610
6	35.6 t	1.72 m	5,7,8	35.5 t	1.72 m	5,7,8
7	33.9 t	1.43 m	5,6,8,9	33.9 t	1.45 m	5,6,8,9
8	39.8 s			39.7 s		
9	48.9 d	1.06 s	8,10,11	52.0 d	1.05 m	8,10,11
10	40.8 s			40.6 s		
11	21.4 t	1.65 m	9,10,12	19.7 t	1.65 m	9,10,12
12	26.9 t	1.68 m	11,13	26.9 t	1.70 m	11,13
13	37.5 d	1.06 s	12,14,18	37.4 d	1.05 m	12,14,18
14	43.8 s			43.8 s		
15	30.5 t	1.49 m	14,16,17,27	30.9 t	1.48 m	14,16,17,27
16	32.3 t	1.97 m	15,17	32.4 t	1.95 m	15,17
17	57.6 s			57.6 s		
18	50.6 d	1.40 m	13,17,19	56.7 d	1.38 m	13,17,19
19	48.0 d	2.08 m	18,20,29	48.6 d	2.10 m	18,20,21
20	152.1 s			152.0 s		

Page	14	of	23
------	----	----	----

21	31.8 t	1.52 m	19,22	31.8 t	1.50 m	19,22
22	38.3 t	1.70 m	17,21	38.2 t	1.65 m	17,21
23	18.3 q	1.00 s	3,4,24	18.1 q	0.99 s	3,4,24
24	29.3 q	0.99 s	4,5,23	29.3 q	0.96 s	4,5,23
25	18.0 q	1.18 s	1,9,10	18.0 q	1.16 s	1,9,10
26	16.8 q	0.90 s	8,9,14	16.8 q	0.83 s	8,9,14
27	15.3 q	0.95 s	8,13,14,15	15.3 q	0.88 s	8,13,14,15
28	180.0 s			180.1 s		
29	110.4 t	4.74 s, 4.65 s	19,30	110.4 t	4.74 s, 4.66 s	19,30
30	19.7 q	1.73 s	19,20,29	19.5 q	1.76 s	19,20,29
1'	169.8 s			168.7 s		
2'	116.0 d	6.42 d (16.0)	1′,4′	117.5 d	5.88 d (8.8)	1′,3′,4′,5′
3'	146.4 d	7.63 d (16.0)	1′,2′,4′,5′	144.8 d	6.90 d (8.8)	1′,2′,5′
4'	127.5 s			127.9 s		
5'	131.0 d	7.49 d (8.8)	3′,7′	133.8 d	7.69 d (8.8)	3′,6′,7′
6'	117.0 d	6.83 d (8.8)	4′,7′,8′	115.9 d	6.77 d (8.8)	4′,7′,8′
7'	161.3 s			160.0 s		
8'	117.0 d	6.83 d (8.8)	4′,6′,7′	115.9 d	6.77 d (8.8)	4′,6′,7′
9'	131.2 d	7.49 d (8.8)	3′,7′	133.8 d	7.69 d (8.8)	3′,7′,8′

^{*a*}Carbon multiplicities were determined by DEPT experiments (s = C, d = CH, $t = CH_2$, $q = CH_3$);

267 Figures in parentheses denote *J* values (Hz).

3.3 Jujube extracts inhibit proliferation of different tissue derived cancer cells.

Anti-tumor activities of 18 compounds (1-17 and 27) were evaluated on four human 269 270 cancer cell lines: MCF-7, A549, HepG2 and HT-29. As shown in Fig. 3, majority of 271 compounds could inhibit different tissues derived cancer proliferation. Compounds 1, 2, 3, 6, 7, 9 and 12 exhibited stronger inhibitory effect on all four cancer cell lines, the 272 highest inhibitory rate was reached to above 99%. Lee et al.³ also showed that 273 compounds 1, 2, 3 and 9 had high cytotoxic activities against K562, B16 (F-10), 274 275 SK-MEL-2, PC-3, LOX-IMVI and A549 tumor cell lines by the sulforhodamin B (SRB) method. Compound 6 previously isolated from rosemary extract has been 276 reported to have antiproliferative effects on colon cancer cells.⁴³ Some other 277

