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totic relation is provided by the steepest-descent integration

∫ z>

z<

g(z)e−λ f (z) dz ∼ g(z∗)

√

2π

λ f ′′(z∗)
e−λ f (z∗), λ → ∞, (2)

where z∗ is the minimum of f (z) between the limits z< and z>.†

In this paper, an analysis of the instanton rate will be made to

show that the first-principles derivation has indeed led to a for-

mula which is asymptotically related to the quantum-mechanical

rate. The theory is therefore exact at low temperature in certain

limiting cases, which is not true of many other related QTSTs.

It is well known9,11 that the standard instanton approach fails

to predict the rate accurately when the reciprocal temperature

β = 1/kBT is near crossover, defined by βc = 2π/h̄ω̄0, where ω̄0 is

the imaginary frequency at the barrier top. Above the crossover

temperature, the instanton orbit does not exist and the theory is

not valid.

The reason why the instanton rate cannot be used near

crossover, has been put down to the non-validity of the steepest-

descent approximation. Suggestions have been given to correct

the results in this regime by including anharmonic terms into

the expansion of the Boltzmann operator, e−β Ĥ .11,47–50 This re-

sults in different expressions being used in different temperature

regimes and it is not always obvious where one formula should

take over from the other.

In this paper, it shall be shown that it is not necessarily

the steepest-descent approximations in the position coordinates

which are to blame and that the problem can be solved by a differ-

ent approach. The new approach obtains an approximation to the

microcanonical rate over a range of energies which is weighted by

a thermal distribution and integrated numerically to give a single

unified formula for semiclassical reaction rates at all temperatures

of interest. A number of instantons at different energies will be

required in order to do this, although this may not necessarily be

a concern to the efficiency of the method. It is often the case that

the rate of a reaction is required at multiple temperatures such

that a number of independent instanton calculations have to be

carried out. Even if the rate at only one temperature is desired,

the instanton is often optimized at successively lower tempera-

tures using initial guesses generated from optimizations at higher

temperatures. A standard application of instanton theory discards

this extra information and only takes one instanton into account.

It is not surprising that by retaining all the data, it is possible to

formulate a method which gives a higher accuracy.

2 First-principles derivation of instanton

theory

In this section, a summary is given of the first-principles deriva-

tion of instanton theory from Refs. 31 and 38. Although we

write the formulae in terms of continuous classical trajectories,

the method is intended to be used in the ring-polymer instanton

formalism whereby the pathways are discretized as described in

Refs. 14 and 39.

† See Ref. 46 for the derivation and a fuller discussion of the validity of this relation.

Consider the dynamics of a chemical reaction within the Born-

Oppenheimer approximation. The Hamiltonian is Ĥ = |p̂|2/2m+

V (x̂), where x = (x0, . . . ,x f−1) are the Cartesian coordinates of f

nuclear degrees of freedom. These nuclei move on the potential-

energy surface V (x) with conjugate momenta p = (p0, . . . , p f−1).

Without loss of generality, the degrees of freedom have been

mass-weighted such that each has the same mass, m.

An ( f − 1)-dimensional dividing surface, defined by σ(x) = 0,

separates reactants, σ < 0, from products, σ > 0. Although it

makes no difference to the rate, it is usual to place the dividing

surface such that it cuts through the potential barrier. The exact

expression for the microcanonical cumulative reaction probability

at energy E is51,52

P(E) = 2h̄2 Tr
[

F̂ Im Ĝ(E)F̂ Im Ĝ(E)
]

, (3)

where F̂ =− ih̄
2m

(

δ [σ̂ ] ∂
∂ σ̂

+ ∂
∂ σ̂

δ [σ̂ ]
)

is the flux from reactants to

products. The Green’s functions will play an important role in this

derivation and are defined by

G(x′,x′′,E) =− i

h̄

∫ ∞

0
K(x′,x′′, t)eiEt/h̄ dt, (4)

where K(x′,x′′, t) = 〈x′|e−iĤt/h̄|x′′〉 is the quantum-mechanical

propagator. Note that only the imaginary part of the Green’s func-

tion is needed to compute the rate.

The thermal reaction rate is defined by

kZr =
1

2π h̄

∫ ∞

0
P(E)e−βE dE, (5)

where Zr is the partition function of the reactants per unit volume.

