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One can thus think of a jump Markov model as a graph: the states

are the vertices, and an oriented edge between two vertices i and

j indicates that ki, j 6= 0.

Starting at time 0 from a state Y0 ∈ N, the model consists in

iterating the following two steps over n ∈ N: Given Yn,

• Sample the residence time Tn in Yn as an exponential random

variable with parameter ∑ j∈NYn
kYn, j:

∀t ≥ 0, P(Tn ≥ t|Yn = i) = exp

(
−
[

∑
j∈Ni

ki, j

]
t

)
. (2)

• Sample independently from Tn the next visited state Yn+1

starting from Yn using the following law

∀ j ∈ Ni, P(Yn+1 = j|Yn = i) =
ki, j

∑ j∈Ni
ki, j

. (3)

The associated continuous-time process (Zt)t≥0 with values in N

defined by:

∀n ≥ 0, ∀t ∈
[

n−1

∑
m=0

Tm,
n

∑
m=0

Tm

)
, Zt = Yn (4)

(with the convention ∑
−1
m=0 = 0) is then a (continous-time) jump

Markov process.

1.2 Microscopic dynamics

At the atomic level, the basic ingredient is a potential energy func-

tion V : Rd →R which to a set of positions of atoms in x ∈R
d (the

dimension d is typically 3 times the number of atoms) associates

an energy V (x). In all the following, we assume that V is a smooth

Morse function: for each x∈R
d , if x is a critical point of V (namely

if ∇V (x) = 0), then the Hessian ∇2V (x) of V at point x is a non-

singular matrix. From this function V , dynamics are built such as

the Langevin dynamics:





dqt = M−1 pt dt

d pt =−∇V (qt)dt − γM−1 pt dt +
√

2γβ−1dWt

(5)

or the overdamped Langevin dynamics:

dXt =−∇V (Xt)dt +
√

2β−1dWt . (6)

Here, M ∈ R
d×d is the mass matrix, γ > 0 is the friction param-

eter, β−1 = kBT > 0 is the inverse temperature and Wt ∈ R
d is a

d-dimensional Brownian motion. The Langevin dynamics gives

the evolution of the positions qt ∈ R
d and the momenta pt ∈ R

d .

The overdamped Langevin dynamics is in position space: Xt ∈R
d .

The overdamped Langevin dynamics is derived from the Langevin

dynamics in the large friction limit and using a rescaling in time:

assuming M = Id for simplicity, in the limit γ → ∞, (qγt)t≥0 con-

verges to (Xt)t≥0 (see for example Section 2.2.4 in18).

1.3 From a microscopic dynamics to a jump Markov dynam-

ics

Let us now discuss how one can relate the microscopic dynam-

ics (5) or (6) to the jump Markov model (4). The basic obser-

vation which justifies why this question is relevant is the fol-

lowing. It is observed that, for applications in biology, material

sciences or chemistry, the microscopic dynamics (5) or (6) are

metastable. This means that the stochastic processes (qt)t≥0 or

(Xt)t≥0 remain trapped for a long time in some region of the con-

figurational space (called a metastable region) before hopping to

another metastable region. Because the system remains for very

long times in a metastable region before exiting, the hope is that

it loses the memory of the way it enters, so that the exit event

from this region can be modelled as one move of a jump Markov

process such as (4).

Let us now consider a subset S⊂R
d of the configurational space

for the microscopic dynamics. Positions in S are associated with

one of the discrete state in N of (Zt)t≥0, say the state 0 without

loss of generality. If S is metastable (in a sense to be made pre-

cise), it should be possible to justify the fact that the exit event

can be modeled using a jump Markov process, and to compute

the associated exit rates (k0, j) j∈N0
from the state 0 to the neigh-

boring states using the dynamics (5) or (6). The aim of this paper

is precisely to discuss these questions and in particular to prove

rigorously under which assumption the Eyring-Kramers formula

can be used to estimate the exit rates (k0, j) j∈N0
, namely:

∀ j ∈ N0, k0, j = ν0, j exp(−β [V (z j)−V (x1)]) (7)

where ν0, j > 0 is a prefactor, x1 = argminx∈S V (x) and z j =

argminz∈∂S j
V (z) where ∂S j ⊂ ∂S denotes the part of the boundary

∂S which connects the state S (numbered 0) with the subset of Rd

associated with state numbered j ∈ N0. See Figure 1.

x1

z1

z2

z3

z4

∂S1

∂S2

∂S3∂S4

Fig. 1 The domain S. The boundary ∂S is divided into 4 subdomains

(∂Si)1≤i≤4, which are the common boundaries with the neighboring

states.

The prefactor ν0, j depends on the dynamics under considera-

tion and on V around x1 and z j. Let us give a few examples. If S is

taken as the basin of attraction of x1 for the dynamics ẋ =−∇V (x)

so that the points z j are order one saddle points, the prefactor

writes for the Langevin dynamics (5) (assuming again M = Id for
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simplicity):

νL
0, j =

1

4π

(√
γ2 +4|λ−(z j)|− γ

)
√

det(∇2V )(x1)√
|det(∇2V )(z j)|

(8)

where, we recall, ∇2V is the Hessian of V , and λ−(z j) denotes

the negative eigenvalue of ∇2V (z j). This formula was derived

by Kramers in14 in a one-dimensional situation. The equivalent

formula for the overdamped Langevin dynamics (6) is:

νOL
0, j =

1

2π
|λ−(z j)|

√
det(∇2V )(x1)√
|det(∇2V )(z j)|

. (9)

Notice that limγ→∞ γνL
0, j = νOL

0, j , as expected from the rescaling in

time used to go from Langevin to overdamped Langevin (see Sec-

tion 1.2). The formula (9) has again been obtained by Kramers

in14, but also by many authors previously, see the exhaustive re-

view of the literature reported in16. In Section 4.1 below, we

will review mathematical results where formula (8)–(9) are rig-

orously derived.

In practice, there are thus two possible approaches to deter-

mine the rates (ki, j)i∈N, j∈Ni
. On the one hand, when the number

of states is not too large, one can precisely study the transitions

between metastable states for the microscopic dynamics using

dedicated algorithms19,20: the nudged elastic band21, the string

method22,23 and the max flux approach24 aim at finding one typ-

ical representative path. Transition path sampling methods25,26

sample transition paths starting from an initial guessed trajectory,

and using a Metropolis Hastings algorithm in path space. Other

approaches aim at sampling the ensemble of paths joining two

metastable states, without any initial guess: see the Adaptive Mul-

tilevel Splitting method27,28, transition interface sampling29,30,

forward flux sampling31,32, milestoning techniques33–35 and the

associated Transition Path Theory which gives a nice mathemati-

cal framework36–38. On the other hand, if the number of states is

very large, it may be too cumbersome to sample all the transition

paths, and one can use instead the Eyring-Kramers formula (7),

which requires to look for the local minima and the order one

saddle points of V , see for example7. Algorithms to look for sad-

dle points include the dimer method39,40, activation relaxation

techniques41,42, or the gentlest ascent dynamics43, for example.

