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The intrinsic rate constants in diffusion-influenced

reactions†

Adithya Vijaykumar∗a,b, Peter G. Bolhuis,b and Pieter Rein ten Woldea

Intrinsic rate constants play a dominant role in the theory of diffusion-

influenced reactions, but usually as abstract quantities that are implicitly

assumed to be known. However, recently it has become clear that mod-

eling complex processes requires explicit knowledge of these intrinsic

rates. In this paper we provide microscopic expressions for the intrinsic

rate constants for association and dissociation processes of isotropically

interacting particles and illustrate how these rates can be computed using

rare event simulations techniques. In addition, we address the role of the

orientational dynamics, for particles interacting via anisotropic potentials.
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1 Introduction

The association and dissociation of two particles are elementary steps in many processes in biology,

such as receptor-ligand and enzyme-substrate binding in cell signaling, and protein-DNA binding in

gene regulation. Also in materials science association and dissociation play a central role, e.g. in

the self-assembly of colloidal particles, the formation of micro-emulsions, or the phase behavior of

polymer solutions. In these processes, the particles typically come into contact via diffusion, after

which they bind with a rate that depends on the intrinsic association rate constant; conversely, the

associated particles dissociate with an intrinsic dissociation rate, after which they move apart via

diffusion.

In the past decades, theories of diffusion-influenced reactions have been developed that show how

the effective rate constants depend on the diffusion constants of the particles, their cross section,

their interaction potential, and the intrinsic association and dissociation rate constants1. However,

these theories assume a priori given intrinsic association and dissociation rate constants. Similarly,

techniques to simulate networks of chemical reactions have been developed, in which the particles

typically have an idealized shape, move by diffusion, and react upon contact with given intrinsic rate

constants2–7. In parallel, simulation techniques have been developed that enable the calculation of

association and dissociation rate constants for pairs of particles that interact via potentially complex

interaction potentials8,9. Yet, these techniques typically compute effective rate constants, which result

from the combined effects of diffusion, the interaction potential, and binding upon contact. More-

over, also in experiments typically the effective rate constants are measured. How the intrinsic rate

constants depend on the interaction potential, the cross section, and the diffusion constants of the

particles, has thus received little attention.

In general, an association-dissociation reaction is a complicated non-Markovian many-body problem

that cannot be solved analytically. The reason is that the process of binding generates non-trivial

spatio-temporal correlations between the positions of the reactants, which depend on the history of

the association and dissociation events. Capturing these correlations requires knowledge of not only

the diffusion constants, the interaction potential, and the cross section, but also the intrinsic rate

constants.

In dilute systems, however, typically only the effective rate constants are needed to describe the

system’s dynamics at long times10,11. When the concentrations are low, the time it takes for two

reactants to meet each other is much longer than the time they spend in close proximity: once the

reactants are near each other, they either rapidly bind or rapidly diffuse back into the bulk. Similarly,

after a dissociation event, the two reactants either quickly rebind or rapidly move away from each

other. Under these conditions, it is often possible to integrate out the dynamics at the molecular scale,

and describe the association-dissociation reaction as a Markovian process with effective association

and dissociation rates10,11. While these effective rates depend on the intrinsic rate constants, only the

effective rate constants determine the dynamics at the relevant length and time scales10,11.

Yet, is now clear that even in dilute systems, spatio-temporal correlations at the molecular scale can
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dramatically change the behavior of the system at the macroscopic scale4,12. In the case of multi-site

protein modification, enzyme-substrate rebindings can lead to the loss of ultra-sensitivity and even bi-

stability, essentially because rebindings can turn a distributive mechanism into a processive one4,12.

In such a scenario, even the long-time dynamics cannot be described by effective rate constants: one

needs to know the diffusion constants, the cross sections, and the intrinsic rate constants. Moreover,

while spatial heterogeneity at the molecular scale can arise from these non-trivial spatio-temporal

correlations, in cellular systems microscopic heterogeneity is also imposed via molecular structures.

In fact, it is now becoming increasingly recognized that cells exploit the spatial heterogeneity of

micro-domains, lipid rafts, clusters, and scaffolds as a computational degree of freedom for enhancing

information transmission13,14. Modeling the reactions in these spatially heterogeneous systems often

requires knowledge of the intrinsic rate constants. Last but not least, for simulating association and

dissociation reactions in 1D and 2D, knowledge of the intrinsic rate constants is even more pertinent,

because no well-defined effective rate constant exists in the long-time limit.

In this manuscript, we provide microscopic expressions for the intrinsic rate constants, and illus-

trate how these expressions can be used to compute rate constants in rare-event simulation techniques

such as Transition Interface Sampling (TIS)15–17 and Forward Flux Sampling (FFS)18,19. While com-

puting both the forward and backward rate typically requires two separate simulations, we will show

how, by exploiting analytical expressions for the binding and escape probability, both the association

and dissociation rate constants (and hence the equilibrium constant) can be obtained in one single

simulation. We discuss the relationship with the technique developed by Northrup and coworkers8

for computing effective association rates. Finally, we address the role of orientational dynamics in

association and dissociation reactions.

