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ergy profile. As the Bennett–Chandler method and the divided

saddle theory, the method is based on a factorization of the rate

constant expression into two factors, one that can be expressed in

terms of the free energy and another one that contains dynamical

information. In our approach, the factorization is applied on the

level of the time correlation function of the populations of the sta-

ble states between which the transition occurs. From the linear

regime of this correlation function the rate constant is then ex-

tracted. Since the time correlation function is considered instead

of the reactive flux, which requires a well-defined time-derivative

of the reaction coordinate at the interface, the method can be

applied equally well to the under- and over-damped case. The

shape of the time correlation function, which is evaluated from

the committor trajectories, provides additional insight into the

barrier crossing dynamics. In the following, we will first outline

the algorithm (details of the derivation are provided in the Ap-

pendix) and then demonstrate the application of the method to

two test cases: a Brownian walker in a one-dimensional double

well potential and cavitation of water at negative pressures.

2 S-shooting algorithm

The goal of the algorithm presented here is to determine the rate

constant of transitions between two long-lived states, A and B,

which can be viewed as the reactant and the product state, re-

spectively. We assume that we are able to distinguish between

these two states using a reaction coordinate q(x) that tracks the

progress of the transition, i.e., a suitable collective variable de-

fined for each microscopic configuration x. In practice, q(x) can

vary considerably in its complexity depending on the investigated

system: it can be as simple as a Cartesian coordinate in cases

where the underlying (free) energy landscape is known (as is the

case for a Brownian walker in a double well potential in Sec. 3.1)

or can be based upon detecting the largest cluster of a nucleating

phase in the case of first-order phase transitions (see Sec. 3.2).

2.1 Time correlation function and reaction rate constant

The method presented here is rooted in the Bennett–Chandler ap-

proach19,20, in which the transition rate constant is expressed in

terms of the time correlation function of the populations of the

stable states. To introduce this correlation function, we first de-

fine the characteristic functions for states A and B, which indicate

if the system is in the respective state or not,

hA(x) =

{
1 if x ∈ A

0 else,
(1)

and hB(x) is defined analogously for region B. In all cases con-

sidered in this work, the underlying free energy landscapes deter-

mining the behavior of the systems exhibit a barrier dividing the

two states. We assume that the regions A and B correspond to the

ranges A = (−∞,qA] and B = [qB,∞) of the reaction coordinate,

respectively. Accordingly, we define the characteristic functions

as hA(x) = θ [qA −q(x)] and hB(x) = θ [q(x)−qB], where θ(q) is the

Heaviside step function. The time correlation function

CAB(t) =
〈hA(0)hB(t)〉

〈hA〉
(2)

encodes the conditional probability to find the system in B at time

t provided it was in A at time 0. In the above expression hB(t) is a

short hand for hB(xt), where xt is the microscopic state of the sys-

tem at time t, and the angular brackets 〈· · · 〉 denote equilibrium

averages. The equilibrium probability of finding the system in A

can be expressed as

〈hA〉=

∫
dxe−βH(x)hA(x)∫

dxe−βH(x)
=

∫ qA

−∞
dqe−βF(q), (3)

where β = 1/kBT with the Boltzmann constant kB and tempera-

ture T , and H(x) is the total energy of the system. The free energy

F(q) is related to the probability density p(q) = 〈δ [q− q(x)]〉 of

the reaction coordinate by F(q) =−kBT ln p(q). After initial tran-

sient behavior related to the details of the dynamics and the spe-

cific definition of the stables states, the time correlation function

CAB(t) is expected to enter a linear regime and its time derivative

gives the reaction rate constant kAB,

kAB =
dCAB(t)

dt
. (4)

The rate constant kBA for the inverse reaction from B to A is

obtained by applying detailed balance, kBA = kAB〈hA〉/〈hB〉. To-

gether, the forward and backward rate constants determine the

reaction time τrxn = (kAB + kBA)
−1, the time scale at which a non-

equilibrium population of states A and B decays to equilibrium.