The aim of this paper is threefold. First, we would like to give

a mathematical setting to quantify the metastability of a domain

S⊂R
d for a microscopic dynamics such as (5) or (6), and to rigor-

ously justify the fact that for a metastable domain, the exit event

can be modeled using a jump process such as (4). This question is

addressed in Section 2, where we introduce the notion of quasi-

stationary distribution. Second, we explain in Section 3 how this

framework can be used to analyze algorithms which have been

proposed by A.F. Voter, to accelerate the sampling of the state-to-

state dynamics using the underlying jump Markov process. We

will discuss in particular the Parallel Replica algorithm4. Both

these aspects were already presented by the second author in

previous works, see for example the review paper44. The main

novelty of this article is in Section 4, which is devoted to a justi-

fication of the use of the Eyring-Kramers formula (7) in order to

parametrize jump Markov models.

Before getting to the heart of the matter, let us make two pre-

liminary remarks. First, the objective of this paper is to give a self-

contained overview of the interest of using the quasi-stationary

distribution to analyze metastable processes. For the sake of con-

ciseness, we therefore do not provide extensive proofs of the re-

sults we present, but we give the relevant references when nec-

essary. Second, we will concentrate in the following on the over-

damped Langevin dynamics (6) when presenting mathematical

results. All the algorithms presented below equally apply to (and

are actually used on) the Langevin dynamics (5). As will be ex-

plained below, the notion of quasi-stationary distribution which is

the cornerstone of our analysis is also well defined for Langevin

dynamics. However, the mathematical analysis of Section 4 is for

the moment restricted to the overdamped Langevin dynamics (6).

2 Metastable state and quasi-stationary dis-

tribution

The setting in this section is the following. We consider the

overdamped Langevin dynamics (6) for simplicity∗ and a subset

S ⊂ R
d which is assumed to be bounded and smooth. We would

like to first characterize the fact that S is a metastable region for

the dynamics. Roughly speaking, metastability means that the

local equilibration time within S is much smaller than the exit

time from S. In order to approximate the original dynamics by

a jump Markov model, we need such a separation of timescales

(see the discussion in Section 3.4 on how to take into account

non-Markovian features). Our first task is to give a precise mean-

ing to that. Then, if S is metastable, we would like to study the

exit event from S, namely the exit time and the exit point from S,

and to see if it can be related to the exit event for a jump Markov

model (see (2)–(3)). The analysis will use the notion of quasi-

stationary distribution (QSD), that we now introduce.

2.1 Definition of the QSD

Consider the first exit time from S:

τS = inf{t ≥ 0, Xt 6∈ S},

where (Xt)t≥0 follows the overdamped Langevin dynamics (6).

A probability measure νS with support in S is called a QSD for

the Markov process (Xt)t≥0 if and only if

νS(A) =

∫

S
P

x(Xt ∈ A, t < τS)νS(dx)
∫

S
P

x(t < τS)νS(dx)
, ∀t > 0, ∀A ⊂ S. (10)

Here and in the following, Px denotes the probability measure

under which X0 = x. In other words, νS is a QSD if, when X0 is

distributed according to νS, the law of Xt , conditional on (Xs)0≤s≤t

remaining in the state S, is still νS, for all positive t.

The QSD satisfies three properties which will be crucial in the

∗The existence of the QSD and the convergence of the conditioned process towards

the QSD for the Langevin process (5) follows from the recent paper 45.
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following. We refer for example to46 for detailed proofs of these

results and to47 for more general results on QSDs.

2.2 First property: definition of a metastable state

Let (Xt)t≥0 follow the dynamics (6) with an initial condition X0 ∈
S. Then there exists a probability distribution νS with support

in S such that, whatever the law of the initial condition X0 with

support in S,

lim
t→∞

Law(Xt |τS > t) = νS. (11)

The distribution νS is the QSD associated with S. Here and in

the following, Law denotes the distribution of a random variable:

Law(Xt |τS > t) is thus the distribution of Xt conditional to τS > t,

namely conditionally to the fact that ∀s ∈ [0, t), Xs ∈ S.

A consequence of this proposition is the existence and unique-

ness of the QSD. The QSD is the long-time limit of the law of the

(time marginal of the) process conditioned to stay in the state S: it

can be seen as a ‘local ergodic measure’ for the stochastic process

in S.

This proposition gives a first intuition to properly define a

metastable state. A metastable state is a state such that the typ-

ical exit time is much larger than the local equilibration time,

namely the time to observe the convergence to the QSD in (11).

We will explain below how to quantify this timescale discrep-

ancy (see (15)) by identifying the rate of convergence in (11)

(see (14)).

2.3 Second property: eigenvalue problem

Let L = −∇V ·∇+β−1∆ be the infinitesimal generator of (Xt)t≥0

(satisfying (6)). Let us consider the first eigenvalue −λ1 and

eigenfunction u1 associated with the adjoint operator L† =

div(∇V +β−1∇) with homogeneous Dirichlet boundary condition

on ∂S. The couple (λ1,u1) satisfies:





L†u1 =−λ1u1 on S,

u1 = 0 on ∂S.

(12)

Then, the QSD νS associated with S satisfies

dνS =
u1(x)dx∫

S
u1(x)dx

where dx denotes the Lebesgue measure on S.

Notice that L† is a negative operator in L2(eβV ) so that λ1 > 0.

Moreover, it follows from general results on the first eigenfunc-

tion of elliptic operators that u1 has a sign on S, so that one can

choose without loss of generality u1 > 0.

The QSD thus has a density with respect to Lebesgue measure,

which is simply the ground state of the Fokker–Planck operator

L† associated with the dynamics with absorbing boundary condi-

tions. This will be crucial in order to analyze the Eyring-Kramers

formula in Section 4.

2.4 Third property: the exit event

Finally, the third property of the QSD concerns the exit event

starting from the QSD. Let us assume that X0 is distributed ac-

cording to the QSD νS in S. Then the law of the pair (τS,XτS
) (the

first exit time and the first exit point) is fully characterized by

the following properties: (i) τS is exponentially distributed with

parameter λ1 (defined in (12)); (ii) τS is independent of XτS
; (iii)

The law of XτS
is the following: for any bounded measurable func-

tion ϕ : ∂S → R,

E
νS(ϕ(XτS

)) =−

∫

∂S
ϕ ∂nu1 dσ

βλ1

∫

S
u1(x)dx

, (13)

where σ denotes the Lebesgue measure on ∂S and ∂nu1 = ∇u1 ·n
denotes the outward normal derivative of u1 (defined in (12)) on

∂S. The superscript νS in E
νS indicates that the initial condition

X0 is assumed to be distributed according to νS.