2 Theory of diffusion-influenced reactions

We consider two particles A and B that interact via an isotropic interaction potential U(r), and move

with an interparticle diffusion constant D = DA+DB, where DA and DB are the diffusion constants of A

and B, respectively. Upon contact at the interparticle distance σ , the particles can associate with a rate

that is determined by the intrinsic associate rate constant ka, and, when bound, the two can dissociate

with an intrinsic dissociation rate kd. Following the work of Agmon and Szabo1, we rederive in the

appendix the following central results. The effective association rate constant is given by

kon =
ka peq(σ)kD

ka peq(σ)+ kD

= [1−Srad(t → ∞|σ)]kD. (1)

Here, kD is the diffusion-limited rate constant, which determines the rate at which the two particles

diffuse towards each other, and peq(σ) ≃ e−βU(σ), with β = 1/(kBT ) the inverse temperature, is the

equilibrium probability that they are at the distance σ . The survival probability Srad(t → ∞|σ) =

kD/(ka peq(σ)+ kD) is the probability that the two particles, given that they are at contact, escape into

the bulk before binding to each other. Hence the effective association rate is given by the rate at which

the two particles get in contact, which is determined by kD, and the probability 1− Srad(t → ∞|σ) =

ka peq(σ)/(ka peq(σ)+ kD) that upon contact, they bind.
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The effective dissociation rate is given by

koff =
kdkD

ka peq(σ)+ kD

= kdSrad(t → ∞|σ). (2)

The effective dissociation rate is thus given by the dissociation rate kd times the probability Srad(t →
∞|σ)= kD/(ka peq(σ)+kD) that the particles upon dissociation diffuse away from each other and escape

into the bulk.

It can also be verified that the equilibrium constant is given by

Keq =
ka peq(σ)

kd

=
kon

koff

. (3)

At this stage, a few points are worthy of note. First, these results hold for isotropic, but otherwise

arbitrary interaction potentials U(r). Secondly, the contact distance σ serves to define the dividing

surface that separates the bound from the unbound state. This surface is usually taken to be near

the free-energy barrier that separates the bound from the unbound state. The precise location of this

dividing surface is somewhat arbitrary, as the effective rate constants can by definition not depend

on the choice made for σ . This is in marked contrast to the intrinsic rate constants ka and kd and

the diffusion-limited rate kD, which all sensitively depend on σ . Thirdly, the diffusion-limited rate

constant depends not only on σ and D, but also on the interaction potential U(r). For arbitrary

interaction potentials U(r), no analytical expression for kD is, in general, available. However, when

σ is chosen to be beyond the range rc of the interaction potential, then an exact expression is well

known—the Smoluchowski diffusion-limited reaction rate constant20:

kD = 4πσD. (4)

Moreover, when σ > rc, then U(σ) = 0, and peq(σ) = 1 In this scenario, the effective rate constants

are given by:

kon =
ka(σ)kD(σ)

ka(σ)+ kD(σ)
(5)

koff =
kd(σ)kD(σ)

ka(σ)+ kD(σ)
. (6)

Here, and below, we have written ka = ka(σ), kd = kd(σ) and kD = kD(σ) to remind ourselves that these

rate constants, in contrast to the effective rate constants kon and koff, depend on our choice for σ .

3 Effective positive flux expression

To obtain the intrinsic rate constants in computer simulations, we need expressions in terms of micro-

scopic quantities that can be measured in the simulation. We will focus on the dissociation pathway,

and the dissociation rate koff. To compute this rate, we use the “effective positive flux” expression of

van Erp and coworkers15–17. The progress of the dissociation reaction is quantified via a parameter

λ (r), which depends on the separation r between the particles A and B. For simplicity, we use λ = r

A series of interfaces is chosen, r0,r1, . . . ,rn−1,rn, such that r0 is deep in the bound state and rn is in
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the unbound state. Strictly speaking the unbound state is defined by rn → ∞, a point to which we will

return in the next section. Defining the history-dependent functions indicator hB and hU such that

hB = 1 and hU = 0 if the system was more recently in the bound state B (r < r0) than in the unbound

state U (r > rn), and hB = 0 and hU = 1 otherwise, the rate constant koff for transitions from B to U is

given by15

koff =
ΦB,n

hB

=
ΦB,0

hB

P(rn|r0). (7)

Here, ΦB, j is the flux of trajectories coming from the bound state B (with r < r0) that cross r j for

the first time; thus, ΦB,n is the flux of trajectories from the bound state towards the unbound state,

r > rn, and ΦB,0 is the flux reaching the first interface r0. The factor hB is the average fraction of time

that the system spends in the bound state B. P(rn|r0) is the probability that a trajectory that reaches

r0 subsequently arrives at interface rn instead of returning to the bound state r0. The expression

thus states that the total flux of trajectories from the bound state to the unbound state is the flux of

trajectories from B to r0 multiplied by the probability that such a trajectory will later reach rn before

returning to r0. P(rn|r0) can be expressed as the product of the probabilities P(ri+1|ri) that a trajectory

that comes from r0 and crosses ri for the first time will subsequently reach ri+1 instead of returning to

r0:

P(rn|r0) =
n−1

∏
i=0

P(ri+1|ri). (8)

Combining Eqs. 7 and 8, the effective dissociation rate can thus be expressed as

koff =
ΦB,0

hB

n−1

∏
i=0

P(ri+1|ri). (9)

The individual factors P(ri+1|ri) can be determined in a Transition Interface Sampling15 (TIS) or a

Forward Flux Sampling18,19 (FFS) simulation, as the fraction of trajectories crossing the interface ri

that reach the interface ri+1 instead of returning to r0. FFS and TIS are both based on the effective

positive flux expression, Eq. 7, but differ in the way they construct the path ensembles.

4 Intrinsic dissociation rate and effective positive flux

To obtain a microscopic expression for the intrinsic dissociation rate kd, we rewrite Eq. 9 as

koff =
ΦB,0

hB

P(rn′ |r0)P(rn|rn′), (10)
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where P(r′n|r0) = ∏
n′−1
i=0 P(ri+1|ri) and P(rn|rn′) = ∏

n−1
i=n′ P(ri+1|ri). Now, the crux is to define rn′ = σ .

Comparing Eq. 10 with Eq. 2, we can then make the following identifications:

kd(σ) =
ΦB,0

hB

P(σ |r0) (11)

Srad(t → ∞|σ) =
kD(σ)

ka peq(σ)+ kD(σ)
= P(rn|σ) (12)

Eq. 11 provides a microscopic expression for the intrinsic dissociation rate, and is one of the central

results of this paper. It shows that the intrinsic dissociation rate is the flux of trajectories that come

from the bound state and cross the dividing surface rn′ = σ . The expression makes explicit that the

intrinsic dissociation rate depends on the choice for σ . Also Eq. 12 highlights the idea that not only

the intrinsic rates, but also the diffusion-limited rate kD depends on this choice. We further iterate

that σ need not be chosen beyond the interaction range of the potential; the expressions hold for any

choice of σ .