The standard instanton theory was obtained by taking semiclas-

sical approximations to the Green’s functions and then evaluating

the trace in Eq. 3 by steepest-descent integration. A semiclassical

approximation to the thermal rate is then obtained by steepest-

descent integration of Eq. 5. The new approach suggested in this

work, however, is to obtain an approximation to P(E) and to in-

tegrate over energy numerically.

In order to derive a semiclassical approximation to the Green’s

function, we replace the quantum-mechanical propagator by the

van-Vleck propagator.53–56 This is the semiclassical limit of Feyn-

man’s exact path-integral propagator57 and is defined in terms

of a sum over classical trajectories of time t, from x(0) = x′′ to

x(t) = x′ to give

G(x′,x′′,E)∼− i

h̄
∑

cl. traj.

∫ ∞

0

√

C

(2πih̄) f
eiS(x′,x′′,t)/h̄+iEt/h̄ dt (6)

as h̄ → 0. The action along each trajectory is S(x′,x′′, t) =
∫ t

0

[

1
2 m

∣

∣

∣

∂ x
∂ t

∣

∣

∣

2
−V (x(t))

]

dt and the density associated with the tra-

jectory is C =
∣

∣

∣
− ∂ 2S

∂x′∂x′′

∣

∣

∣
. The sign of the square root has to be

carefully chosen to keep the function continuous in the complex

plane. This gives a phase change of e−iπ/2 when passing through

each conjugate point.54–56

The integral over t is then evaluated by the method of steepest

descent to give a semiclassical approximation to the Green’s func-
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tion. The stationary points of the exponent solve ∂ S
∂ t

+E = 0 and

since − ∂ S
∂ t

defines the energy of a trajectory passing from x′′ to x′

in time t, they correspond to classical trajectories of energy E.

Below the barrier, where E <V (x′′) and E <V (x′), these classi-

cal trajectories must evolve in imaginary time such that their ki-

netic energy is negative. It was found in Ref. 38 that trajectories

which bounce an odd number of times contribute to the imag-

inary part of the semiclassical Green’s function whereas those

which bounce an even number of times (or do not bounce at all)

contribute to the real part. A bounce is counted whenever the

momentum along the trajectory becomes zero.

As longer imaginary-time trajectories are exponentially

damped, the dominant contributions to the imaginary part of

the Green’s function come from only two trajectories: one which

bounces to the left of the dividing surface (t =−iτ−) and the other

which bounces to the right (t =−iτ+).

This gives ImG(x′,x′′,E)∼ Γ−+Γ+ as h̄ → 0, where

Γ± =− 1

2h̄

√

|C̄|
(2π h̄) f

√
2π h̄

∣

∣

∣

∣

∂ 2S̄±

∂τ±2

∣

∣

∣

∣

− 1
2

e−S̄±/h̄+Eτ±/h̄ (7)

=− 1

2h̄

√

|D̄±|
(2π h̄) f−1

e−W̄±/h̄, (8)

where S̄± =−iS(x′,x′′,−iτ±) and C̄± =
∣

∣

∣
− ∂ 2S̄±

∂x′∂x′′

∣

∣

∣
. The second line

follows from the Legendre transformation W̄± = S̄±− ∂ S̄±

∂τ± τ± and

D̄± =
(

∂ 2S̄±

∂τ±2

)−1
C̄±.31,38 The factor of a half appears because the

contour of integration only passes through half of the maximum

peak in the direction which contributes to the imaginary part of

the Green’s function. This is explained more fully in Sec. 4 and

Ref. 38.

In Ref. 31, it was shown that when replacing the Green’s func-

tions with their semiclassical approximations,

P(E) ∼ 4
h̄2

m2

∫∫∫∫

SD
p̄(x′) p̄(x′′)Γ−Γ+δ (q′)δ (q′′)dq′dq′′dQ′dQ′′

(9)

as h̄ → 0, where p̄(x′) =
∣

∣

∣

∂ S̄±

∂x′

∣

∣

∣
=
∣

∣

∣

∂ W̄±

∂x′

∣

∣

∣
is the magnitude of the

momentum of a trajectory at its end point. The coordinate

transformation from x to (q,Q) is defined such that q is paral-

lel to the trajectory and equal to 0 at the dividing surface, and

Q = (Q1, . . . ,Q f−1) are the perpendicular modes.58 The integrals

over the perpendicular modes should also be performed by steep-

est descent, whereas those over q′ and q′′ can be done exactly due

to the presence of the delta functions.