2.2 S-ensemble

The S-shooting algorithm presented here introduces an additional

region S located such that any trajectory transitioning from A to

B must cross S (see Fig. 1). As illustrated in the figure, there are

various possibilities to define region S, which plays essentially the

same role as the saddle region in divided saddle theory18. If A

and B are adjacent and separated by a dividing surface, S could

be located entirely in A or B or include parts of both regions. In

this case, it is only required that the dividing surface is part of S.

If regions A and B are not adjacent but rather separated from each

other, region S can be in A or B or somewhere in between. The

only requirement is that no trajectory can connect A with B with-

out visiting S. Although the particular definition of S does not af-

fect the validity of the expressions we will derive in the following,

its particular location will have an effect on the statistical accu-

racy of the rate constant estimation. To make the rate calculation

efficient, region S should include the transition state region, from

which both stable state are accessible with non-vanishing proba-

bility.

Since any trajectory which gives a non-zero contribution to

the correlation function CAB(t) has at least one configuration in

S by construction, it should be possible to express CAB(t) as path

average in the ensemble of trajectories touching S. We call this

ensemble of trajectories the S-ensemble. In the following we con-

sider discretized trajectories x(τ) = {x0,x1,x2, · · · ,xL} with fixed
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Fig. 3 Correlation function 〈hA(0)hB(t)〉S for a Brownian walker in a

double-well potential. The estimates for the correlation function obtained

by the S-shooting method (red and blue lines) agree perfectly with the

results of the straight-forward Brownian dynamics simulation (black line).
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Fig. 4 Time derivative d〈hA(0)hB(t)〉S/d t of the correlation function. Note

the plateau emerging after the initial transient behavior at t ≈ 0.3; this

value enters the computation of CAB(t) in Eq. (6).

in time from points in S sampled by a Monte Carlo simulation

with random displacements drawn from a Gaussian distribution.

The whole procedure was repeated by carrying out this Monte

Carlo simulation under the influence of a bias Ub = x2/2, thereby

obtaining the starting points for biased S-shooting. In terms of

averages obtained in the ensemble of trajectories sampled by the

algorithm, the correlation function is given by

〈hA(0)hB(t)〉S =
〈hA(0)hB(t)/NS[x(τ)]〉G

〈1/NS[x(τ)]〉G
(12)

in the case without bias [see Eq. (32)] and by

〈hA(0)hB(t)〉S =
〈hA(0)hB(t)/B[x(τ)]〉B

〈1/B[x(τ)]〉B
(13)

in the case with bias [see Eq. (40)].

The agreement between the two variants of S-shooting and

the straight-forward simulation is shown in Figs. 3 and 4. After

an initial transient, the correlation function 〈hA(0)hB(t)〉S enters a

linear regime. Consequently, its time derivative exhibits a plateau

whose value can be used in the estimate for the reaction rate

constant kAB. Using the averages 〈hS〉= 0.00407 and 〈hA〉= 0.487

obtained from the straight-forward simulation as well as the path

average 〈NS[x(τ)]〉S = 24.58, we obtain the rate konstant kAB =

0.056.

Analysis of the convergence of the rate constants as a function

of the number of generated pathways indicates that the statistical

error in the rate constants obtained by S-shooting is similar to that

of divided saddle theory (provided the same method is used for

the free energy calculation). Both methods extract the reaction

rate constants from the same set of dynamical trajectories such

that this equivalence of their efficiencies is not so suprising. Since

divided saddle theory has been shown18 to compare well with

the reactive flux method of Bennett and Chandler using the effec-

tive positive flux approach for the calculation of the transmission

coefficient21, this is the case also for the S-shooting method.