278	compounds, like 5, 8 and 16 possessed a selective inhibitory effect on cancer cells,
279	compound 16 only exhibited stronger inhibitory effect on A549 cells, it could hardly
280	inhibit the proliferation of MCF-7, HT-29 and HepG2 cells. Similarly, compound 1
281	strongly inhibited the proliferation of MCF-7 and A549 cells, but it barely inhibited
282	HT-29 and HepG2 cells proliferation. Meanwhile, flow cytometry assay revealed that
283	Compounds 1, 2, 3, 6, 7, 9 and 12 significantly promoted cell death on all
284	aforementioned cell lines, but compounds 8 and 16 only induced cell death on one or
285	two cell lines (Fig. 4). Taken together, these data suggested that jujube extracts are
286	potent candidates for cancer prevention.

291 determined with CCK-8 assay.

292

and HT-29 cells were harvested after exposing to different Jujube isolates, and cell death wasdetermined by flow cytometry assay.

- 297 **References**
- 298 1 S. Guo, J. A. Duan, Y. P. Tang, Z. H. Zhu, Y. F. Qian, N. Y. Yang, E. X. Shang
- and D. W. Qian, Characterization of nucleosides and nucleobases in fruits of *Ziziphus jujuba* by UPLC-DAD-MS, *J. Agric. Food Chem.*, 2010, 58,
 10774–10780.
- 2 A. Kundu, B. Barik, D. Mondal, A. Dey and A. Banerji, Zizyberanalic acid, a
 pentacyclic triterpenoid of *Zizyphus jujube*, *Phytochemistry*, 1989, 28, 3155–3158.
- 3 S. M. Lee, B. S. Min, C. G. Lee, K. S. Kim and Y. H. Kho, Cytotoxic triterpenoids
 from the fruits of *Zizyphus Jujuba*, *Planta Med.*, 2003, 69, 1051-1054.
- 4 S. Suksamrarn, P. Panseeta, S. Kunchanawatta, T. Distaporn, S. Ruktasing and A.
- 307 Suksamrarn, Ceanothane- and lupine- type triterpenes with antiplasmodial and

308	antimycobacterial activity from Ziziphus cambodiana, Chem. Pharm. Bull., 2006,
309	54 , 535–537.
310	5 A. M. Pawlowska, F. Camangi, A. Bader and A. Braca, Flavonoids of Zizyphus
311	jujuba L. and Zizyphus spina-christi (L.) Willd (Rhamnaceae) fruits, Food Chem.,
312	2009, 112, 858-862.
313	6 M. Yoshikawa, T. Murakami and A. Ikebata, Structures and Histamine Release
314	Inhibitory Effects of Jujubosides A1 and C and Acetyljujuboside B, Chem. Pharm.
315	Bull., 1997, 45 , 1186-1189.
316	7 N. H. Tan, J. Zhou and S. X. Zhao, The research progress of plant cyclic peptide,
317	Acta. Pharm. Sin., 1997, 32, 388-399.
318	8 S. H. Choi, J. B. Ahn, N. Kozukue, C. E. Levin and M. Friedman, Distribution of
319	free amino acids, flavonoids, total phenolics, and antioxidative activities of jujube
320	(Ziziphus jujuba) fruits and seeds harvested from plants grown in Korea, J. Agric.
321	Food Chem., 2011, 59 , 6594–6604.
322	9 Q. H. Gao, P. T. Wu, J. R. Liu, C. S. Wu, J. W. Parry and M. Wang, Physico-
323	chemical properties and antioxidant capacity of different jujube (Ziziphus jujuba
324	Mill.) cultivars grown in loess plateau of China, Sci. Hortic., 2011, 130, 67-72.
325	10 M. Hudina, M. Liu, R. Veberic, F. Stampar and M. Colaric, Phenolic compounds
326	in the fruit of different varieties of Chinese jujube (Ziziphus jujuba Mill.), J.
327	Hortic. Sci. Biotechnol., 2008, 83, 305-308.