The microscopic expressions of Eqs. 11 and 12 make it possible to obtain both the effective disso-

ciation rate koff and the intrinsic dissociation rate kd from computer simulations. Again, Transition

Interface Sampling15 and Forward Flux Sampling18,19 are particularly well suited, because they are

both based on the effective positive flux expression, Eq. 7.

In fact, by choosing the cross-section σ beyond the range rc of the interaction potential, it is possible

to obtain from one simulation not only the intrinsic dissociation rate kd and effective dissociation

rate koff, but also the intrinsic association rate ka and effective association rate kon, and hence the

equilibrium constant Keq. One TIS/FFS simulation yields both kd, from Eq. 11, and P(rn|σ) = Srad(t →
∞|σ), from Eq. 12. Yet, when σ > rc (and U(σ) = 0), we know that the latter is also given by

P(rn|σ) = Srad(t → ∞|σ) =
kD(σ)

ka(σ)+ kD(σ)
, (13)

with kD = 4πσD, as discussed in section 2. In other words, having computed P(rn|σ) in the TIS/FFS

simulation, we can use the above expression and the analytical solution kD = 4πσD, to obtain not only

kd but also ka:

ka(σ) =
(1−P(rn|σ))kD(σ)

P(rn|σ)
. (14)

From kd and ka, we obtain the equilibrium constant Keq = ka/kd, from which we then find kon = Keqkoff.

As pointed out above, the effective rates are strictly defined for rn → ∞, meaning that Eqs. 11 and 14

are also only valid in that limit. However, to keep the simulations tractable, in practice one would

like to use an interface at finite rn. In the next section we derive an expression that holds for finite

interface values rn.

5 Computing the intrinsic rates for an interface at finite rn

While the intrinsic association rate constant kd does not rely on taking the position of the last interface

rn → ∞, the intrinsic rate constant ka does (see Eq. 14). To obtain an expression for ka for a finite value
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of rn, we start by rewriting the effective association rate Eq. 6 as the sum of reciprocal intrinsic rates:

1

kon
=

1

ka(σ)
+

1

kD(σ)
. (15)

Since the effective association rates are independent on the choice of the dividing surface σ , we can

choose to set the dividing surface at rn > σ

1

kon
=

1

ka(rn)
+

1

kD(rn)
. (16)

Combining the above two equations and rearranging yields

1

ka(rn)
− 1

ka(σ)
=

1

kD(σ)
− 1

kD(rn)
. (17)

To make progress we need to relate the intrinsic rate constants ka(σ) and ka(rn). This relation is

provided by linking the intrinsic dissociation rates, Eq. 11 at the respective surfaces, yielding

kd(rn) =
ΦB,0

hB

P(rn|r0) =
ΦB,0

hB

P(σ |r0)P(rn|σ) = kd(σ)P(rn|σ). (18)

Since detailed balance implies Keq = ka(σ)/kd(σ) = ka(rn)/kd(rn), the desired relation for the intrinsic

association rate constants is

ka(rn) = ka(σ)P(rn|σ). (19)

Inserting Eq. 19 into Eq. 17 and rearranging yields

ka(σ) =
(1−P(rn|σ))kD(σ)

P(rn|σ)(1−Ω)
, (20)

where Ω ≡ kD(σ)/kD(rn), which using kD(b) = 4πσb, reduces to Ω = σ/rn. Eq. 20 provides an explicit

expression for the intrinsic association rate ka for finite rn, featuring a correction factor 1/(1−Ω).

For rn → ∞, Ω vanishes and the expression reduces to Eq. 14. However, the correction factor decays

slowly with rn, and in practice it cannot be neglected. Since Ω is known analytically, Eq. 20 turns

this approach into a feasible strategy for computing both kd and ka in TIS and FFS, which directly

give access to P(rn|σ). Lastly, combining this expression with Eqs. 5 and 6, we obtain the following

expressions for the effective on and off rates, respectively:

kon =
(1−P(rn|σ))kD(σ)

1−P(rn|σ)Ω
, (21)

koff = kd(σ)P(rn|σ)
1−Ω

1−P(rn|σ)Ω
. (22)
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Fig. 1 The intrinsic rate constant for the isotropic Lennard-Jones potential. Left: ka(σ) as a function of the

position of last interface, rn in units of kD(σ), for a fixed cross section σ = 3σLJ. The correction factor 1
1−Ω

and the factor (1−P(rn|σ))/P(rn|σ) are also shown. As expected the value of ka(σ) remains constant as rn is

varied. Right: ka(σ) and kon as a function of the cross section σ . The position of the last interface, rn, is kept

constant at 6.5σLJ. It is seen that while ka varies with σ , kon does not.

5.1 Illustrative example

As an illustration of the above scheme we numerically evaluated Eq. 20 for a two particle system

undergoing Brownian dynamics (BD). The interaction potential between the two particles is given by

u(r) =







4ε
[

(σLJ

r

)12 −
(σLJ

r

)6
]

, 0 < r < 3σLJ

0, r > 3σLJ,
(23)

where σLJ sets the length-scale of the Lennard-Jones potential, ε sets the well depth, and r is the

interparticle distance. In the simulations σLJ = 5nm, ε = 10kBT. The length of the simulation

box is 60σLJ. We evaluate kd(σ) and P(rn|σ) using one single FFS simulation. First, we fix the

cross section σ = 3σLJ, just beyond the cut-off distance of the potential. Interfaces were set at

r = {1.3,1.5,2.0,2.5,3.0,3.2,3.4,3.6,3.8,4.0,4.2,4.4,4.6,4.8,5.0,5.5,6.0,6.5}, in units of σLJ. From each

interface, 10000 trajectories are started and the conditional probability as in Eq. 8 is calculated.