The stationary points are defined by ∂ W̄
∂Q′ =

∂ W̄
∂Q′′ = 0, where W̄ =

W̄− +W̄+. Here the trajectory which bounces to the left of the

dividing surface joins smoothly with that which bounces to the

right to form a continuous imaginary-time periodic orbit, called

the instanton. Using D̄± = −m2

p̄(x′) p̄(x′′)A±, where A± =
∣

∣

∣
− ∂ 2W̄±

∂Q′∂Q′′

∣

∣

∣

and31,55,56,58

Z‡ =
√

A−A+

∣

∣

∣

∣

∣

∂ 2W̄
∂Q′∂Q′

∂ 2W̄
∂Q′∂Q′′

∂ 2W̄
∂Q′′∂Q′

∂ 2W̄
∂Q′′∂Q′′

∣

∣

∣

∣

∣

− 1
2

, (10)

we obtain the first semiclassical approximation (SC1) to the

microcanonical cumulative reaction probability,31

PSC1(E) = Z‡ e−W̄/h̄. (11)

The semiclassical instanton approximation to the thermal rate

is obtained from Eq. 5 using PSC1(E) and evaluating the integral

using the method of steepest descent. In this case the exponent

is −W̄/h̄−βE which can be rearranged to −
(

W̄ + 2πβ
ω̄0βc

E
)

/h̄ such

that it is of the form of Eq. 2. We can therefore write k ∼ kSC1 as

h̄ → 0 for a given value of β/βc, where

kSC1Zr =
[

2π h̄W̄ ′′(E∗)
]− 1

2 Z‡ e−W̄ (E∗)/h̄−βE∗
, (12)

E∗ is defined such that W̄ ′(E∗) = −β h̄ and here primes denote

differentiation with respect to E.

In Sec. 3, we analyse the rates obtained by the instanton ap-

proach when applied to an analytically solvable one-dimensional

system and suggest a simple ways to extend its applicability. The

derivation is analysed in Sec. 4 for a multidimensional problem

and a modification to the steepest-descent approach is suggested

which improves the accuracy of the approximation. Section 5 ap-

plies the new method to a multidimensional system and compares

the results with the standard approach and the exact rates.

3 Analysis of instanton theory applied to a

one-dimensional system

In this section, we will analyse the semiclassical instanton ap-

proximation to the thermal and microcanonical rate for the one-

dimensional symmetric Eckart barrier. The potential is defined

by

V (x) =V ‡ sech2 x

a
. (13)

For this surface, the imaginary frequency at the barrier top is ω̄0 =
√

2V ‡/ma2. The exact expression for the reaction probability for

this system can be given in closed form by59,60

P(E) =
sinh2 α

√
η

sinh2 α
√

η + cosh2
√

α2 −π2/4
, (14)

where α = π
√

2ma2V ‡/h̄ and η = E/V ‡ is a reduced energy.

Throughout this paper, the reaction probability is only defined

for energies above the reactant asymptote, E > 0.

When the parameter α is large, the barrier is high and wide and

the semiclassical approximations are valid. In fact, asymptotic

analysis46 shows that, for a given value of η > 0,

P(E)∼ e2α
√

η

e2α
√

η + e2α
=
[

1+ eW̄ (E)/h̄
]−1

, α → ∞, (15)

where W̄ (E) = 2h̄α(1−√
η).

For this one-dimensional system, the expression for the reaction
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probability obtained by semiclassical instanton theory, Eq. 11, is

PSC1(E) =

{

e−W̄ (E)/h̄ 0 < E <V ‡

1 E ≥V ‡
, (16)

where W̄ (E) = 2
∫ x>

x<
p̄(x)dx is the abbreviated action along the in-

stanton pathway and x≶ are the turning points. For the Eckart

barrier it can be evaluated to give the same result as W̄ (E) found

in Eq. 15.60 PSC1(E) is of course equal to the well-known WKB

approximation for transmission of a one-dimensional barrier.60,61

Note that above the barrier, we have used the the semiclassical re-

sult as derived in the Appendix. This approximation is formally

asymptotically correct for a given value of η obeying 0 < E < V ‡

or E >V ‡ such that PSC1(E)∼ P(E) as α → ∞. All these instanton

approximations are thus valid for high and wide barriers. How-

ever, just because it is asymptotically related to the exact result

does not mean that it is a good approximation for finite α. For

instance, it is obviously a poor approximation at energies near

the barrier when W̄ (E) becomes small. Formally, this is because

there is no such asymptotic relation at E = V ‡ at which point

PSC1(V
‡) = 1 whereas P(V ‡)∼ 1

2 .

