This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Highly symmetric [Pd$_3$]$^{3+}$ clusters that present delocalized metal-metal bonds can catalyse the selective semi-reduction of internal alkynes to cis-alkenes. Studies on factors governing the formation of all-metal aromatics enabled the design of an optimised catalytic system that delivers cis-alkenes with almost complete selectivity on a gram scale with very low catalyst loadings (0.03 mol%).

All-metal aromatic molecules feature delocalised metal-metal bonds that parallel bonding of their well-known main-group counterparts. While they are often synthetically challenging at best, recently we developed a simple route to a family of bench-stable [Pd$_3$]$^{3+}$ complexes whose core represent a prototypical well-defined sub-nanometric metal surface. These complexes could be decorated with a variety of organic fragments and represent therefore a valuable asset to assess the consequences of their bonding mode on coordination chemistry and catalysis. Internal alkynes were semi-reduced to alkkenes with good cis-selectivity under transfer-hydrogenation conditions, which avoids the use of hazardous H$_2$ gas. The best first generation catalyst (1, 1 mol%) delivered full conversion of phenylpropyne in 10 hours in refluxing THF. No alkene was detected and the ratio between semi-reduced alkynes was 93:3:4 (cis-, trans- and isomerised-products respectively, Scheme 1, top).

We report herein preliminary results on factors triggering the formation of triangular all-metal aromatic [Pd$_3$]$^{3+}$ complexes. Through this approach we were able to decorate their metal core with two different phosphinic ligands, a neutral and an anionic one. This in turn enabled to develop a catalytic system for the selective semi-reduction of 1 to cis-alkene 2 with unparalleled activity among Pd-based catalysts under transfer hydrogenation conditions. The novel complex delivers desired cis-alkene almost quantitatively, in shorter times and a with thirty-three-times lower catalytic charge (Scheme 1, bottom).

Wondering to gain insights on factors governing the formation of delocalized metal-metal bonds, we tried to monitor these reactions by NMR. In a 50 mL Schlenk we thus mixed 0.2 mmol of Pd(dba)$_2$ (dba = dibenzylideneacetone), 0.2 mmol of PPh$_3$ and 0.1 mmol of diphenyldisulphide in 20 mL of CDC$_3$, taking 0.5 mL samples at regular intervals to collect 1H and 31P NMR spectra (Figure 1, spectra in ESI).

Surprisingly, the broad and diagnostic 31P resonance of the [Pd$_3$]$^{3+}$ cation at 15.5 ppm was already visible within few minutes (Figure 1, red line) and free phosphine at -5 ppm was no longer present. From the proton spectrum, we noticed the consumption of Pd(dba)$_2$ and evaluated 18% of the desired [Pd$_3$]$^{3+}$ cation using dba resonances as internal standard. Two other broad 31P resonances were observed at 24 and 27 ppm respectively. We were so far unable to unambiguously assign these signals, although their intensity slowly fades through
time with a concomitant increase of the desired resonance at 15.5 ppm. Upon 60 minutes, the amount of the [Pd₃⁺] complex is around 40% (green line). Addition of 0.33 equiv. of AgSbF₆ resulted in a further increase of the desired resonance at the expense of the two unassigned species (cyan line). Upon celite filtration under nitrogen and concentration in vacuum, the [Pd₃]SbF₆ complex II became the almost exclusive species present in the crude mixture (Figure 1, blue line, 86% isolated yield). Taken together, these observation showed that addition of a silver salt is not necessary to trigger the formation of metal-aromatic [Pd₃⁺] clusters. This in turn suggested that the chlorinated solvent played a key role in the formation of the [Pd₃⁺] core.

We performed our usual reaction in degassed THF without addition of any additive. Expectedly, no traces of the desired [Pd₃⁺] cation were observed upon 24 hours at room temperature. On the contrary, mixing reagents for 1 hours and adding then 0.33 equiv. of AgSbF₆ allowed the mixture to turn deep red, eventually delivering complex II in 73% yield.

The overall process involves the formal oxidation of Pd(0) to Pd(II). Considering the stoichiometry of the reaction, the disulphide can oxidise the noble metal on average to Pd(I). Radical palladium species⁶ might be sufficiently strong reductant to trigger SET (single electron transfer) on a chloroform molecule (-1.09 V vs SCE).⁸ This would form the corresponding radical anion, which eventually collapses into a radical and a chloride ion. The formal addition of a cationic Pd(II) fragment on a neutral Pd(I) dimer⁹ would eventually deliver the [Pd₃⁺] cation, isolable as a chloride salt, in analogy to the step-wise assembly of [Au₃⁺] complexes from an Au(I) cation and an Au(0) dimer reported by Bertrand.¹⁰ The [Pd₃⁺] cation barely forms in CH₂Cl₂ while the reaction is almost instantaneous in CCl₄, being limited by the solubilisation of Pd(db)₂ only. These results fit with the trend of C-Cl BDE and reduction potentials among chlorinated solvents.⁸

Likely, the soluble AgX salt just favours anion metathesis steered by the precipitation of AgCl in chloroform. This suggests that [Pd₃⁺] complexes might be synthesised in any given solvent if a suitable mild stoichiometric oxidant is added. This is of particular interest for catalysis as it would allow the in-situ preparation of [Pd₃⁺] complexes in any medium.

Figure 1. ³¹P spectra of crude samples from the synthesis of [Pd₃]SbF₆ complex highlighting the diagnostic resonance of its three equivalent PPh₃ units.