We test the independence of Eq. 20 on the location of the final interface by varying rn, while keeping

σ = 3.0σLJ fixed. As seen in Fig. 1(left) the value of ka(σ) is independent of the position of the rn

surface. Note, however, that the correction factor 1/(1−Ω) is not negligible, even for rn = 6.5σLJ.

Next, we plot in Fig. 1(right) the dependence of the intrinsic association rate ka(σ) on the location

of the cross section σ , keeping rn = 6.5σLJ constant. The intrinsic association rate constant decreases

with σ , but the effective rate constant kon is independent of σ , as expected.

The intrinsic dissociation rate kd(σ) is evaluated via Eq. 11. From kd(σ) and ka(σ), the values of kon

and koff, are evaluated using Eq. 5 and Eq. 6. Keq is calculated using Eq. 3. The results are summarized

in Table 1.

8 | 1–22

Page 8 of 22Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



5.2 Validation of the effective rate constants

To validate the values of kon and koff obtained from the FFS simulations, we calculate these values

also from a brute force Brownian Dynamics simulation of the same system of two particles. First, the

equilibrium constant Keq is evaluated using the analytic expression

Keq = 4π

∫ 3σLJ

0
r2e−βu(r)dr =

kon

koff

, (24)

where u(r) is given by Eq. 23, and the integral is over the bound state 0 < r < 3σLJ.

The brute force simulation generates a time trace n(t), switching from the bound state with n(t) = 1

to the unbound state with n(t) = 0. From this time trace we generate a time autocorrelation function

c(τ) =
〈n(τ)n(0)〉
〈n(0)2〉 ≈ e−µτ , (25)

that relaxes exponentially with a decay constant µ given by

µ = kon/V + koff. (26)

Fig. 2 shows this time autocorrelation function. The simulation results are fitted to Eq. 25 to obtain

the value of µ and by combining with Eqs. 24 and 26, the effective rate constants are obtained.

Alternatively, we can generate a power spectrum P(ω) from the same n(t) time trace10. The power

spectrum for a random telegraph process with switching rates k f and kb is given by

P(ω) =
2µ p(1− p)

µ2 +ω2
, (27)

where ω is the frequency, µ = k f +kb is the decay rate and p = k f /(k f +kb). The low-frequency part of

the power spectrum as obtained from the simulations is expected to be given by the above expression,

with k f = kon/V and kb = koff (see Ref.10). Table 1 compares the values of kon and koff as obtained

via this scheme, with those from FFS, using Eq. 3 and Eqs. 18–22, and the results from the time

auto-correlation function, Eqs. 25 and 26. It is seen that the values are in very good agreement.

Keq[10−3µm3] kon[
µm3

s
] koff[

1
s
]

FFS 5.127 0.2417 47.14

Time autocorrelation 5.145 0.2589 50.33

Power Spectrum 5.145 0.2571 49.99

Table 1 Comparison of the effective rate constants as determined via different approaches: FFS, using Eq. 3

and Eqs. 18–22; the autocorrelation function, Eqs. 25 and 26; the power spectrum, Eq. 27. The table shows

good agreement between the values of kon and koff, and hence Keq, obtained via these different approaches.
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Simulation results

Fig. 2 Left: The autocorrelation function c(τ) obtained from simulation is fit to Eq. 25, yielding µ = 59.9236s−1.

Right: Power spectrum P(ω) fitted to Eq. 27 to determine the value of µ = 59.5192s−1. In both cases the

effective rate constants are calculated by solving Eq. 26 and Eq. 24.

6 Relation to other techniques

Northrup et al.8,21 provide a method to compute the effective association rate directly from Eq. 1

kon = [1−Srad(t → ∞|σ)]kD(σ)≡ β∞kD(σ), (28)

where β∞ = 1−Srad(t → ∞|σ) is defined as the probability that particles starting at a distance σ asso-

ciate rather than diffuse away and escape into the bulk. This probability can be computed explicitly

by generating trajectories from an isotropically distributed ensemble of configurations of particles at

distance σ . To prevent needlessly long trajectories, Northrup et al. introduced an additional surface c

at which they halt the trajectories. The computed association probability β 6= β∞ is now defined as the

chance to associate rather than to escape to c. They then relate β to β∞ using a branching method,

adding up all probabilities of paths that leave c but return to σ rather than reach infinity21, yielding

a geometric series that can be written as

β∞ =
β

1− (1−β )Ω
, (29)

where Ω= kD(σ)/kD(c) = σ/c. As the association probability β∞ is related to the intrinsic rate constant

through β∞ = ka(σ)/(ka(σ)+ kD(σ)), it follows that

ka(σ) =
βkD(σ)

(1−β )(1−Ω)
. (30)
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The link with the intrinsic rate constant expression Eq. 20 can be made by realizing that the association

probability β = 1−P(c|σ), leading to

ka(σ) =
(1−P(c|σ))kD(σ)

P(c|σ)(1−Ω)
. (31)

This expression is identical to Eq. 20, with c = rn. Strikingly, while derived in a different way, the in-

trinsic rate expression based on the Northrup method yields the same correction factor as our analysis

for finite interfaces.

7 Anisotropic interactions

The above derivations hold for particles interacting via an isotropic pair potential. However, many

molecular systems, such as proteins and ligands, have anisotropic interactions that depend on the

relative orientation of the particles. For such systems it is not immediately clear whether the expres-

sions derived above are still valid. The point is that while the Boltzmann distribution of the particles’

orientations is isotropic beyond the cutoff distance of the potential, the distribution in the ensemble

of reactive trajectories, as harvested by TIS and FFS, is not: in these reactive trajectories, the particles

tend to have their patches aligned. Naturally, one can still define and measure an effective association

and dissociation rate. Yet, the simple expressions derived in the appendix are no longer valid.