There is a simple way to correct this error in the SC1 expres-

sion, by replacing it with the asymptotic result of Eq. 15. For

more general potential-energy surfaces, the value of W̄ (E) is not

known analytically but can be obtained numerically by an instan-

ton calculation. However, this will only be possible when W̄ (E) is

available, i.e. for energies lower than the barrier height when the

instanton exists.

Near the barrier top or above it, the instanton is collapsed so

knowledge is only required for a small region about the transition-

state. As it is assumed that all potential-energy barriers have

the parabolic form, Vpb(x) = V ‡ − 1
2 mω̄2

0 x2, in this small region

around their top, we can use the corresponding transmission to

improve the semiclassical result. The exact result for this case is

Ppb(E) =
[

1+ eW̄pb(E)/h̄
]−1

, where W̄pb(E) = 2π(V ‡ −E)/ω̄0 is the

abbreviated action for the parabolic barrier.60

We can therefore suggest the form of an improved instanton

theory, which we call the SC3 approximation,

PSC3(E) =







[

1+ eW̄ (E)/h̄
]−1

0 < E <V ‡

Ppb(E) E ≥V ‡
. (17)

Asymptotic approximations are not unique and adding higher-

order terms is always possible. A simple justification of Eq. 17 is

that it doesn’t break any of the asymptotic relations which existed

previously and now in fact PSC3(E)∼ P(E) as α → ∞ for all E > 0.

Equation 17 was previously suggested by Kemble60,62,63 based

on a WKB analysis. To calculate PSC3(E), we require no more

information than is obtained in a typical instanton calculation, i.e.

the abbreviated action W̄ (E) and the imaginary barrier frequency

ω̄0.

Note that Eq. 17 is exact for a parabolic barrier. Because the

exact transmission for the Eckart barrier is asymptotic to the

parabolic barrier for E ≥ V ‡, PSC3(E) is an asymptotic limit for

the Eckart barrier at all energies. One therefore assumes that

it will also be a good approximation for real chemical systems,

which tend to have potential barriers of a similar shape.

The SC1 approximation to the thermal rate is defined by

Eq. 12, where for this one-dimensional system Z‡ = 1 and Zr =
√

m/2πβ h̄2 is the translational partition function of the reactants

per unit length. For the Eckart barrier, whose crossover temper-

ature is given by βc = α/V ‡, this can be expressed analytically

using the location of the stationary point, E∗/V ‡ = β 2
c /β 2, which

gives

kSC1 =

√

2V ‡

m

βc

β
e−S̄/h̄, (18)

where S̄ = h̄α(2−βc/β ).

This result is exact in the limit that α → ∞ for a given value of

β/βc. Such an asymptotic relation does not exist for many other

approximate quantum rate theories. For instance, h-RPTST is de-

fined by performing the integrals in RPTST by steepest descent;14

this gives a rate with the correct exponent but a slightly different

prefactor from that obtained by SC1.‡ This suggests that instan-

ton rate theory gives the more fundamental description of deep

tunnelling and shows that the quantum transition-state theory ap-

proximation which leads to RPTST64,65 is not exact, even in the

limiting case of a high and wide barrier. This explains the obser-

vation that the free-energy version of instanton theory is superior

to RPTST at low temperatures for the atom-diatom scattering cal-

culations performed in Ref. 66.

Of course RPTST performs well at higher temperatures where

it tends to classical transition-state theory. Unlike RPTST, the SC1

rate suffers from problems near the crossover temperature due

partly to the errors in Eq. 16 and partly to the steepest-descent

approximation for the energy integral. An improved thermal rate

can be defined using Eq. 17 as

kSC3Zr =
1

2π h̄

∫ ∞

0
PSC3(E)e−βE dE, (19)

which can be integrated numerically.

Using the two different approximations described so far we ob-

tain the thermal rate constants shown in Figure 1 for a model

system describing a proton transfer.

Of course, none of the semiclassical results is exact because the

value of α is given by the chemical barrier under study and can-

not be made arbitrarily large. The SC3 rates coincide with the

SC1 approximation at low temperatures because in this region

the instantons are much lower than the barrier height making

PSC1(E) ≈ PSC3(E) and the steepest-descent integration over en-

ergy is accurate. At high temperatures, kSC3 correctly tends to the

classical result, which is a consequence of the quantum-classical

correspondence principle. The major improvement of the SC3 in-

stanton approximation over the standard approaches is that the

rates are also accurate in the region of the crossover temperature.