3.2 Cavitation in water under tension

Liquids can sustain remarkably strong tensions due to the free

energetic cost associated with the formation of a liquid–vapor

interface which impedes an immediate transition to the vapor

phase. Water in particular can exist in such a metastable state

for long times before decaying into the vapor phase via cavita-

tion, i.e., bubble nucleation, which has implications for the be-

havior of various biological systems22–26 and for technical appli-

cations27,28. As a further demonstration of S-shooting, we now

use it to compute the cavitation rate, i.e., the number of cavitation

events per unit time and unit volume, of liquid water at different

negative pressures (the cavitation free energy and cavitation rates

were first obtained in Ref.29). Specifically, we consider a system

of N = 2000 water molecules interacting via the TIP4P/2005 po-

tential30 with long range forces treated with Ewald sums. This

system is exposed to pressures ranging from p = −105 MPa to

p = −165 MPa at a temperature of T = 296.4 K, where the equa-

tion of state is known at moderate negative pressures from exper-

iments31.

To compute the free energy of bubble formation, one must be

able to detect bubbles and determine their size for any molecular

configuration of this system. This is accomplished using a grid-

based procedure that is calibrated to give a thermodynamically

consistent estimate for the volume of a bubble32. The bubble vol-

ume obtained in this way corresponds to the average increase in

system volume due to the presence of a bubble compared to the

unconstrained metastable liquid at the same conditions. We use

the volume v of the largest bubble present in the system as the

reaction coordinate. The free energy F(v) as a function of the

bubble volume v is given by F(v) =− ln[v0 p(v)], where p(v) is the

probability density of encountering a configuration with a largest

bubble of size v and v0 is an arbitrary constant volume required

to make the argument of the logarithm dimensionless. We com-

puted p(v), and from it the free energy F(v), by employing hybrid

Monte Carlo33,34 umbrella sampling35 with “hard” windows in

the isobaric–isothermal ensemble.

Free energy profiles F(v) computed for several pressures are

shown in Fig. 5. The shape of these curves can be understood in

the general framework of classical nucleation theory. The tension

applied to the metastable liquid favors the formation and subse-

quent growth of bubbles through a gain in mechanical work pv

1–11 | 5
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Fig. 5 Free energy F =− ln[v0 p(v)] as a function of the volume v of the

largest bubble, where v0 is an arbitrary constant volume, for various

pressures. Due to the gain in mechanical work pv associated with the

formation of a bubble, the height of the barrier and the size of the critical

bubble decrease with increasing tension. Curves are shifted such that

the lowest point in the liquid basin aligns for all pressures.

by expanding the system under tension. This contribution in con-

junction with the free energy cost of forming the interface (Aγ,

where A is the surface of the bubble and γ is the surface ten-

sion) leads to a barrier in the free energy which separates the

metastable liquid from the vapor (shown in Fig. 5). Once the

system overcomes this barrier, it transitions to the vapor phase,

which, in contrast to the liquid, cannot sustain tension. Con-

sequently, there is no stable basin on the vapor side of the free

energy barrier.

In order to apply the S-shooting formalism to the calculation

of bubble nucleation rates, we need to define the stable regions A

and B as well as the transition region S. Based on the computed

free energy profiles, we define the regions S to be located around

the top of the free barrier and regions A and B left and right of

the barrier. A schematic representation of the regions A, B, and S

employed here is shown in Fig. 1a and a detailed list of the region

boundaries is given in Table 1. Once the regions are defined, the

averages 〈hA〉 and 〈hS〉 needed for the rate calculation can be de-

termined from the free energy profiles. Next, we need to generate

dynamical trajectories from region S in order to compute the cor-

relation function 〈hA(0)hB(t)〉S. Starting from configurations in

the region S generated in the free energy calculations, we create

pathways by propagating the system backward and forward in

time at constant pressure36 and temperature37,38 using a time-

reversible integrator39–41. In order to keep the computational

cost manageable, the trajectories used in the rate computation

are propagated until they reach a fixed value along the reaction

coordinate, rather than for a fixed time. These fixed values were

chosen such that they correspond to being at least 10kBT lower

than the top of the free energy barrier, at which point trajectories

are unlikely to re-cross the barrier.∗ Since this approach leads to

trajectories of varying length, trajectories shorter than the desired

∗ For the two lowest tensions investigated, p = −105MPa and p = −120MPa, we ex-

trapolated the free energy to higher bubble volumes to determine the limiting value