Following Northrup et al.8,21, one can always express the effective association rate for anisotropic

particles as

kon = β∞kD(σ), (32)

where the diffusion-limited rate constant is again kD(σ) = 4πDσ , and β∞ is given by Eq. 29. Now, we

define the intrinsic rate ka(σ) via β∞ ≡ ka(σ)/(ka(σ)+ kD(σ)), which yields

ka(σ) =
βkD(σ)

(1−β )(1−Ω)
, (33)

with Ω, as before, given by Ω = kD(σ)/kD(c). This yields an explicit expression for ka(σ) in terms of

the probability β of binding rather than reaching the surface rn = c, starting from an isotropic dis-

tribution at the surface σ ; this is indeed the essence of the technique of Northrup et al.21. When

the distribution as generated in the TIS/FFS simulation is isotropic at σ , then Eqs. 20 and 33 with

β = 1−P(rn|σ) are equivalent and both can be used. The problem arises when we want to connect

Eq. 33 to the expression used in TIS/FFS to compute the dissociation rate in the case that the distri-

bution at σ is not isotropic. The principal idea of the scheme presented in sections 4 and 5 is that

P(rn|σ), as obtained in a TIS/FFS computation of the dissociation rate, is given by the analytical result

kD(σ)/(ka(σ)+ kD), for rn → ∞. We could thus use this analytical result to obtain the intrinsic rate

ka(σ) in Eqs. 13 and 14; the expression that relates P(rn|σ) to ka(σ) when rn is finite, is Eq. 20. How-

ever, in the case of anisotropic interaction potentials the distribution of reactive trajectories at the σ

interface can also become anisotropic. In that case one can no longer identify P(rn|σ) as obtained in

an TIS/FFS simulation with 1−β in Eq. 33, and Eq. 20 or Eq. 33 cannot be used to obtain ka(σ) from

a TIS/FFS simulation. In summary, when the distribution at σ as obtained in the TIS/FFS simulation
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is isotropic, we expect both Eq. 33 and Eq. 20 to hold. However, if the distribution is not isotropic

Eq. 20 ceases to be valid.

Nevertheless, even when the potential is anisotropic, Eq. 20 still provides a route towards comput-

ing ka(σ). Indeed, if at a certain interface σ ′ sufficiently far away from contact the distribution of

trajectories has become uniform, the intrinsic rate for that surface is given by Eq. 20

ka(σ
′) =

(1−P(rn|σ ′))kD(σ
′)

P(rn|σ ′)(1−Ω)
, (34)

where Ω= kD(σ
′)/kD(rn), and rn >σ ′. Since we know that the effective association rate is independent

on the choice of the dividing surface, we can write

1

kon
=

1

ka(σ)
+

1

kD(σ)
=

1

ka(σ ′)
+

1

kD(σ ′)
, (35)

even if the distribution at σ is anisotropic. Inserting Eq. 34 into this identity gives

1

ka(σ)
=

P(rn|σ ′)(1−Ω)

(1−P(rn|σ ′))kD(σ ′)
+

1

kD(σ ′)
− 1

kD(σ)
, (36)

or, rearranging,

ka(σ) =
(1−P(rn|σ ′))kD(σ

′)kD(σ)

P(rn|σ ′)(kD(σ ′)− kD(σ)Ω)+ kD(σ)− kD(σ ′)
. (37)

This expression reduces reduces to Eq. 20 when σ = σ ′, as expected. For σ 6= σ ′, the expression

holds even when the distribution at σ is anisotropic, provided that the distribution at σ ′ is isotropic.

The value of ka(σ) thus obtained via a TIS/FFS computation of the dissociation pathway, yielding an

anisotropic distribution at σ , is the same as that would have been obtained from a simulation of the

association pathway via the Northrup scheme starting from a uniform distribution at σ .

Inserting Eq. 36 into Eq. 35 yields

kon =
(1−P(rn|σ ′))kD(σ

′)
1−ΩP(rn|σ ′)

, (38)

which is indeed identical to Eq. 21 with σ = σ ′. Since kon is independent of the interface σ ′, the rate

given by Eq. 38 as a function of σ ′ should reach a constant value. Any deviation from this limiting

value is due to a loss of isotropy. Hence, this expression provides a criterion for testing the isotropy

requirement.

7.1 Illustrative example

We consider a system comprising of two patchy particles interacting via a pair potential that consists of

several contributions. The particles interact via a center-center potential Vcc(r) = Vcc-rep(r)+Vcc-att(r)

based on the distance r between the centers of mass, that is in turn built up from a repulsive and an

attractive potential. Additionally, there is an attractive patch-patch pair interaction Vpp(δ ) based on

the distance δ between two points (patches) located on either particle’s surface. Fig. 3 illustrates this
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Fig. 3 The anisotropic interaction potential. Top left: The particles interact via a combination of a center-center

potential Vcc(r) and a patch-patch attraction Vpp(δ ) between the small patches on the surface of the particle.

Top right: Total interaction potential Vcc(r)+Vpp(r− d) for two particles with perfectly aligned complementary

patches (orange solid curve), and oppositely aligned patches Vcc(r)+Vpp(r+d) (dark green curve). The exis-

tence of patches introduces a strongly attractive bound state with the aligned particles in close contact. Bottom

left: Heat map of the potential as a function of the distance between centres of mass r and the angle between

the patch vector and inter-particle vector, θ1 and θ2 (see also top left) with θ1 = θ2 Bottom right: Heat map

of potential as a function of θ1,θ2 given r = 1.1d. Note the relatively narrow range of orientations over which

strong bonding occurs.
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setup. The total pair interaction potential is thus

V (r,δ ) =Vcc-rep(r)+Vcc-att(r)+Vpp(δ ). (39)

Note that δ implicitly depends on the location of the patch, and hence on the orientation of the

particle. The potential Vcc-rep(r), Vcc-att(r) and Vpp(δ ) have the simple quadratic form

Vi(x) =















εi(1−ai

(

x
d

)2
) if x < x⋆i ,

εibi(
xc

i

d
− x

d
)2 if x⋆i < x < xc

i ,

0 otherwise.