2.5 Error estimate on the exit event

We can now state a result concerning the error made when ap-

proximating the exit event of the process which remains for a

long time in S by the exit event of the process starting from the

QSD. The following result is proven in46. Let (Xt)t≥0 satisfy (6)

with X0 ∈ S. Introduce the first two eigenvalues −λ2 <−λ1 < 0 of

the operator L† on S with homogeneous Dirichlet boundary con-

ditions on ∂S (see Section 2.3). Then there exists a constant C > 0

(which depends on the law of X0), such that, for all t ≥ C
(λ2−λ1)

,

‖Law((τS − t,XτS
)|τS > t)−Law((τS,XτS

)|X0 ∼ νS)‖TV ≤Ce−(λ2−λ1)t

(14)

where

‖Law((τS − t,XτS
)|τS > t)−Law((τS,XτS

)|X0 ∼ νS)‖TV

= sup
f ,‖ f‖L∞≤1

∣∣E( f (τS − t,XτS
)|τS > t)−E

νS( f (τS,XτS
))
∣∣

denotes the total variation norm of the difference between the

law of (τS − t,XτS
) conditioned to τS > t (for any initial condition

X0 ∈ S), and the law of (τS,XτS
) when X0 is distributed according

to νS. The supremum is taken over all bounded functions f :

R+×∂S → R, with L∞-norm smaller than one.

This gives a way to quantify the local equilibration time men-

tioned in the introduction of Section 2, which is the typical time to

get the convergence in (11): it is of order 1/(λ2 −λ1). Of course,

this is not a very practical result since computing the eigenvalues

λ1 and λ2 is in general impossible. We will discuss in Section 3.3

a practical way to estimate this time.

As a consequence, this result also gives us a way to de-

fine a metastable state: the local equilibration time is of order

1/(λ2 −λ1), the exit time is of order 1/λ1 and thus, the state S is

metastable if
1

λ1
≫ 1

λ2 −λ1
. (15)
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2.6 A first discussion on QSD and jump Markov model

Let us now go back to our discussion on the link between the

overdamped Langevin dynamics (6) and the jump Markov dy-

namics (4). Using the first property 2.2, if the process remains in

S for a long time, then it is approximately distributed according to

the QSD, and the error can be quantified thanks to (14). There-

fore, to study the exit from S, it is relevant to consider a process

starting from the QSD νS in S. Then, the third property 2.4 shows

that the exit event can indeed be identified with one step of a

Markov jump process since τS is exponentially distributed and in-

dependent of XτS
, which are the basic requirements of a move of

a Markov jump process (see Section 1.1).

In other words, the QSD νS is the natural initial distribution to

choose in a metastable state S in order to parametrize an under-

lying jump Markov model.

In order to be more precise, let us assume that the state S is sur-

rounded by I neighboring states. The boundary ∂S is then divided

into I disjoint subsets (∂Si)i=1,...,I , each of them associated with an

exit towards one of the neighboring states, which we assume to

be numbered by 1, . . . , I without loss of generality: N0 = {1, . . . , I}
(see Figure 1 for a situation where I = 4). The exit event from S is

characterized by the pair (τS,I ), where I is a random variable

which gives the next visited state:

for i = 1, . . . , I, {I = i}= {XτS
∈ ∂Si}.

Notice that τS and I are by construction independent random

variables. The jump Markov model is then parametrized as fol-

lows. Introduce (see Equation (13) for the exit point distribution)

p(i) = P(XτS
∈ ∂Si) =−

∫

∂Si

∂nu1 dσ

βλ1

∫

S
u1(x)dx

, for i = 1, . . . , I. (16)

For each exit region ∂Si, let us define the corresponding rate

for i = 1, . . . , I, k0,i = λ1 p(i). (17)

Now, one can check that

• The exit time τS is exponentially distributed with parameter

∑i∈N0
k0,i, in accordance with (2).

• The next visited state is I , independent of τS and with law:

for j ∈ N0, P(I = j) =
k0, j

∑i∈N0
k0,i

, in accordance with (3).

Let us emphasize again that τS and XτS
are independent random

variables, which is a crucial property to recover the Markov jump

model (in (2)–(3), conditionally on Yn, Tn and Yn+1 are indeed

independent).

The rates given by (17) are exact, in the sense that starting

from the QSD, the law of the exit event from S is exact using this

definition for the transitions to neighboring states. In Section 4,

we will discuss the error introduced when approximating these

rates by the Eyring-Kramers formula (7).

As a comment on the way we define the rates, let us mention

that in the original works by Kramers14 (see also48), the idea is to

introduce the stationary Fokker-Planck equation with zero bound-

ary condition (sinks on the boundary of S) and with a source term

within S (source in S), and to look at the steady state outgoing

current on the boundary ∂S. When the process leaves S, it is

reintroduced in S according to the source term. In general, the

stationary state depends on the source term of course. The dif-

ference with the QSD approach (see (12)) is that we consider the

first eigenvalue of the Fokker-Planck operator with zero boundary

condition. This corresponds to the following: when the process

leaves S, it is reintroduced in S according to the empirical law

along the path of the process in S. The interest of this point of

view is that the exit time distribution is exactly exponential (and

not approximately exponential in some small temperature or high

barrier regime).

2.7 Concluding remarks

The interest of the QSD approach is that it is very general and

versatile. The QSD can be defined for any stochastic process: re-

versible or non-reversible, with values in a discrete or a continous

state space, etc, see47. Then, the properties that the exit time is

exponentially distributed and independent of the exit point are

satisfied in these very general situations.

Let us emphasize in particular that in the framework of the

two dynamics (5) and (6) we consider here, the QSD gives a

natural way to define rates to leave a metastable state, without

any small temperature assumption. Moreover, the metastability

may be related to either energetic barriers or entropic barriers

(see in particular49 for numerical experiments in purely entropic

cases). Roughly speaking, energetic barriers correspond to a sit-

uation where it is difficult to leave S because it corresponds to

the basin of attraction of a local minimum of V for the gradient

dynamics ẋ = −∇V (x): the process has to go over an energetic

hurdle (namely a saddle point of V ) to leave S. Entropic barriers

are different. They appear when it takes time for the process to

leave S because the exit doors from S are very narrow. The po-

tential within S may be constant in this case. In practice, entropic

barriers are related to steric constraints in the atomic system. The

extreme case for an entropic barrier is a Brownian motion (V = 0)

reflected on ∂S \Γ, Γ ⊂ ∂S being the small subset of ∂S through

which the process can escape from S. For applications in biology

for example, being able to handle both energetic and entropic

barriers is important.

Let us note that the QSD in S is in general different from the

Boltzmann distribution restricted to S: the QSD is zero on the

boundary of ∂S while this is not the case for the Boltzmann dis-

tribution.