of the order parameter.
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Fig. 6 Correlation function 〈hA(0)hB(t)〉S. Note the difference in shape

compared to Fig. 3 due to the different boundaries of the states A and B.
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Fig. 7 Time derivative d〈hA(0)hB(t)〉S/dt of the correlation function

depicted in Fig. 6. A fit to the emerging plateau for long times is used in

the computation of cavitation rates.

trajectory length 2L+1 were padded with their final value on ei-

ther side of the barrier when computing the correlation function

CAB(t).

Correlation functions 〈hA(0)hB(t)〉S, obtained via Eq. (32) from

trajectories in the ensemble PG[x(τ)], are shown in Fig. 6. Since

the state S fully overlaps with the adjacent states A and B, one en-

counters nonfinite contributions to the correlation 〈hA(0)hB(t)〉S

even for short times, leading to a steep slope for small t (in con-

trast to the shape of 〈hA(0)hB(t)〉S observed in Sec. 3.1). Its time

derivative, shown in Fig. 7, exhibits transient behavior followed

by the emergence of a plateau for longer times. The resulting

cavitation rates J = kAB/〈V 〉, which span almost 40 orders of mag-

nitude over the investigated range of pressures, are presented in

Table 1.

4 Conclusion

In the study of rare transitions between long-lived stable states,

one often uses large numbers of short molecular dynamics trajec-

tories to determine committors or estimate diffusion coefficients

along some collective variable of interest. Here we have pre-

sented an algorithm to calculate reaction rate constants by com-

bining dynamical information extracted from such brief trajecto-

ries with the results of free energy calculations. For the method
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Table 1 Cavitation rates J for various pressures p

p/MPa A/nm3 B/nm3 S/nm3 1/〈NS〉S 〈V 〉−1〈hS〉/〈hA〉
a/nm−3 Jb/nm−3ps−1

−105 v < 10.3 v > 10.3 10.1 < v < 10.5 2.63×10−3 3.77×10−40 1.98×10−41

−120 v < 6.25 v > 6.25 6.05 < v < 6.45 2.40×10−3 2.54×10−27 1.05×10−28

−135 v < 4.075 v > 4.075 3.85 < v < 4.3 2.03×10−3 8.92×10−19 2.81×10−20

−150 v < 3.06 v > 3.06 2.95 < v < 3.17 3.42×10−3 1.30×10−13 6.81×10−15

−165 v < 2.095 v > 2.095 1.985 < v < 2.205 2.89×10−3 2.19×10−9 9.75×10−11

a The equilibrium probability ratio 〈hS〉/〈hA〉 was obtained from the free energy data shown in Fig. 5 and 〈V 〉 is the average volume of the metastable
liquid at the appropriate pressure.
b The cavitation rate J is obtained by combining the equilibrium probability ratio with a fit to the long-time tail of the time derivative of the correlation
function from Fig. 7.

to be computationally efficient, the trajectories need to be ini-

tiated close to the transition state region such that they have a

non-negligible probability to connect the stable states. Hence,

the method follows the central idea of the Bennett–Chandler ap-

proach19,20, in which one first computes the transition state the-

ory approximation of the reaction rate constant based on the free

energy and then applies a dynamical correction obtained from

short trajectories started on a dividing surface separating the sta-

ble states. Our approach uses the same information as the divided

saddle theory of Daru and Stirling18, but processes it in a differ-

ent way to yield the time correlation function of the stable state

populations, from which the reaction rate constant is obtained by

taking a time derivative. Knowledge of the correlation function

also yields information about the barrier crossing dynamics and

permits to verify whether the kinetics follows the exponential be-

havior expected from the phenomenological rate equations.