It avoids the discontinuity and remains finite at all temperatures.

For this value of α, the error remains below 25%, which is often

quite acceptable in a chemical reaction rate calculation and prob-

‡ The extra prefactor term was called αh(β ) in Ref. 14.
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E − 1
2 ∑

f−1
j=1 h̄ω j. This is the leading term of Eq. 21, equivalent

to assuming that the perpendicular modes are all in their ground

states. We have thus managed to obtain an instanton approxi-

mation to a microcanonical rate which is a good approximation

both for one-dimensional and multidimensional systems and is

applicable for energies at least up to the barrier height plus the

zero-point energy of the perpendicular modes.

We apply the barrier-top correction of Sec. 3 also to the mul-

tidimensional microcanonical cumulative reaction probability to

give

PSC3(E) =







PSC2(E)
[

1+ e−W̄/h̄
]−1

E ≤ Emax

Ppb+h(E) E > Emax

, (34)

where PSC2(E) is given in Eq. 30. Emax ≈V ‡− ∂ φ
∂τ

∣

∣

∣

τ=βch̄
is defined

as the highest energy for which the corresponding instanton re-

mains stretched. Once it is collapsed, we switch to the exact result

for the parabolic+harmonic system,

Ppb+h(E) =
∞

∑
n1=0

· · ·
∞

∑
n f−1=0

Ppb

(

E −
f−1

∑
j=1

(n j +
1
2 )h̄ω j

)

. (35)

Unfortunately, this does not necessarily match exactly with the

microcanonical instanton approximation just below the barrier.

This is not a significant problem as the integral in Eq. 5 will

smooth out the discontinuity and give a continuous function of

k with respect to β .

In practice, rather than solving the transcendental equation

Eq. 27 for τ± for a given value of E, one can use it to define E di-

rectly from a given value of τ. Trajectories can then be optimized

using the usual ring-polymer instanton approach.14,39 A number

of values of τ will be required in order to evaluate the integral,

and each will require an independent calculation of an instanton.

Derivatives of φ± with respect to τ± can be obtained by finite

differences by reoptimizing trajectories with slightly longer and

slightly shorter imaginary times, keeping the end-points fixed.

Although these formula were derived with the

parabolic+harmonic system in mind, the approach is also

valid for more general systems. There are however a number

of ways in which φ could be defined for a nonseparable system.

In anharmonic and asymmetric systems, it may happen that
∂ φ+

∂τ+ 6= ∂ φ−

∂τ− such that there is not a unique definition for the total

energy represented by the instanton. In these cases, it may be

possible to simply average the two results. Tests will have to

be performed to discover which precise definition performs best

over a wide range of problems.

5 Thermal instanton rate theory

As in the one-dimensional case, the thermal reaction rate of a

multidimensional system is obtained from the cumulative reac-

tion probability using numerical integration of Eq. 19. After com-

puting PSC3(E) at a range of energies, the thermal rate can be ob-

tained at many different temperatures without recomputing any

instantons. To be consistent with the semiclassical approxima-

tions, the appropriate reactant partition function per unit volume

should be used, employing harmonic approximations for the vi-

brational modes.

Here, we compare the results of various approaches on a sim-

ple test system with parameters chosen to model the transition-

state of the gas-phase H+H2 reaction. A two-dimensional poten-

tial is defined as an uncoupled sum of the Eckart barrier, Eq. 13,

with V ‡ = 0.425 eV and a = 0.734 a.u., in one direction and a har-

monic oscillator, with ω1 = 2055 cm−1, in the other. The mass

was chosen to be m = 1061 a.u. This system has a crossover

temperature given by βc ≈ 850 a.u. and a zero-point energy of
1
2 h̄ω1 ≈ 0.128 eV. The reactant partition function per unit length

is Zr =
√

m/2π h̄2β
[

2sinh 1
2 h̄βω1

]−1
.