The remaining of the article is organized as follows. In Sec-

tion 3, we review recent results which show how the QSD can

be used to justify and analyze accelerated dynamics algorithms,

and in particular the parallel replica algorithm. These techniques

aim at efficiently sample the state-to-state dynamics associated

with the microscopic models (5) and (6), using the underlying

jump Markov model to accelerate the sampling of the exit event

from metastable states. In Section 4, we present new results con-

cerning the justification of the Eyring-Kramers formula (7) for

parametrizing a jump Markov model. The two following sections

are essentially independent of each other and can be read sepa-
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rately.

3 Numerical aspects: accelerated dynam-

ics

As explained in the introduction, it is possible to use the underly-

ing Markov jump process as a support to accelerate molecular dy-

namics. This is the principle of the accelerated dynamics methods

introduced by A.F. Voter in the late nineties3–5. These techniques

aim at efficiently simulate the exit event from a metastable state.

Three ideas have been explored. In the parallel replica algo-

rithm4,50, the idea is to use the jump Markov model in order

to parallelize the sampling of the exit event. The principle of

the hyperdynamics algorithm3 is to raise the potential within the

metastable states in order to accelerate the exit event, while being

able to recover the correct exit time and exit point distributions.

Finally, the temperature accelerated dynamics5 consists in simu-

lating exit events at high temperature, and to extrapolate them at

low temperature using the Eyring-Kramers law (7). In this paper,

for the sake of conciseness, we concentrate on the analysis of the

parallel replica method, and we refer to the papers51,52 for an

analysis of hyperdynamics and temperature accelerated dynam-

ics. See also the recent review44 for a detailed presentation.

3.1 The parallel replica method

In order to present the parallel replica method, we need to in-

troduce a partition of the configuration space R
d to describe the

states. Let us denote by

S : Rd → N (18)

a function which associates to a configuration x ∈R
d a state num-

ber S (x). We will discuss below how to choose in practice this

function S . The aim of the parallel replica method (and actually

also of hyperdynamics and temperature accelerated dynamics) is

to generate very efficiently a trajectory (St)t≥0 with values in N

which has approximately the same law as the state-to-state dy-

namics (S (Xt))t≥0 where (Xt)t≥0 follows (6). The states are the

level sets of S . Of course, in general, (S (Xt))t≥0 is not a Markov

process, but it is close to Markovian if the level sets of S are

metastable regions, see Sections 2.2 and 2.5. The idea is to check

and then use metastability of the states in order to efficiently gen-

erate the exit events.

As explained above, we present for the sake of simplicity the al-

gorithm in the setting of the overdamped Langevin dynamics (6),

but the algorithm and the discussion below can be generalized to

the Langevin dynamics (5), and actually to any Markov dynamics,

as soon as a QSD can be defined in each state.

The parallel replica algorithm consists in iterating three steps:

• The decorrelation step: In this step, a reference replica

evolves according to the original dynamics (6), until it

remains trapped for a time tcorr in one of the states

S −1({n}) = {x ∈ R
d , S (x) = n}, for n ∈ N. The parameter

tcorr should be chosen by the user, and may depend on the

state. During this step, no error is made, since the reference

replica evolves following the original dynamics (and there is

of course no computational gain compared to a naive direct

numerical simulation). Once the reference replica has been

trapped in one of the states (that we denote generically by

S in the following two steps) for a time tcorr, the aim is to

generate very efficiently the exit event. This is done in two

steps.

• The dephasing step: In this preparation step, (N − 1) config-

urations are generated within S (in addition to the one ob-

tained form the reference replica) as follows. Starting from

the position of the reference replica at the end of the decor-

relation step, some trajectories are simulated in parallel for

a time tcorr. For each trajectory, if it remains within S over

the time interval of length tcorr, then its end point is stored.

Otherwise, the trajectory is discarded, and a new attempt to

get a trajectory remaining in S for a time tcorr is made. This

step is pure overhead. The objective is only to get N config-

urations in S which will be used as initial conditions in the

parallel step.

• The parallel step: In the parallel step, N replicas are evolved

independently and in parallel, starting from the initial con-

ditions generated in the dephasing step, following the orig-

inal dynamics (6) (with independent driving Brownian mo-

tions). This step ends as soon as one of the replica leaves

S. Then, the simulation clock is updated by setting the resi-

dence time in the state S to N (the number of replicas) times

the exit time of the first replica which left S. This replica

now becomes the reference replica, and one goes back to

the decorrelation step above.

The computational gain of this algorithm is in the parallel step,

which (as explained below) simulates the exit event in a wall

clock time N times smaller in average than what would have been

necessary to see the reference walker leaving S. This of course

requires a parallel architecture able to handle N jobs in parallel†.

This algorithm can be seen as a way to parallelize in time the

simulation of the exit event, which is not trivial because of the

sequential nature of time.

Before we present the mathematical analysis of this method,

let us make a few comments on the choice of the function S . In

the original papers4,50, the idea is to define states as the basins

of attraction of the local minima of V for the gradient dynamics

ẋ = −∇V (x). In this context, it is important to notice that the

states do not need to be defined a priori: they are numbered as

the process evolves and discovers new regions (namely new local

minima of V reached by the gradient descent). This way to de-

fine S is well suited for applications in material sciences, where

barriers are essentially energetic barriers, and the local minima

of V indeed correspond to different macroscopic states. In other

applications, for example in biology, there may be too many local

minima, not all of them being significant in terms of macroscopic

states. In that case, one could think of using a few degrees of

† For a discussion on the parallel efficiency, communication and synchronization, we

refer to the papers 4,46,49,50.
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freedom (reaction coordinates) to define the states, see for ex-

ample53. Actually, in the original work by Kramers14, the states

are also defined using reaction coordinates, see the discussion

in16. The important outcome of the mathematical analysis below

is that, whatever the choice of the states, if one is able to define a

correct correlation time tcorr attached to the states, then the algo-

rithm is consistent. We will discuss in Section 3.2 how large tcorr

should be theoretically, and in Section 3.3 how to estimate it in

practice.

Another important remark is that one actually does not need a

partition of the configuration space to apply this algorithm. In-

deed, the algorithm can be seen as an efficient way to simulate

the exit event from a metastable state S. Therefore, the algorithm

could be applied even if no partition of the state space is avail-

able, but only an ensemble of disjoint subsets of the configuration

space. The algorithms could then be used to simulate efficiently

exit events from these states, if the system happens to be trapped

in one of them.