Just like the Bennett–Chandler approach and divided saddle

theory, also the new method, which is equally applicable to under-

and overdamped dynamics, requires a priori knowledge of a re-

action coordinate. The reaction coordinate needs to provide an at

least rough measure for the progress of the transition and it can

be either continuous or discrete, such as the size of the largest

crystalline cluster usually used in crystallization studies. As an

illustration, we have applied the procedure to a Brownian walker

in a double well potential and to cavitation in water at negative

pressures, demonstrating that it can be used to determine reac-

tion rate constants in complex condensed environments.
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A Derivation of the time-correlation function

in the S-shooting formalism

A.1 The time correlation-function in the S-ensemble

The time correlation function

CAB(t) =
〈hA(0)hB(t)〉

〈hA〉
, (14)

which equals the conditional probability to find the system in B at

time t provided it was in A at time 0, can be written as an average

in the ensemble P [x(τ)] of trajectories x(τ) of length τ ≥ t:

CAB(t) =

∫
Dx(τ)P [x(τ)]hA(x0)hB(xt)∫

dx0ρ(x0)hA(x0)
, (15)

where the notation
∫

Dx(τ) indicates a summation over all path-

ways x(τ), xt is the microscopic state (which we also call configu-

ration or point) of the system at time t, and the probability density

of a trajectory consisting of L+1 configurations is given by

P [x(τ)] = ρ(x0)
L−1

∏
i=0

p(xi → xi+1). (16)

Here, ρ(x0) is the equilibrium probability density of the configu-

ration x0 in the thermodynamic ensemble of interest and p(xi →

xi+1) is the probability density of reaching configuration xi+1 when

the system in configuration xi is propagated by one step. The time

correlation function CAB(t) contains all the information needed to

determine the rate constant kAB for transitions from A to B, which

is equal to the time derivative of CAB(t) in its linear regime. If

transition from A to B are rare, it is difficult to determine CAB(t)

from straightforward molecular dynamics simulations. In the fol-

lowing we present an algorithm to determine CAB(t) that is not

affected by this limitation.

Although the integral in Eq. (15) extends over all possible tra-

jectories, the non-vanishing contributions to the correlation func-

tion CAB(t) stem from trajectories that start in A and reach the

product state B by the time t. As such, one can obtain the corre-

lation function CAB(t) by sampling from a constrained ensemble,

provided that the constrained ensemble contains all trajectories

going from A to B. To define such an ensemble, we introduce the

additional region S located such that any trajectory transitioning

from A to B necessarily crosses S, i.e., has at least one point in S

(see Fig. 1). The correlation function can then be written as

CAB(t) =
〈hA(0)hB(t)〉

〈hA〉
=

〈hA(0)hB(t)HS [x(τ)]〉

〈hA〉
. (17)

Here, the path function HS [x(τ)] is unity if the trajectory x(τ)

has at least one point in S and zero otherwise. We can insert

HS [x(τ)] = 1 in the average above without changing the correla-

tion function, because if both hA(0)= 1 and hB(t)= 1 then HS [x(τ)] =

1 and if hA(0) = 0 or hB(t) = 0 the value of HS [x(τ)] does not mat-

ter. Multiplying and dividing by 〈HS [x(τ)]〉 one obtains

CAB(t) =
〈hA(0)hB(t)HS [x(τ)]〉

〈HS [x(τ)]〉

〈HS [x(τ)]〉

〈hA〉

= 〈hA(0)hB(t)〉S
〈HS [x(τ)]〉

〈hA〉
. (18)

Here, 〈R〉S = 〈R [x(τ)]HS [x(τ)]〉/〈HS [x(τ)]〉 is the average for an

arbitrary path property R [x(τ)] in the ensemble PS[x(τ)] of paths

with at least one point in the region S,

PS[x(τ)] =
P[x(τ)]HS[x(τ)]∫

Dx(τ)P[x(τ)]HS[x(τ)]
, (19)

where the denominator normalizes the distribution. Since any

reactive trajectory, i.e., any trajectory connecting A and B, has to

have points in S, the ensemble PS[x(τ)] contains all reactive trajec-

tories, albeit with a statistical weight that differs from that in the

equilibrium trajectory ensemble P[x(τ)] by the factor 〈HS[x(τ)]〉,

the probability of an equilibrium trajectory of length τ to visit S.