For comparison, the rate given by Eyring’s TST,67 which ne-

glects tunnelling effects, is given by

kTSTZr =
1

2πβ h̄

[

f−1

∏
j=1

2sinh 1
2 h̄βω j

]−1

e−βV ‡

, (36)

whereas the exact rate of the parabolic+harmonic system is60

kpb+h =
1

2π h̄Zr

∫ ∞

−∞
Ppb+h(E)e−βE dE (37)

=
1
2 h̄βω̄0

sin 1
2 h̄βω̄0

kTST, β < βc. (38)

Results for the microcanonical rate are presented in Table 1

and for thermal rates in Table 2. The results of the SC3 approx-

imation compare very well with the exact rates throughout and

the relative errors remain below 20%, whereas each of the other

approximations fails in a particular regimes. At higher energies

than those presented in Table 1, the SC2/SC3 instanton becomes

collapsed and the parabolic barrier expression is used. This is a

good approximation in this regime.

kTST is of course unable to describe tunnelling and is many or-

ders of magnitude too small at low temperatures. The parabolic

barrier approximation to the microcanonical rate becomes good

near the barrier top. The thermal rate based on this approxima-

tion is good at high temperatures but in error near and below

the crossover temperature where it tends to infinity and becomes

undefined. The standard SC1 instanton rates are equal to the

SC3 approximation at low temperature but perform poorly near

crossover. PSC1(E) cannot be obtained for E >V ‡ and is obviously

inferior to the SC3 approximation at low energies.

Table 1 Microcanonical cumulative reaction probability obtained from

various methods: Ppb+h(E) from Eq. 35; PSC1(E) from Eq. 11; PSC3(E)

from Eq. 34; and the exact result P(E) from Eq. 20 and Eq. 14. Powers

of ten are given in parentheses.

E /eV Ppb+h(E) PSC1(E) PSC3(E) P(E)

0.15 3.48(−6) 2.57(−8) 1.35(−9) 1.61(−9)
0.20 1.66(−5) 7.25(−7) 1.72(−7) 2.07(−7)
0.25 7.91(−5) 1.15(−5) 4.60(−6) 5.54(−6)
0.30 3.77(−4) 1.26(−4) 6.57(−5) 7.92(−5)
0.35 1.79(−3) 1.07(−3) 6.52(−4) 7.85(−4)
0.40 8.50(−3) 7.49(−3) 5.03(−3) 6.06(−3)
0.45 3.92(−2) − 3.17(−2) 3.80(−2)
0.50 1.63(−1) − 1.56(−1) 1.82(−1)
0.55 4.82(−1) − 4.81(−1) 5.28(−1)
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Table 2 Thermal rates obtained from various methods: kpb+h from

Eq. 38; kSC1 from Eq. 12; kSC3 from Eq. 19; k is the exact result defined

by Eq. 5. In the third column, kpb+h is used above the crossover

temperature and kSC1 below. Atomic units are used and powers of ten

are given in parentheses.

β kTST kpb+h or kSC1 kSC3 k

100 2.6(−4) 2.6(−4) 2.6(−4) 2.7(−4)
250 1.6(−5) 1.8(−5) 1.8(−5) 1.9(−5)
500 2.2(−7) 4.3(−7) 3.8(−7) 4.2(−7)
840 8.5(−10) 7.1(−8) 4.5(−9) 5.2(−9)
860 6.1(−10) 7.9(−9) 3.5(−9) 4.1(−9)

1000 6.4(−11) 1.1(−9) 7.8(−10) 9.3(−10)
1500 2.1(−14) 1.7(−11) 1.7(−11) 2.0(−11)
2000 7.4(−18) 1.9(−12) 1.9(−12) 2.3(−12)

6 Discussion

We have shown that instanton theory is a powerful technique for

studying chemical reactions and is one of the few approximate

methods which gives the exact rate in the limiting case of a high

and wide barrier. Knowledge of the new first-principles derivation

has been used to extend the method beyond its former capabilities

and define an accurate microcanonical rate theory which can be

numerically integrated to give a thermal rate at any temperature.

This avoids the discontinuity problem at the crossover tempera-

ture without significantly changing the computational algorithms

required for implementation of the instanton approach.

A nice consequence of the new SC3 approach is that the data

obtained by each instanton calculation is used to compute the

thermal rate. In contrast, the standard SC1 approach throws

away the information from all but one instanton.

The microcanonical instanton formulation opens the possibility

of studying reactions initiated from certain non-equilibrium con-

ditions. It could also be weighted by more general distributions

than the Boltzmann distribution to give non-thermal rates.

Some of the new formulae given in this paper are similar, al-

though not equivalent, to expressions suggested in previous work.