(40)

where the index i refers to one of the labels {cc-rep, cc-att, pp }, and d is the particle diameter and sets

the length scale. The overall strength εi, the stiffness ai and the parameter x⋆i , which combined with ai

determines the range of the potential, are free parameters. Cut-offs xc
i and smoothing parameters bi

are fixed by requiring continuity and differentiability at x∗i . These potentials give us a firm control over

the potential shape, and allow for easy integration with potentials that are short-ranged and highly

orientation-specific. For our illustrative purposes, we take the following parameters: εcc-rep = 100kBT ,

acc-rep = 1 and R∗
cc-rep = 0.85d, implying bcc-rep = 2.6036 and Rc

cc-rep = 1.1764d; εpp = 20kBT , app = 20

and r∗pp = 0.1d, implying bpp = 5 and rc
pp = 0.5d; and εcc-att = 10kBT , acc-att = 1 and R∗

cc-att = 0.85d,

implying bcc-rep = 2.6036 and Rc
cc-rep = 1.1764d .

As an illustration we plot in Fig. 3 the total inter-particle potential as a function of r when the two

complementary patches are aligned to face each other, so that δ = r−d. A narrow attractive well arises

when the two particles are in close contact. In the same plot we also give the inter-particle potential as

a function of r when the two complementary patches are oppositely aligned (with the patches facing

in opposite directions) so that δ = r + d. Here, there is only a very shallow attractive interaction

at contact, caused by the isotropic center-center potential Vcc(r). In Fig. 3 we also demonstrate the

orientational dependence of the attractive potential, showing that the attractive interaction is highly

sensitive to misalignment.

A Brownian Dynamics (BD) simulation employing an anisotropic potential requires translation as

well rotational dynamics. We use a second order quasi-symplectic BD integrator which works par-

ticularly well for orientational dynamics22, and can be straightforwardly combined with FFS. We

performed an FFS simulation, with interfaces based on the binding energy when the particles are

within the range of the potential23, and beyond that with interfaces based on the center-to-center

distance r: r = {1.5,1.6,1.8,2.0,2.2,2.4,2.6,2.8,3.0,3.5,5.5,6.5,7.5} in units of d. From each interface,

10000 trajectories are started, and the conditional probability as in Eq. 8 is calculated.

To illustrate that Eq. 20 does not hold when the distribution at σ is not isotropic, we evaluated

ka(σ) using this equation for a fixed cross section σ = 1.5d, see Fig. 4. The range of the anisotropic

interaction potential depends on the orientation, but even when the patches are aligned (and the

range is maximal), the potential approaches zero beyond 1.5d (see Fig. 3); this is indeed why we have

chosen the cross-section to be σ = 1.5d. Fig. 4 shows ka(σ) as a function of the position of the last

interface, rn. It also shows the factors 1/(1−Ω) = 1/(1−σ ′/rn) and 1−P(rn|σ ′)/P(rn|σ ′), which both

depend on rn. However, while for the isotropic potential, ka(σ) is independent of rn as long as σ (and

14 | 1–22

Page 14 of 22Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



2 3 4 5 6 7 8

0

1

2

3

4

Position of the rn surface [d]

1
1−Ω

1−P(rn|σ)
P(rn|σ)

ka [kD]

Fig. 4 The intrinsic rate constant ka(σ) from Eq. 20 (in units of kD(σ)) as a function of the position of the

last interface, rn, for the anisotropic interaction potential shown in Fig. 3. The cross section σ surface is kept

constant at 1.5d. The correction factor 1/(1−Ω) = 1/(1−σ ′/rn) and the factor (1−P(rn|σ ′))/P(rn|σ ′) are also

shown. In contrast to the behavior for the isotropic potential, Fig. 1, the value of ka(σ) depends on rn, even

when rn is beyond the range of the potential r > σ = 1.5d. This is because for this anisotropic potential the

distribution at σ is not uniform. As a result, Eq. 20 cannot be used.
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Fig. 5 The effective and intrinsic association rates for the anisotropic potential of Fig. 3. Left: Effective

association rate kon, computed via Eq. 38, as a function of the position of the σ ′ surface, with the position of

the last surface fixed at rn = 7.5d. The value of kon is constant for σ ′ ≥ 3d, indicating that at and beyond this

surface the particles are isotropically distributed. Right: The intrinsic rate constant ka(σ), computed via Eq. 37,

as a function of the cross section σ for different positions of the σ ′ surface, with the position of the last interface

fixed at rn = 7.5d. The curves for σ ′ = 3.0, 3.5, 5.5, 6.5 overlap since the distribution of particles beyond this

distance has become isotropic. For these values of σ ′, ka(σ) as a function of σ can be obtained.
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rn) are beyond the range of the interaction potential (see Fig. 1), here this is not the case, because the

distribution at σ is not isotropic. This shows that Eq. 20 cannot be used for anisotropic interactions,

if at σ the orientational distribution of the particles is still anisotopic.

However, plotting the effective rate kon given by Eq. 38 as a function of σ ′ for rn = 7.5d in Fig. 5(left),

shows that kon becomes constant beyond σ ′ = 3d, indicating that this is the distance at which the

particles become isotropically distributed. This observation allows us, via Eq. 37, to determine ka(σ),

even when at σ the distribution is not isotropic. This is illustrated in Fig. 5(right), which shows ka(σ)

as a function of σ from Eq. 37, for several values of σ ′, and for a fixed position of the last interface,

rn = 7.5d. The intrinsic rate shows qualitatively similar behavior as in Fig. 1, but for σ ′ < 3d, the value

of ka(σ) does depend on σ ′, because the distribution at σ ′ is not isotropic yet. However, for σ ′ > 3d,

ka(σ) becomes independent of σ ′, and the intrinsic rate constant ka can thus be obtained for all values

of σ that are beyond the range of the interaction potential.