In order to evaluate CAB(t) according to Eq. (18) using trajec-

tories sampled from PS[x(τ)], we write Eq. (18) as

CAB(t) = 〈hA(0)hB(t)〉S
〈HS [x(τ)]〉

〈hS〉

〈hS〉

〈hA〉
, (20)

where 〈hS〉=
∫ qmax

S

qmin
S

p(q)dq is the equilibrium population of the re-

gion S, such that the ratio 〈hS〉/〈hA〉 can be obtained from the

free energy F(q) =−kBT ln p(q) computed as a function of the re-

action coordinate q. Since 〈hA(0)hB(t)〉S can be determined as a

path average over the ensemble PS[x(τ)], all that is still needed to

compute CAB(t) is the ratio 〈HS [x(τ)]〉/〈hS〉. Since the dynamics
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point in S:

PG[x(τ)] =
NS[x(τ)]P[x(τ)]HS[x(τ)]

(L+1)〈hS〉
, (29)

where we inserted HS[x(τ)] in the first line to emphasize that this

algorithm only creates trajectories with at least one configuration

in S.

The ensemble PG[x(τ)] can be expressed in terms of the en-

semble PS[x(τ)] of trajectories visiting S,

PG[x(τ)] = NS[x(τ)]
P[x(τ)]HS[x(τ)]∫

Dx(τ)P[x(τ)]HS[x(τ)]

∫
Dxτ P[x(τ)]HS[x(τ)]

(L+1)〈hS〉

= NS[x(τ)]PS[x(τ)]
〈HS[x(τ)]〉

(L+1)〈hS〉
. (30)

Thus, the likelihood to generate a particular trajectory x(τ) in the

ensemble PG[x(τ)] generated by the shooting algorithm is related

to the likelihood in the ensemble PS[x(τ)] of trajectories visiting S

via PG[x(τ)] ∝ NS[x(τ)]PS[x(τ)], i.e., in the ensemble PG[x(τ)] path-

ways with multiple points in S have a likelihood that is too high

compared to the ensemble PS[x(τ)].

Since PG[x(τ)] is normalized [see Equs. (22) and (23)], we

can now express path averages in the desired ensemble in terms

of PG[x(τ)]. The average 〈R[x(τ)]〉S of an arbitrary path property

R[x(τ)] is given by

〈R[x(τ)]〉S =

∫
Dx(τ)R[x(τ)]PS[x(τ)]∫

Dx(τ)PS[x(τ)]
(31)

which, by inserting Eq. (30), can be re-written as

〈R[x(τ)]〉S =

∫
Dx(τ)(R[x(τ)]/NS[x(τ)])PG[x(τ)]∫

Dx(τ)(1/NS[x(τ)])PG[x(τ)]

=
〈R[x(τ)]/NS[x(τ)]〉G

〈1/NS[x(τ)]〉G
. (32)

Using this expression for averages in the ensemble of pathways

visiting S we can rewrite the expression for CAB(t) in Eq. (6) in

terms of averages in the ensemble PG[x(τ)]:

CAB(t) = 〈hA(0)hB(t)〉S
L+1

〈NS [x(τ)]〉S

〈hS〉

〈hA〉

= (L+1)
〈hA(0)hB(t)/NS[x(τ)]〉G

〈1/NS[x(τ)]〉G

〈1/NS[x(τ)]〉G

〈NS [x(τ)]/NS [x(τ)]〉G

〈hS〉

〈hA〉

= (L+1)

〈
hA(0)hB(t)

NS[x(τ)]

〉

G

〈hS〉

〈hA〉
, (33)

thus obtaining Eq. (8).