328	11 C. S. Wu, Q. H. Gao, X. D. Guo, J. G. Yu and M. Wang, Effect of ripening stage on
329	physicochemical properties and antioxidant profiles of a promising table fruit
330	'pear-jujube' (Zizyphus jujuba Mill.), Sci. Hortic., 2012, 148, 177-184.
331	12 P. Plastina, D. Bonofiglio, D. Vizza, A. Fazio, D. Rovito, C. Giordano, I. Barone, S.
332	Catalano and B. Gabriele, Identification of bioactive constituents of Ziziphus
333	jujube fruit extracts exerting antiproliferative and apoptotic effects in human
334	breast cancer cells, J. Ethnopharmacol., 2012, 140, 325-332.
335	13 F. Vahedi, M. F. Najafi and K. Bozari, Evaluation of inhibitory effect and apoptosis
336	induction of Zizyphus jujube on tumor cell lines, an in vitro preliminary study,
337	<i>Cytotechnology</i> , 2008, 56 , 105–111.
338	14 X. D. Huang, A. Kojima-Yuasa, T. Norikura, D. O. Kennedy, T. Hasuma and I.
339	Matsui-Yuasa, Mechanism of the anti-cancer activity of Zizyphus jujuba in HepG2
340	cells, Am. J. Chin. Med., 2007, 35 , 517–532.
341	15 R. J. Li, C. Yuan, C. Dong, S. M. Shuang and M. M. F. Choi, In vivo antioxidative
342	effect of isoquercitrin on cadmium-induced oxidative damage to mouse liver and
343	kidney. Naunyn. Schmiedebergs, Arch. Pharmacol., 2011, 383, 437-445.
344	16 S. C. Chang, B. Y. Hsu and B. H. Chen, Structural characterization of
345	polysaccharides from Zizyphus jujuba and evaluation of antioxidant activity, Int. J.
346	<i>Biol. Macromol.</i> , 2010, 47 , 445–453.
347	17 I. Ignat, I. Volf and V. I. Popa, A critical review of methods for characterisation of
348	polyphenolic compounds in fruits and vegetables, Food Chem., 2011, 126,
349	1821–1835.
	18

350	18 R. Goyal, P. L. Sharma and M. Singh, Possible attenuation of nitricoxide
351	expression in anti-inflammatory effect of Ziziphus jujuba in rat, J. Nat. Med., 2011,
352	65 , 514–518.
353	19 X. Shen, Y. Tang, R. Yang, L. Yu, T. Fang and J. A. Duan, The protective effect of
354	Zizyphus jujube fruit on carbon tetrachloride-induced hepatic injury in mice by
355	anti-oxidative activities, J. Ethnopharmacol., 2009, 122, 555-560.
356	20 B. Wang, Chemical characterization and ameliorating effect of polysaccharide
357	from Chinese jujube on intestine oxidative injury by ischemia and reperfusion, Int.
358	J. Biol. Macromol., 2011, 48, 386–391.
359	21 J. G. Jiang, X. J. Huang, J. Chen and Q. S. Lin, Comparison of the sedative and
360	hypnotic effects of flavonoids, saponins, and polysaccharides extracted from
361	Semen Ziziphus jujube, Nat. Prod. Res., 2007, 21, 310–320.
362	22 Q. H. Gao, C. S. Wu and M. Wang, The Jujube (Ziziphus Jujuba Mill.) fruit: a
363	review of current knowledge of fruit composition and health benefits, J. Agric.
364	Food. Chem., 2013, 61 , 3351–3363.
365	23 Y.; Fujiwara, A. Hayashida, K. Tsurushima, R. Nagai, M. Yoshitomi, N. Daiguji, N.
366	Sakashita, M. Takeya, S. Tsukamoto and T. Ikeda, Triterpenoids isolated from
367	Zizyphus jujuba inhibit foam cell formation in macrophages, J. Agri. Food Chem.,
368	2011, 59 , 4544-4552.
369	24 M. B. Sun, J. H. Ju and I. S. Lee, Inhibitory effect of triterpenes from Crataegus
370	pinnatifida on HIV-1 protease, Planta Med., 1999, 65, 374-375.