8 Conclusion

In this work we derived explicit microscopic expressions for the intrinsic rate constants for diffusion

influenced reactions. Remarkably all intrinsic and effective rate constants, as well as the equilibrium

constant can be computed from a single TIS or FFS simulation of the dissociation process. To the

best of our knowledge this is a new result, and has not been reported in the literature before. We

illustrated that this approach works for generic isotropic potentials and even for anisotropic potentials

when the reference interface is sufficiently far from contact such that the orientational distributions

are isotropic. This later condition led to a criterion for testing this isotropic behavior.

The results obtained in this paper are very general and can be used to compute accurate rate con-

stants in complex systems using rare events techniques such as Forward Flux Sampling or Transition

Interface Sampling. In future work we will also study how the magnitude of the intrinsic rate constant

compares to that of the diffusion-limited rate constant, and how this depends on the binding affinity.

This question is, for instance, important for understanding how tightly diffusion puts a fundamental

upper bound on the precision of chemical sensing11,24–26.
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Appendix A: The rate constants for two particles that interact via an isotropic interaction

potential

It will be instructive to first revisit the derivation of the rate constants. Following Agmon and Szabo1,

we consider a single static receptor at the origin and a single ligand molecule that moves with diffusion

constant D. The probability that the ligand molecule is at distance r at time t given that it was initially

at a distance r0 is given by the Green’s function p(r, t|r0). The evolution of the Green’s function is given
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by the diffusion equation

∂ p(r, t|r0)

∂ t
=

1

r2

∂

∂ r
Dr2e−βU(r) ∂

∂ r
eβU(r)p(r, t|r0), (41)

where β is the inverse temperature and U(r) is the interaction potential. The effective association

and dissociation rate constants are obtained by solving Eq. 41 with different boundary conditions. We

start with the association reaction.

Association reaction

To obtain the effective association rate constant kon, we solve Eq. 41 subject to the boundary condition

4πσ2D
∂ p(r, t|r0)

∂ r

∣

∣

∣

∣

r=σ

= ka p(σ , t|r0). (42)

Here ka is the intrinsic rate constant, which determines the rate at which receptor and ligand associate

given they are at the contact distance σ . If ka is finite, then the boundary condition is called a radiation

boundary condition, while if ka → ∞, the boundary condition is an absorbing condition. The latter can

be used to obtain the rate constant of diffusion-limited reactions, where receptor and ligand associate

upon the first collision.

The survival probability Sα(t|r0) is the probability that a particle, which starts at a position r0, has

not yet reacted at a later time t. It is given by

Sα(t|r0) = 4π

∫ ∞

σ
drr2 p(r, t|r0). (43)

The subscript α is either “rad” or “abs”, corresponding to ka being finite or infinite, respectively. The

propensity function Rα(t|r0) is the probability that a ligand particle, which starts at r = r0, reacts for

the first time at a later time t:

Rα(t|r0) =−∂Sα(t|r0)

∂ t
. (44)

The time-dependent rate constant kα(t) is

kα(t) = 4π

∫ ∞

σ
dr0r2

0Rα(t|r0)peq(r0). (45)

The distribution peq(r0) is the equilibrium radial distribution function, peq(r) = e−βU(r). If ligand and

receptor only interact at contact, then U(r) = 0 for r ≥ σ and peq = 1, meaning that the equilibrium

distribution corresponds to a spatially uniform distribution. The time-dependent rate constant kα(t)

divided by the volume V is the probability per unit amount of time that receptor and ligand associate

for the first time at a later time t, averaged over all initial positions r0 drawn from the equilibrium

distribution peq(r0).

The expressions Eq. 43 - Eq. 45 hold for both radiating and absorbing boundary conditions, corre-
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sponding to ka being finite and infinite, respectively. When ka is finite, Rrad(t|r0) is also given by

Rrad(t|r0) = ka p(σ , t|r0) (46)

and the time-dependent rate constant krad(t) is then also given by

krad(t) = 4πka

∫ ∞

σ
dr0r2

0 p(σ , t|r0)peq(r0) (47)

To relate krad(t) to kabs(t) in what follows below it will be useful to exploit the detailed-balance

condition

peq(r0)p(r, t|r0) = peq(r)p(r0, t|r). (48)

We can integrate this equation over r0 to find

4π

∫

dr0r2
0 p(r, t|r0)peq(r0) = peq(r)Sα(t|r). (49)

Combining this equation with Eq. 47 we find that

krad(t) = peq(σ)kaSrad(t|σ). (50)

The time-dependent rate constant krad(t) can be related to the time-dependent rate constant kabs(t)

via

krad(t) =
∫ t

0
dt ′Rrad(t − t ′|σ)kabs(t

′). (51)

This can be understood by noting that kabs(t
′)/V is the probability per unit amount of time that receptor

and ligand come in contact for the first time at time t ′, while Rrad(t − t ′)|σ) is the probability that

receptor and ligand which start at contact r = σ at time t ′ associate a time t− t ′ later. In Laplace space,

the above expression reads

k̂rad(s) = R̂rad(s|σ)k̂abs(s). (52)

Since Rrad(t|σ) =−∂Srad(t|σ)/∂ t, R̂rad(s|σ) is also given by

R̂rad(s|σ) = 1− sŜrad(s|σ). (53)

Combining the Laplace transform of Eq. 50 with Eq. 52 and Eq. 53 yields

k̂rad(s) =
ka peq(σ)k̂abs(s)

ka peq(σ)+ sk̂abs(s)
. (54)
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The effective association rate kon is given by the long-time limit of krad(t). Using Eq. 54 we thus find:

kon = lim
t→∞

krad(t) = lim
s→0

sk̂rad(s) =
ka peq(σ)kD

ka peq(σ)+ kD

. (55)

Here, kD = lims→0 sk̂abs(s) is the diffusion-limited association rate for two particles interacting via an

interaction potential U(r). By combining Eq. 50 with Eqs. 52 and 53, it also follows that the probability

that a particle at contact σ does not bind but escapes, is

Srad(∞|σ) = lim
s→0

sŜ(s|σ) =
kD

ka peq(σ)+ kD

. (56)

Hence, the effective association rate constant, Eq. 55, can be interpreted as being given by the rate con-

stant kD of arriving at the surface σ , followed by the probability 1−Srad(∞|σ) = ka peq(σ)/(ka peq(σ)+

kD) that the arrival leads to binding.