In particular Chapman, Garret and Miller2 recognized the prob-

lems with PSC1(E) in multidimensional systems and corrected it

by replacing terms of the form Eq. 22 with Eq. 21. It is good to see

that a similar transformation can be achieved more rigorously us-

ing an extension of the usual steepest-descent integration. Kryvo-

huz27 has also suggested an instanton method which can avoid

the problems of the thermal rate near the crossover temperature.

This was done by truncating the steepest-descent integral over

energy at the barrier top to give an error function. Above the

crossover temperature, an alternative formula was used. This was

first derived by Cao and Voth47 from a fourth-order expansion of

the potential about the barrier top.

Of course, instanton theory cannot be applied directly to chemi-

cal reactions in solution, as in these systems, too many imaginary-

time classical trajectories contribute. For such studies, path-

integral methods such as RPMD37 are obviously more appropri-

ate. However, it is only through the underlying instanton theory

that we fully understand how the RPMD approach works14 and

will be able to find ways of extending it to new problems.

The first-principles derivation of instanton theory makes it clear

that only the imaginary-time trajectories which bounce are able to

contribute to the imaginary part of the Green’s function and hence

to the rate. It is the fact that we need to only sample bouncing

trajectories which makes accurate path-integral transition-state

theories difficult to define. The optimum dividing surface chosen

by RPTST is devised to bias towards ring-polymer configurations

which are stretched and thus contribute to Im Ĝ. The quantum in-

stanton approach68,69 utilizes two dividing surfaces for the same

reason—because it is necessary to ensure that the sampled con-

figurations are stretched. This was not necessary for the semi-

classical instanton, where it is easier to categorize trajectories as

direct or bouncing and thus to keep only the relevant parts. If we

are to develop new path-integral rate theories based on sampling

ring polymers, it will be necessary to find a way of sampling only

the correct configurations which contribute to Im Ĝ. Work is in

progress in this area.
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Appendix: Semiclassical rate above the bar-

rier

To show the universality of the semiclassical Green’s function ap-

proach, the rate over the barrier will be derived in this way. For

simplicity, we take a one-dimensional system and choose two di-

viding surfaces σa(x) = x−xa and σb(x) = x−xb with xa < xb. The

exact microcanonical cumulative reaction probability can be de-

fined by52

P(E) =
h̄4

m2

[

∂ 2ImG(xa,xb,E)

∂xa∂xb

ImG(xa,xb,E)

−∂ ImG(xa,xb,E)

∂xa

∂ ImG(xa,xb,E)

∂xb

]

. (39)

Assuming that E is larger than the barrier height, the semiclas-

sical approximation to the Green’s functions is found using the

direct real-time trajectory between xa and xb.38

ImG(xa,xb,E)∼−1

h̄

√

m2

p(xa)p(xb)
cos(W/h̄), h̄ → 0, (40)

where W =
∫ xb

xa
p(x)dx and p(x) =

√

2m[E −V (x)].

Therefore the semiclassical approximation to the cumulative

reaction probability above the barrier is

P(E)∼ h̄2

p(xa)p(xb)

[

p(xa)p(xb)

h̄2
cos(W/h̄)cos(W/h̄)

+
p(xa)

h̄
sin(W/h̄)

p(xb)

h̄
sin(W/h̄)

]

= 1, h̄ → 0, (41)

which is of course the correct result of classical mechanics.

Wigner’s quantum correction to the thermal rate70 is written

as a series in powers of h̄, where the first term is the classical

rate. The semiclassical method includes no tunnelling corrections
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above the barrier because it only returns the leading-order term.

Only below the barrier, where the classical rate is zero, does the

leading-order term include tunnelling. In Eq. 17, the SC3 result

is improved using the exact result for the parabolic barrier which

includes all terms.

A full semiclassical study of the multidimensional problem

above the barrier would involve a search for real-time periodic

trajectories in a similar way to Gutzwiller’s trace formalism.55

These can travel perpendicular to the reaction coordinate and be

very long, complicated and chaotic, making the method more in-

volved than a standard instanton calculation. We therefore con-

tent ourselves with using the exact result for the parabolic barrier

with perpendicular harmonic modes in all cases. By doing this,

we have effectively made a harmonic approximation to the per-

pendicular coordinates. This separable approximation is not ap-

propriate below the barrier, where the instanton provides a better

description,71 but leads to the Eyring TST formula67 at high tem-

peratures, which is often an acceptable approximation in these

limits.
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E

V ‡
σ< 0 σ> 0

V (x)

x
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