3.2 Mathematical analysis

Let us now analyze the parallel replica algorithm described above,

using the notion of quasi-stationary distribution. In view of the

first property 2.2 of the QSD, the decorrelation step is simply a

way to decide wether or not the reference replica remains suffi-

ciently long in one of the states so that it can be considered as

being distributed according to the QSD. In view of (14), the error

is of the order of exp(−(λ2−λ1) tcorr) so that tcorr should be chosen

of the order of 1/(λ2 −λ1) in order for the exit event of the refer-

ence walker which remains in S for a time tcorr to be statistically

close to the exit event generated starting from the QSD.

Using the same arguments, the dephasing step is nothing but

a rejection algorithm to generate many configurations in S inde-

pendently and identically distributed with law the QSD νS in S.

Again, the distance to the QSD of the generated samples can be

quantified using (14).

Finally, the parallel step generates an exit event which is ex-

actly the one that would have been obtained considering only one

replica. Indeed, up to the error quantified in (14), all the replica

are i.i.d. with initial condition the QSD νS. Therefore, according

to the third property 2.4 of the QSD, their exit times (τn
S )n∈{1,...N}

are i.i.d. with law an exponential distribution with parameter λ1

(τn
S being the exit time of the n-th replica) so that

N min
n∈{1,...,N}

(τn
S )

L
= τ1

S . (19)

This explains why the exit time of the first replica which leaves

S needs to be multiplied by the number of replicas N. This also

shows why the parallel step gives a computational gain in terms

of wall clock: the time required to simulate the exit event is di-

vided by N compared to a direct numerical simulation. Moreover,

since starting from the QSD, the exit time and the exit point are

independent, we also have

X
I0

τ
I0
S

L
= X1

τ1
S
,

where (Xn
t )t≥0 is the n-th replica and I0 = argminn∈{1,...,N}(τ

n
S ) is

the index of the first replica which exits S. The exit point of the

first replica which exits S is statistically the same as the exit point

of the reference walker. Finally, by the independence property of

exit time and exit point, one can actually combine the two former

results in a single equality in law on couples of random variables,

which shows that the parallel step is statistically exact:

(
N min

n∈{1,...,N}
(τn

S ),X
I0

τ
I0
S

)
L
= (τ1

S ,X
1
τ1

S
).

As a remark, let us notice that in practice, a discrete-time

process is used (since the Langevin or overdamped Langevin

dynamics are discretized in time). Then, the exit time is

by construction a discrete random variable, namely a ge-

ometrically distributed random variable times the timestep

size. It is however possible to generalize the formula (19)

to this setting by using the following fact: if (σn)n∈{1,...N}
are i.i.d. with geometric law, then N (min(σ1, . . . ,σN)−1) +

min(n ∈ {1, . . . ,N}, σn = min(σ1, . . . ,σN))
L
= σ1. We refer to54 for

more details.

This analysis shows that the parallel replica is a very versatile

algorithm. In particular it applies to both energetic and entropic

barriers, and does not assume a small temperature regime (in

contrast with the analysis we will perform in Section 4). The

only errors introduced in the algorithm are related to the rate of

convergence to the QSD of the process conditioned to stay in the

state. The algorithm will be efficient if the convergence time to

the QSD is small compared to the exit time (in other words, if

the states are metastable). Formula (14) gives a way to quan-

tify the error introduced by the whole algorithm. In the limit

tcorr → ∞, the algorithm generates exactly the correct exit event.

However, (14) is not very useful to choose tcorr in practice since it

is not possible to get accurate estimates of λ1 and λ2 in general.

We will present in the next section a practical way to estimate

tcorr.

Let us emphasize that this analysis gives some error bound on

the accuracy of the state-to-state dynamics generated by the par-

allel replica algorithm, and not only on the invariant measure, or

the evolution of the time marginals.

3.3 Recent developments on the parallel replica algorithm

In view of the previous mathematical analysis, an important prac-

tical question is how to choose the correlation time tcorr. In the

original papers4,50, the correlation time is estimated assuming

that an harmonic approximation is accurate. In49, we propose

another approach which could be applied in more general set-

tings. The idea is to use two ingredients:

• The Fleming-Viot particle process55, which consists in N

replicas (X1
t , . . . ,X

N
t )t≥0 which are evolving and interacting

in such a way that the empirical distribution 1
N ∑

N
n=1 δXn

t
is

close (in the large N limit) to the law of the process Xt con-

ditioned on t < τS.

• The Gelman-Rubin convergence diagnostic56 to estimate the

correlation time as the convergence time to a stationary state
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for the Fleming-Viot particle process.

Roughly speaking, the Fleming-Viot process consists in following

the original dynamics (6) independently for each replica, and,

each time one of the replicas leaves the domain S, another one

taken at random is duplicated. The Gelman-Rubin convergence

diagnostic consists in comparing the average of a given observ-

able over replicas at a given time, with the average of this observ-

able over time and replicas: when the two averages are close (up

to a tolerance, and for well chosen observables), the process is

considered at stationarity.

Then, the generalized parallel replica algorithm introduced

in49 is a modification of the original algorithm where, each time

the reference replica enters a new state, a Fleming-Viot particle

process is launched using (N − 1) replicas simulated in parallel.

Then the decorrelation step consists in the following: if the ref-

erence replica leaves S before the Fleming-Viot particle process

reaches stationarity, then a new decorrelation step starts (and the

replicas generated by the Fleming-Viot particle are discarded); if

otherwise the Fleming-Viot particle process reaches stationarity

before the reference replica leaves S, then one proceeds to the

parallel step. Notice indeed that the final positions of the repli-

cas simulated by the Fleming-Viot particle process can be used as

initial conditions for the processes in the parallel step. This pro-

cedure thus avoids the choice of a tcorr a priori: it is in some sense

estimated on the fly. For more details, discussions on the correla-

tions included by the Fleming-Viot process between the replicas,

and numerical experiments (in particular in cases with purely en-

tropic barriers), we refer to49.

3.4 Concluding remarks

We presented the results in the context of the overdamped

Langevin dynamics (6), but the algorithms straightforwardly ap-

ply to any stochastic Markov dynamics as soon as a QSD exists

(for example Langevin dynamics for a bounded domain, see45).

The QSD approach is also useful to analyze the two other accel-

erated dynamics: hyperdynamics51 and temperature accelerated

dynamics52. Typically, one expects better speed up with these al-

gorithms than with parallel replica, but at the expense of larger

errors and more stringent assumptions (typically energetic bar-

riers, and small temperature regime), see44 for a review paper.

Let us mention in particular that the mathematical analysis of the

temperature accelerated dynamics algorithms requires to prove

that the distribution for the next visited state predicted using the

Eyring-Kramers formula (7) is correct, as explained in52. The

next section is thus also motivated by the development of an er-

ror analysis for temperature accelerated dynamics.