The results derived above hold for arbitrary peq(r) = e−βU(r). We now consider the case that U(r) = 0

for r ≥ σ . The time-dependent rate constant kabs(t) is then27

kabs(t) = 4πσD
(

1+σ/
√

πDt
)

, (57)

which in the Laplace domain becomes

sk̂abs(s) = kD (1+ τ(s)) , (58)

where τ (s)≡ σ
√

s/D =
√

sτm with the molecular time scale τm = σ2/D and kD ≡ kabs(t → ∞) = 4πσD is

the diffusion-limited rate constant for two particles that do not interact except at contact. Substituting

this in Eq. 54 with U(σ) = 0 gives

k̂rad(s) =
kakD

s

1+ τ (s)

ka + kD (1+ τ (s))
. (59)

This expression yields for the effective association rate kon = lims→0 sk̂rad(s):

kon =
kakD

ka + kD

. (60)

We note that this expression also follows from the much simpler steady state approximation of the

macroscopic rate equations for association, in which the surface σ is viewed as an intermediate state.

In this approximation ka is taken as the rate from the intermediate σ surface to the associated/bound

state and kD is the diffusion limited rate to reach the σ surface from the unbound state. However, the

above derivation is more general, and does not require the (rather strong) approximations that are

made in the simple approach.
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The dissociation rate constant

Following Amgon and Szabo1, we will derive the effective dissociation rate constant koff from Srev(t|∗):

1

koff

= τoff =
∫ ∞

0
dt [1−Srev(t|∗)] . (61)

Here Srev(t|∗) is the probability that the ligand, which is bound initially, is free at a later time t. The

subscript “rev” indicates that during the time t the ligand may bind and unbind many times.

To obtain Srev(t|∗), we first consider Srev(t|r0) and the following boundary condition for Eq. 411:

4πσ2D
∂ prev(r, t|r0)

∂ r

∣

∣

∣

∣

r=σ

= ka prev(σ , t|r0)− kd [1−Srev(t|r0)]

= Rrev(t|r0). (62)

Using R̂rev(s|r0) = 1− sŜrev(s|r0) we can rewrite the above boundary condition as

R̂rev(s|r0) =
ska

s+ kd

p̂rev(σ ,s|r0). (63)

The rate is, analogous to Eq. 45,

krev(t) = 4π

∫

dr0r2
0Rrev(t|r0)peq(r0). (64)

Using the detailed-balance relation Eq. 49, this equation can be combined with Eq. 63, to give

k̂rev(s) =
ska peq(σ)

s+ kd

Ŝrev(s|σ). (65)

Combining this equation with k̂rev(s) = R̂rev(s|σ)k̂abs(s) and R̂rev(s|σ) = 1− sŜrev(s|σ), we can derive

that

k̂rev(s) =
ka peq(σ)k̂abs(s)

ka peq(σ)+(s+ kd)k̂abs(s)
. (66)

We now consider Srev(t|∗). Since Srev(0|∗) = 0, R̂(s|∗) =−sŜrev(s|∗). The boundary condition, Eq. 62,

then becomes

R̂rev(s|∗) =
ska p̂rev(σ ,s|∗)− kd

s+ kd

. (67)

Exploiting the Laplace transform of the detailed balance condition ka prev(σ , t|∗) = kd prev(∗, t|σ) and

the definition prev(∗, t|σ)≡ 1−Srev(t|σ), the above equation yields

Ŝrev(s|∗) =
kd

s+ kd

Ŝrev(s|σ). (68)
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In the time domain, this gives

Srev(t|∗) = kd

∫ t

0
exp(−kdt ′)Srev(t − t ′|σ)dt ′. (69)

which can be understood by noting that kd exp(−kdt ′) is the probability per unit amount of time that

the bound ligand dissociates at time t ′ and Srev(t − t ′|σ) is the probability that the dissociated particle,

which is now at contact σ , is unbound at a later time t−t ′ (but it could have associated and dissociated

in between multiple times).

Combining Eq. 68 with Eq. 65 gives

k̂rev(s) = sKeqŜrev(s|∗). (70)

where Keq ≡ ka peq(σ)/kd. Combining this result with Eq. 66, we find

sŜrev(s|∗) =
kdkabs(s)

ka peq(σ)+(s+ kd)kabs(s)
. (71)

The off rate is then

1

koff

= τoff =
∫ ∞

0
dt [1−S(t|∗)] = lim

s→0

[

1/s− Ŝrev(s|∗)
]

=
1

kd

+
Keq

kD

, (72)

where, as before, kD is the long-time limit of kabs(t): kD = lims→0 skabs(s). This result can be rewritten

as

koff =
kdkD

ka peq(σ)+ kD

, (73)

which, using Eq. 56, is also given by

koff = kdSrad(∞|σ). (74)

Indeed, the effective off rate is the intrinsic dissociation rate kd times the probability Srad(∞|σ) =

kD/(ka peq(σ)+ kD) that the particle subsequently escapes. As written, the above results for koff hold

for any U(r). When U(r) = 0 for r ≥ σ , peq(σ) = 1 and kD = 4πσD.

Finally, we note that, from Eqs. 55 and 73, it is clear that the equilibrium constant is also given by

Keq =
ka peq(σ)

kd

=
kon

koff

. (75)
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