- 371 25 B. S. Siddiqui, S. Begum and S. Siddiqui, Isolation and structural elucidation of
- acylated pentacyclic triterpenoids from the leaves of *Eucalyptus camaldulensis var*. *Obtusa, Planta Med.*, 1997, **63**, 47-50.
- 26 A. Yagi, N. Okamura, Y. Haraguchi, K. Noda and I. Nishiota Studies on the
- 375 constituents of Zizyphi fructus. II. Structure of new p-coumaroylates of maslinic
- acid, Chem. Pharm. Bull., 1978, 26, 3075-3079.
- 377 27 L. Misra and H. Laatsch, $19\beta \rightarrow 28$ -Lactonization of Pomonic Acid from Lantana
- 378 camara roots, Z. Naturforsch. B., 2000, **55**, 768-770.
- 28 T. P. Lien, C. Kamperdick, T. V. Sung and G. Adam, Triterpenes from *Rubus cochinchinensis*, *Phytochemistry*, 1999, **50**, 463-465.
- 381 29 G. Papanov, P. Bozov and P. Malakov, Triterpenoids from *Lavandula spica*,
 382 *Phytochemistry*, 1992, **31**, 1424-1426.
- 383 30 A. S. R. Anjaneyulu and A. V. R. Prasad, Structure of terminic acid, a
- dihydroxytriterpene carboxylic acid from Terminalia arjuna, *Phytochemistry*, 1983,
 22, 993-998.
- 386 31 J. Liu, Oleanolic acid and ursolic acid: research perspectives, J. Ethnopharmacol.,
- **387 2005**, **100**, 92-94.
- 388 32 E. Pisha, H. Chai, I. S. Lee, T. E. Chagwedera, N. R. Farnsworth, G. A. Cordell, C.
- 389 W. Beecher, H. H. Fong, A. D. Kinghorn and D. M. Brown, Discovery of betulinic
- acid as a selective inhibitor of human melanoma that functions by induction of
 apoptosis, *Nat Med.*, 1995, 1, 1046-1051.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

39 C. Corsaro,

Food & Function

33	A. M. Pawlowska, F. Camangi, A. Bader and A. Braca Flavonoids of Zizyphus
	jujuba L. and Zizyphusspina-christi (L.) Willd (Rhamnaceae) fruits, Food Chem.,
	2009, 112 , 858-862.
34	H. Viola, C. Wasowski, S. M. Levi, C. Wolfman, R. Silveira, F. Dajas, J. H.
	Medina, A. C. Paladini, Apigenin, a component of Matricaria recutita flowers, is
	a central benzodiazepine receptors-ligand with anxiolytic effects, Planta Med.,
	1995, 61 , 213-216.
35	D. C. Zimmerman and C. A. Coudron, Identification of traumatin, a wound
	hormone, as 12-oxo-trans-10-dodecenoic acid, Plant Physiol., 1979, 63, 536-541.
36	Z. H. Xu, J. X. Huang, Y. Li, Y. J. Pan, J. L. Jiang, J. H. Zhao, Synthesis of the
	racemic sex pheromone of the Japanese beetle by alkenyl cuprate reagent, Chin. J.
	Appl. Chem, 1995, 12 , 94-96.
37	R. Wang, V. J. Paul and H. Luesch, Seaweed extracts and unsaturated fatty acid
	constituents from the green alga Ulva lactuca as activators of the cytoprotective
	Nrf2–ARE pathway, Free Radical Biol. Med., 2013, 57, 141-153.
38	G. Knothe, M. O. Bagby, D. Weisleder, R. E. Peterson, Allylic mono-and
	di-hydroxylation of isolated double bonds with selenium dioxide-tert-butyl
	hydroperoxide. NMR characterization of long-chain enols, allylic and saturated 1,
	4-diols, and enones, J. Chem. Soc. Perkin Trans. 2, 1994, 1661-1669.
39	C Corsaro D Mallamace S Vasi V Ferrantelli G Dugo N Cicero 1H