Let us finally mention that in these algorithms, the way to re-

late the original dynamics to a jump Markov process is by looking

at (S (Xt))t≥0 (or (S (qt))t≥0 for (5)). As already mentioned, this

is not a Markov process, but it is close to Markovian if the level

sets of S are metastable sets, see Sections 2.2 and 2.5. In partic-

ular, in the parallel replica algorithm above, the non-Markovian

effects (and in particular the recrossing at the boundary between

two states) are taken into account using the decorrelation step,

where the exact process is used in these intermediate regimes

between long sojourns in metastable states. As already men-

tioned above (see the discussion on the map S at the end of

Section 3.1), another idea is to introduce an ensemble of disjoint

subsets (Mi)i≥0 and to project the dynamics (Xt)t≥0 (or (qt)t≥0)

onto a discrete state-space dynamics by considering the last visited

milestone35,57. Notice that these subsets do not create a partition

of the state space. They are sometimes called milestones33, tar-

get sets or core sets35 in the literature. The natural parametriza-

tion of the underlying jump process is then to consider, starting

from a milestone (say M0), the time to reach any of the other

milestones ((M j) j 6=0) and the index of the next visited milestone.

This requires us to study the reactive paths among the milestones,

for which many techniques have been developed, as already pre-

sented in the introduction. Let us now discuss the Markovianity

of the projected dynamics. On the one hand, in the limit of very

small milestones‡, the sequence of visited states (i.e. the skeleton

of the projected process) is naturally Markovian (even though the

transition time is not necessarily exponential), but the description

of the underlying continuous state space dynamics is very poor

(since the information of the last visited milestone is not very in-

formative about the actual state of the system). On the other

hand, taking larger milestones, the projected process is close to

a Markov process under some metastability assumptions with re-

spect to these milestones. We refer to17,58,59 for a mathematical

analysis.

4 Theoretical aspects: transition state the-

ory and Eyring-Kramers formula

In this section, we explore some theoretical counterparts of the

QSD approach to study metastable stochastic processes. We con-

centrate on the overdamped Langevin dynamics (5). The gener-

alization of the mathematical approach presented below to the

Langevin dynamics would require some extra work.

We would like to justify the procedure described in the intro-

duction to build jump Markov models, and which consists in (see

for example1,7,60,61): (i) looking for all local minima and saddle

points separating the local minima of the function V ; (ii) connect-

ing two minima which can be linked by a path going through a

single saddle point, and parametrizing a jump between these two

minima using the rate given by the Eyring-Kramers formula (7).

More precisely, we concentrate on the accuracy of the sampling

of the exit event from a metastable state using the jump Markov

model. The questions we ask are the following: if a set S con-

taining a single local minimum of V is metastable for the dynam-

ics (6) (see the discussion in Section 2.2 and formula (15)), is

the exit event predicted by the jump Markov model built using

the Eyring-Kramers formula correct? What is the error induced

by this approximation?

As already explained in Section 2.6, if S is metastable, one can

assume that the stochastic process (Xt)t≥0 satisfying (6) starts un-

der the QSD νS (the error being quantified by (14)) and then,

the exit time is exponentially distributed and independent of the

‡ One could think of one-dimensional overdamped Langevin dynamics, with mile-

stones defined as points: in this case the sequence of visited points is Markovian.
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exit point. Thus, two fundamental properties of the jump Markov

model are satisfied. It only remains to prove that the rates asso-

ciated with the exit event for (Xt)t≥0 (see formula (17)) can be

accurately approximated by the Eyring-Kramers formulas (7). As

will become clear below, the analysis holds for energetic barriers

in the small temperature regime β → ∞.

In this section, we only sketch the proofs of our results, which

are quite technical. For a more detailed presentation, we refer

to62.

4.1 A review of the literature

Before presenting our approach, let us discuss the mathematical

results in the literature aiming at justifying the Eyring-Kramers

rates. See also the review article63.

Some authors adopt a global approach: they look at the spec-

trum associated with the infinitesimal generator of the dynamics

on the whole configuration space, and they compute the small

eigenvalues in the small temperature regime β → ∞. It can be

shown that there are exactly m small eigenvalues, m being the

number of local minima of V , and that these eigenvalues satisfy

the Eyring-Kramers law (7), with an energy barrier V (zk)−V (xk).

Here, the saddle point zk attached to the local minimum xk is de-

fined by§

V (zk) = inf
γ∈P(xi,Bi)

sup
t∈[0,1]

V (γ(t))

where P(xi,Bi) denotes the set of continuous paths from [0,1] to

R
d such that γ(0) = xi and γ(1) ∈ Bi with Bi the union of small

balls around local minima lower in energy than xi. For the dy-

namics (6), we refer for example to the work64 based on semi-

classical analysis results for Witten Laplacian and the articles65–67

where a potential theoretic approach is adopted. In the latter re-

sults, a connection is made between the small eigenvalues and

mean transition times between metastable states. Let us also

mention the earlier results68,69. For the dynamics (5), similar

results are obtained in70. These spectral approaches give the cas-

cade of relevant time scales to reach from a local minimum any

other local minimum which is lower in energy. They do not give

any information about the typical time scale to go from one local

minimum to any other local minimum (say from the global min-

imum to the second lower minimum). These global approaches

can be used to build jump Markov models using a Galerkin pro-

jection of the infinitesimal generator onto the first m eigenmodes,

which gives an excellent approximation of the infinitesimal gen-

erator. This has been extensively investigated by Schütte¶ and his

collaborators17, starting with the seminal work71.

In this work, we are interested in a local approach, namely in

the study of the exit event from a given metastable state S. In

this framework, the most famous approach to analyze the exit

event is the large deviation theory6. In the small temperature

§ It is here implicitly assumed that the inf sup value is attained at a single saddle

point zk .

¶ In fact, Schütte et al. look at the eigenvalues close to 1 for the so-called transfer

operator Pt = etL (for a well chosen lag time t > 0), which is equivalent to looking at

the small positive eigenvalues of −L

regime, large deviation results provide the exponential rates (7),

but without the prefactors and without error bounds. It can also

be proven that the exit time is exponentially distributed in this

regime, see72. For the dynamics (6), a typical result on the exit

point distribution is the following (see6 Theorem 5.1): for all S′

compactly embedded in S, for any γ > 0, for any δ > 0, there exists

δ0 ∈ (0,δ ] and β0 > 0 such that for all β ≥ β0, for all x ∈ S′ and for

all y ∈ ∂S,

e−β (V (y)−V (z1)+γ) ≤ P
x(XτS

∈ Vδ0
(y))≤ e−β (V (y)−V (z1)−γ) (20)

where Vδ0
(y) is a δ0-neighborhood of y in ∂S. Besides, let us

also mention formal approaches to study the exit time and the

exit point distribution that have been proposed by Matkowsky,

Schuss and collaborators in48,73,74 and by Maier and Stein in75,

using formal expansions for singularly perturbed elliptic equa-

tions. Some of the results cited above actually consider more

general dynamics than (6) (including (5)), see also76 for a recent

contribution in that direction. One of the interests of the large

deviation approach is actually to be sufficiently robust to apply to

rather general dynamics.