A.3 Biased sampling of shooting points

The computation of the correlation function CAB(t) via Eq. (6)

assumes that the starting points of the trajectories are distributed

in S according to their Boltzmann weight. Below, we describe

how Eq. (6) has to be adapted when the initial points are sampled

from a biased distribution instead, that is, the shooting points x

are generated according to

ρB(x) = ρS(x)b(x), (34)

where the weight b(x) assigned to a configuration due to the bias

potential Ub(x) is given by

b(x) =
e−βUb(x)

∫
dxρS(x)e−βUb(x)

. (35)

The generation probability p[x(τ);xi j
] for a path x(τ) by shooting

from a specific point xi j
in S is then given by [see Eq.(28)]

p[x(τ);xi j
] =

1

(L+1)〈hS〉
P[x(τ)]b(xi j

). (36)

As in the previous section, the subscripts i1 to iNS[x(τ)] are the in-

dices of the NS[x(τ)] configurations of the trajectory x(τ) that are

in S. Since the path x(τ) can be generated from any configuration

in S, the total generation probability of a path with NS[x(τ)] points

in S is

PB[x(τ)] =
B[x(τ)]

(L+1)〈hS〉
P[x(τ)], (37)

where B[x(τ)] = ∑
NS[x(τ)]
j=1 b(xi j

) and the sum runs over all points in

S. Since the trajectories are generated by shooting from points

located in S, each of the resulting pathways has at least one con-

figuration in S, which allows us to rewrite the equation above as

PB[x(τ)] =
B[x(τ)]

(L+1)〈hS〉
P[x(τ)]HS[x(τ)] (38)

and, by inserting Eqs. (22) and (23), one obtains

PB[x(τ)] =
B[x(τ)]

〈NS[x(τ)]〉S

P[x(τ)]HS[x(τ)]

〈HS[x(τ)]〉

=
B[x(τ)]

〈NS[x(τ)]〉S
PS[x(τ)]. (39)

Since we aim to formulate the correlation function CAB(t) in terms

of path averages in the ensemble PS[x(τ)], we now express the

path average 〈R[x(τ)]〉S in terms of averages calculated in the en-

semble PB[x(τ)],

〈R[x(τ)]〉S =
∫

Dx(τ)R[x(τ)]PS[x(τ)]

=

∫
Dx(τ)R[x(τ)]PB[x(τ)]〈NS[x(τ)]〉S/B[x(τ)]∫

Dx(τ)PB[x(τ)]〈NS[x(τ)]〉S/B[x(τ)]

=

〈
R[x(τ)]

B[x(τ)]

〉

B〈
1

B[x(τ)]

〉

B

, (40)

where we divided by
∫

Dx[τ]PS[x(τ)] = 1 in the second line. Note

that since the bias sum B[x(τ)] appears both in the numerator and

the denominator, the above expression does not change when the

bias is not normalized, i.e., when B̃[x(τ)] =∑
NS[x(τ)]
j=1 exp[−βUb(xi j

)]

is used for convenience.

Using Eq. (40) to rewrite Eq. (6), we obtain CAB(t) in terms of
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biased averages:

CAB(t) = 〈hA(0)hB(t)〉S
L+1

〈NS [x(τ)]〉S

〈hS〉

〈hA〉

= (L+1)

〈
hA(0)hB(t)

B̃[x(τ)]

〉

B〈
NS[x(τ)]

B̃[x(τ)]

〉

B

〈hS〉

〈hA〉
. (41)

When shooting points are obtained from an unbiased distribution,

then B̃[x(τ)] = NS[x(τ)] and Eq. (8) is recovered.
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