HR-MAS NMR spectroscopy and the metabolite determination of typical foods in 412

Mediterranean diet, J. Proteome Res., 2013, 12, 959-968. 413

414	40 M. B. Patel and S. M. Mishra, Magnoflorine from Tinospora cordifolia stem
415	inhibits glucosidase and is antiglycemic in rats, J. Funct Foods, 2012, 4, 79-86.
416	41 A. Yagi, N. Okamura, Y. Haraguchi, K. NODA and I. NISHIOKA, Studies on the
417	constituents of Zizyphi fructus. 1. Structure of 3 new para-coumaroylates of
418	alphitolic acid, Chem. Pharm. Bull., 1978, 26, 1798-1802.
419	42 M. P. Montilla, A. Agil, M. C. Navarro, M. I. Jimenez, A. Garcia-Granados, A.
420	Parra and M. M. Cabo, Antioxidant activity of maslinic acid, a triterpene
421	derivative obtained from Olea europaea, Planta Med., 2003, 69, 472-474.
422	43 L. I. Borrás, S. A. Pérez, S. J. Lozano, C. E. Barrajón, R. D. Arráez, A. Cifuentesd,
423	V. Micolb and S. A. Carreteroa, A bioguided identification of the active
423 424	V. Micolb and S. A. Carreteroa, A bioguided identification of the active compounds that contribute to the antiproliferative/cytotoxic effects of rosemary
423 424 425	V. Micolb and S. A. Carreteroa, A bioguided identification of the active compounds that contribute to the antiproliferative/cytotoxic effects of rosemary extract on colon cancer cells, <i>Food Chem. Toxicol.</i> , 2015, 80 , 215-222.
423 424 425 426	V. Micolb and S. A. Carreteroa, A bioguided identification of the active compounds that contribute to the antiproliferative/cytotoxic effects of rosemary extract on colon cancer cells, <i>Food Chem. Toxicol.</i> , 2015, 80 , 215-222.
423 424 425 426 427	V. Micolb and S. A. Carreteroa, A bioguided identification of the active compounds that contribute to the antiproliferative/cytotoxic effects of rosemary extract on colon cancer cells, <i>Food Chem. Toxicol.</i> , 2015, 80 , 215-222.
423 424 425 426 427 428	V. Micolb and S. A. Carreteroa, A bioguided identification of the active compounds that contribute to the antiproliferative/cytotoxic effects of rosemary extract on colon cancer cells, <i>Food Chem. Toxicol.</i> , 2015, 80 , 215-222.
423 424 425 426 427 428 429	V. Micolb and S. A. Carreteroa, A bioguided identification of the active compounds that contribute to the antiproliferative/cytotoxic effects of rosemary extract on colon cancer cells, <i>Food Chem. Toxicol.</i> , 2015, 80 , 215-222.
423 424 425 426 427 428 429	V. Micolb and S. A. Carreteroa, A bioguided identification of the active compounds that contribute to the antiproliferative/cytotoxic effects of rosemary extract on colon cancer cells, <i>Food Chem. Toxicol.</i> , 2015, 80 , 215-222.

Chemical Characterization of the Main Bioactive Constituents from Fruits of *Ziziphus jujuba*

Lu Bai,^a Hai Zhang,^b* Qingchao Liu,^a Yong Zhao,^b Xueqin Cui,^a Sen Guo,^a Li Zhang,^a

Chi-Tang Ho,^c and Naisheng Bai ^a*