Finally, some authors prove the convergence to a jump Markov

process using a rescaling in time. See for example77 for a one-

dimensional diffusion in a double well, and78,79 for a similar

problem in larger dimension. In80, a rescaled in time diffusion

process converges to a jump Markov process living on the global

minima of the potential V , assuming they are separated by saddle

points having the same heights.

There are thus many mathematical approaches to derive the

Eyring-Kramers formula. In particular, a lot of works are devoted

to the computation of the rate between two metastable states, but

very few discuss the use of the combination of these rates to build

a jump Markov model between metastable states. To the best of

our knowledge, none of these works quantify rigorously the er-

ror introduced by the use of the Eyring-Kramers formulas and a

jump Markov process to model the transition from one state to

all the neighboring states. Our aim in this section is to present

such a mathematical analysis, using local versions of the spectral

approaches mentioned above. Our approach is local, justifies the

Eyring-Kramers formula with the prefactors and provides error es-

timates. It uses techniques developed in particular in the previous

works81,82. These results generalize the results in dimension 1 in

Section 4 of52.

4.2 Mathematical result

Let us consider the dynamics (6) with an initial condition dis-

tributed according to the QSD νS in a domain S. We assume the

following:

• The domain S is an open smooth bounded domain in R
d .

• The function V : S → R is a Morse function with a single

critical point x1. Moreover, x1 ∈ S and V (x1) = minS V .

• The normal derivative ∂nV is strictly positive on ∂S, and V |∂S

is a Morse function with local minima reached at z1, . . . ,zI

with V (z1)<V (z2)< .. . <V (zI).
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• The height of the barrier is large compared to the saddle

points heights discrepancies: V (z1)−V (x1)>V (zI)−V (z1).

• For all i ∈ {1, . . . I}, consider Bzi
⊂ ∂S the basin of attraction

for the dynamics in the boundary ∂S: ẋ = −∇TV (x) (where

∇TV denotes the tangential gradient of V along the bound-

ary ∂S). Assume that

inf
z∈Bc

zi

da(z,zi)>V (zI)−V (z1) (21)

where Bc
zi
= ∂S\Bzi

.

Here, da is the Agmon distance:

da(x,y) = inf
γ∈Γx,y

∫ 1

0
g(γ(t))|γ ′(t)|dt

where g =





|∇V | in S

|∇TV | in ∂S

, and the infimum is over the set Γx,y of

all piecewise C1 paths γ : [0,1]→ S such that γ(0) = x and γ(1) = y.

The Agmon distance is useful in order to measure the decay of

eigenfunctions away from critical points. These are the so-called

semi-classical Agmon estimates, see83,84.

Then, in the limit β → ∞, the exit rate is (see also81)

λ1 =

√
β

2π
∂nV (z1)

√
det(∇2V )(x1)√

det(∇2V|∂S)(z1)
e−β (V (z1)−V (x1))(1+O(β−1)).

Moreover, for any open set Σi containing zi such that Σi ⊂ Bzi
,

∫

Σi

∂nu1 dσ
∫

S
u1(x)dx

=−Ai(β )e
−β (V (zi)−V (x1))(1+O(β−1)), (22)

where

Ai(β ) =
β 3/2

√
2π

∂nV (zi)

√
det(∇2V )(x1)√

det(∇2V |∂S)(zi)
.

Therefore,

p(i) = P
νS(XτS

∈ Σi)

=
∂nV (zi)

√
det(∇2V |∂S)(z1)

∂nV (z1)
√

det(∇2V |∂S)(zi)
e−β (V (zi)−V (z1))(1+O(β−1))

(23)

and (see Equation (17) for the definition of the exit rates)

k0,i = λ1 p(i)

= ν̃OL
0,i e−β (V (zi)−V (x1))(1+O(β−1)) (24)

where the prefactors ν̃OL
0,i are given by

ν̃OL
0,i =

√
β

2π
∂nV (zi)

√
det(∇2V )(x1)√

det(∇2V|∂S)(zi)
. (25)

We refer to62 for more details, and other related results.

As stated in the assumptions, these rates are obtained assuming

∂nV > 0 on ∂S: the local minima z1, . . . ,zI of V on ∂S are there-

fore not saddle points of V but so-called generalized saddle points

(see81,82). In a future work, we intend to extend these results to

the case where the points (zi)1≤i≤I are saddle points of V , in which

case we expect to prove the same result (24) for the exit rates,

with the prefactor ν̃OL
0,i being

1

π
|λ−(z j)|

√
det(∇2V )(x1)√
|det(∇2V )(z j)|

(this for-

mula can be obtained using formal expansions on the exit time

and the Laplace’s method). Notice that the latter formula differs

from (9) by a multiplicative factor 1/2 since λ1 is the exit rate

from S and not the transition rate to one of the neighboring state

(see the remark on page 408 in65 on this multiplicative factor 1/2

and the results on asymptotic exit times in75 for example). This

factor is due to the fact that once on the saddle point, the pro-

cess has a probability one half to go back to S, and a probability

one half to effectively leave S. This multiplicative factor does not

have any influence on the law of the next visited state which only

involves ratio of the rates k0,i, see Equation (3).

4.3 Discussion of the result

As already discussed above, the interest of these results is that

they justify the use of the Eyring-Kramers formula to model the

exit event using a jump Markov model. They give in particular the

relative probability to leave S through each of the local minima

zi of V on the boundary ∂S. Moreover, we obtain an estimate of

the relative error on the exit probabilities (and not only on the

logarithm of the exit probabilities as in (20)): it is of order β−1,

see Equation (23).

The importance of obtaining a result including the prefactors in

the rates is illustrated by the following result, which is also proven

in62. Consider a simple situation with only two local minima z1

and z2 on the boundary (with as above V (z1) < V (z2)). Compare

the two exit probabilities:

• The probability to leave through Σ2 such that Σ2 ⊂ Bz2
and

z2 ∈ Σ2;

• The probability to leave through Σ such that Σ ⊂ Bz1
and

infΣ V =V (z2).

By classical results from the large deviation theory (see for exam-

ple (20)) the probability to exit through Σ and Σ2 both scale like

a prefactor times e−β (V (z2)−V (z1)): the difference can only be read

from the prefactors. Actually, it can be proven that, in the limit

β → ∞,
P

νS(XτS
∈ Σ)

PνS(XτS
∈ Σ2)

= O(β−1/2).

The probability to leave through Σ2 (namely through the gen-

eralized saddle point z2) is thus much larger than through Σ,

even though the two regions are at the same height. This re-

sult explains why the local minima of V on the boundary (namely

the generalized saddle points) play such an important role when

studying the exit event.
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4.4 Sketch of the proof

In view of the formulas (16) and (17), we would like to identify

the asymptotic behavior of the small eigenvalue λ1 and of the

normal derivative ∂nu1 on ∂S in the limit β → ∞. We recall that

(λ1,u1) are defined by the eigenvalue problem (12). In order to

work in the classical setting for Witten Laplacians, we make a

unitary transformation of the original eigenvalue problem. Let us

consider v1 = u1 exp(βV ), so that





L(0)v1 =−λ1v1 on S,

v1 = 0 on ∂S,

(26)

where L(0) = β−1∆ − ∇V · ∇ is a self adjoint operator on

L2(exp(−βV )). We would like to study, in the small temperature

regime ∂nu1 = ∂nv1e−βV on ∂S (since u1 = 0 on ∂S). Now, observe

that ∇v1 satisfies





L(1)∇v1 =−λ1∇v1 on S,

∇T v1 = 0 on ∂S,

(β−1div−∇V ·)∇v1 = 0 on ∂S,

(27)

where

L(1) = β−1∆−∇V ·∇−Hess(V )

is an operator acting on 1-forms (namely on vector fields). There-

fore ∇v1 is an eigenvector (or an eigen-1-form) of the operator

−L(1) with tangential Dirichlet boundary conditions (see (27)),

associated with the small eigenvalue λ1. It is known (see for ex-

ample81) that in our geometric setting −L(0) admits exactly one

eigenvalue smaller than β−1/2, namely λ1 with associated eigen-

function v1 (this is because V has only one local minimum in S)

and that −L(1) admits exactly I eigenvalues smaller than β−1/2

(where, we recall, I is the number of local minima of V on ∂S).

Actually, all these small eigenvalues are exponentially small in the

regime β → ∞, the larger eigenvalues being bounded from below

by a constant in this regime. The idea is then to construct an

appropriate basis (with eigenvectors localized on the generalized

saddle points, see the quasi-modes below) of the eigenspace as-

sociated with small eigenvalues for L(1), and then to decompose

∇v1 along this basis.

The second step (the most technical one actually) is to build

so-called quasi-modes which approximate the eigenvectors of L(0)

and L(1) associated with small eigenvalues in the regime β → ∞.

A good approximation of v1 is actually simply ṽ = Z χS′ where S′

is an open set such that S′ ⊂ S, χS′ is a smooth function with com-

pact support in S and equal to one on S′, and Z is a normalization

constant such that ‖ṽ‖L2(e−βV ) = 1. The difficult part is to build

an approximation of the eigenspace Ran
(

1[0,β−1/2](−L(1))
)

, where

1[0,β−1/2](−L(1)) denotes the spectral projection of (−L(1)) over

eigenvectors associated with eigenvalues in the interval [0,β−1/2].

Using auxiliary simpler eigenvalue problems associated with each

of the local minima (zi)i=1,...,I , we are able to build 1-forms

(ψi)i=1,...,I such that Span(ψ1, . . . ,ψI) is a good approximation of

Ran
(

1[0,β−1/2](−L(1))
)

. The support of ψi is essentially in a neigh-

borhood of zi and Agmon estimates are used to prove exponential

decay away from zi. Moreover, accurate WKB expansions allow

us to precisely approximate the integrals
∫

Σi
ψi · n e−βV dσ (see

Equation (29) below).

The third step consists in projecting the approximation of ∇v1

on the approximation of the eigenspace Ran
(

1[0,β−1/2](−L(1))
)

using the following result. Assume the following on the quasi-

modes:

• Normalization: ṽ ∈ H1
0 (e

−βV ) and ‖ṽ‖L2(e−βV ) = 1. For all i ∈
{1, . . . , I}, ψi ∈ H1

T (e
−βV ) and∗∗ ‖ψi‖L2(e−βV ) = 1.

• Good quasi-modes:

– ∀δ > 0,‖∇ṽ‖2
L2(e−βV )

= O(e−β (V (z1)−V (x1)−δ )),

– ∃ε > 0, ∀i ∈ {1, . . . , I},

‖1[β−1/2,∞)(−L(1))ψi‖2
H1(e−βV ) = O(e−β (V (zI)−V (z1)+ε))

(28)

• Orthonormality of quasi-modes: ∃ε0 > 0, ∀i < j ∈ {1, . . . , I},

〈ψi,ψ j〉L2(e−βV ) = O( e−
β
2
(V (z j)−V (zi)+ε0) ).

• Decomposition of ∇ṽ: ∃(Ci)1≤i≤I ∈ R
I , ∃p > 0, ∀i ∈ {1, . . . , I},

〈∇ṽ,ψi〉L2(e−βV ) =Ci β−pe−
β
2
(V (zi)−V (x1)) (1+O(β−1) ).

• Normal components of the quasi-modes: ∃(Bi)1≤i≤I ∈R
I , ∃m>

0, ∀i, j ∈ {1, . . . , I},

∫

Σi

ψ j ·n e−βV dσ =

{
Bi β−m e−

β
2

V (zi) ( 1 +O(β−1) ) if i = j,

0 if i 6= j.

(29)

Then for i = 1, ...,n, when β → ∞

∫

Σi

∂nv1 e−βV dσ =CiBi β−(p+m) e−
β
2
(2V (zi)−V (x1)) (1+O(β−1)).

The proof is based on a Gram-Schmidt orthonormalization proce-

dure. This result applied to the quasi-modes built in the second

step yields (22).

4.5 On the geometric assumption (21)

In this section, we would like to discuss the geometric as-

sumption (21). This hypothesis is used in the proof to show

that the quasi-modes (ψi)i=1,...I satisfy the assumptions described

in Section 4.4, and more precisely (28) which is a measure

of the accuracy of Span(ψ1, . . . ,ψI) as an approximation of

Ran
(

1[0,β−1/2](−L(1))
)

. This can be seen as a technical assump-

tion. However, it is expected that for the Eyring-Kramers law

to be valid, the generalized saddle points should not “interact”

and (21) is a way to separate the contributions of each quasi-

mode to the exit point density. Therefore, the question we would

∗∗The functional space H1
T (e

−βV ) is the space of 1-forms in H1(e−βV ) which satisfy the

tangential Dirichlet boundary condition, see (27).
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Equation (14) gives a quantification of the error associated with

this assumption. Moreover, we have obtained bounds on the error

introduced by using the Eyring-Kramers formula.

The analysis shows the importance of considering (possibly

generalized) saddle points on the boundary to identify the sup-

port of the exit point distribution. This follows from the precise

estimates we obtain, which include the prefactor in the estimate

of the probability to exit through a given subset of the boundary.

Finally, we checked by numerical experiments the fact that

some geometric assumptions are indeed required in order for all

these results to hold.

As mentioned above, we intend to generalize the results to the

case when the local minima of V on ∂S are saddle points.
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