The reaction conditions:
- 0.066 mmol of Cu(OTf)₂ triggered a slow turning of the solution towards the red and, furthermore, the appearance of the diagnostic ³¹P resonance of the [Pd₃]OTf complex III at 15 ppm. The reaction was slower the previous one but once again a single resonance was eventually detected upon 24 hours stirring at RT. These findings paralleled observations made using chlorinated solvents and provide preliminary insights on the mechanism of formation of all-metal aromatic [Pd₃⁺] complexes.

We thus attempted the catalytic semireduction of phenylpropyne 1 preparing in-situ the [Pd₃⁺] complex. Triethylammonium formate and 1 were added as a THF solution to eventually provide the same concentration previously reported (0.1 M). Sadly, the reaction proved significantly slower, requiring 24 hours to achieve full conversion. The selectivity towards desired cis-alkene 2 remained similar (91%). Partial decomposition to Pd black was observed through time although no alkane has been detected. The reduced activity may be due to dba, which can likely compete with the substrate slowing down its semi-reduction.

<table>
<thead>
<tr>
<th>Entry</th>
<th>R₃</th>
<th>R’</th>
<th>Complex</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(4-F-C₆H₄)₂</td>
<td>4-Me-C₆H₄</td>
<td>A</td>
<td>71</td>
</tr>
<tr>
<td>2</td>
<td>(4-F-C₆H₄)₂</td>
<td>Me</td>
<td>B</td>
<td>55</td>
</tr>
<tr>
<td>3</td>
<td>(4-Me-C₆H₄)₂</td>
<td>Ph</td>
<td>C</td>
<td>59</td>
</tr>
<tr>
<td>4</td>
<td>(4-Me-C₆H₄)₂</td>
<td>Me</td>
<td>D</td>
<td>76</td>
</tr>
<tr>
<td>5</td>
<td>(Ph)₂C₆H₄SO₃Na</td>
<td>Me</td>
<td>E</td>
<td>72</td>
</tr>
</tbody>
</table>

Reaction conditions: on 0.2 mmol scale, 0.01 M in degassed chloroform.

We then turned to another strategy to design better catalysts for this reaction. Reasoning that [Pd₃⁺] is the major species in chloroform even without the addition of any other metal salts, we run the reaction with 0.33 equiv. of a sodiumsulfonate phosphine. This should provide a zwitterionic complex by filtering off coproduced NaCl. We prepared accordingly a small library of complexes (Table 1).
Several organic fragments varying both electronic and steric features could be easily introduced. Products A–E were purified through a series of solvent washings (55–76% yield). They were characterized via HRMS analyses and multinuclear NMR experiments. In contrast to C2-symmetric complexes, as salt I, which showed [Pd4] cations in ESI− experiments, we invariably observed protonated molecular adducts only for A–D. This confirms their zwitterionic nature. Regarding NMR, two pattern of resonances in a 2:1 ratio were observed for bridging thiolate fragments in 1H spectra. 31P signals followed suite. For instance, a broad triplet and a broad doublet in a 1:2 ratio were observed for A (at 17 and 13 ppm respectively). We then tested these new complexes on the catalytic semi-reduction of phenylpropyne 1 in the presence of a five-fold excess of triethylammonium formate as hydrogen source (Table 2). This excess ensures that the chemoselectivity towards semi-reduction of alkanes is due to the catalytic system rather than to a mere shortage of hydrogen donor.

Complexes with fluorinated phosphines proved active with either aromatic or aliphatic bridging thiolates (entries 1 and 2). The latter proved a better substitution pattern providing complete conversion of substrate upon five hours. In both cases, cis-selectivity resulted lower than that previously observed (85% and 87% respectively). No traces of alkane were detected. Alkenes 3 and 4 formed in a comparable amount (6–8%). Complexes bearing two p-tolyolphosphines were even more active (entries 3 and 4). In combination with bridging methylthiolates, complete conversion of 1 was achieved within 3 hours, albeit at the expense of selectivity towards 2 (77%). 3 and 4 formed in 10% and 13% yield respectively. The same outcome was observed using complex E (entry 5, 77%). Interestingly, the catalytic system using any complex of the series A–E proved both more active and less selective than the best one previously developed based on C2-symmetric [Pd4] complexes (Scheme 1, top). We reasoned that this might be a trans-like effect of the anionic ligand that would make more labile the phosphate on the opposite edge of the metal kernel. It can correlate with (slight) upfield shifts of the latter observed by 31P NMR and could rationalise the activity of complexes with p-fluorinated phosphines (A and B, entries 1–2). Their corresponding C2-symmetric [Pd3] peers are indeed fairly active only for the semi-reduction of 1, not even attaining full conversion upon 96 hours. DFT modeling supports this hypothesis. The Pd-P distance with the anionic phosphine shortens in D compared to I, while those with neutral ones are slightly longer (Figure 2, details in ESI).

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>R′</th>
<th>t (h)</th>
<th>Conv. of 1 (%)</th>
<th>Sel. to 2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(4-F-C2H4) & 4-Me-C2H4 & 8 & 97 & 85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(4-F-C2H4) & Me & 5 & quant. & 87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(4-Me-C2H4) & Ph & 6 & quant. & 78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(4-Me-C2H4) & Me & 3 & quant. & 77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(Ph)3C2H4SO3Na & Me & 3 & quant. & 77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conditions: 0.35 mmol of 1, 0.1 M in THF. 1.75 mmol of triethylammonium formate, 1 mol% of complexes A–E; α: 0.1 mL samples were periodically taken and analysed by GC and GC-MS using p-xylene (0.3 mmol) as internal standard.

In all cases we noticed formation of traces of Pd black when conversion of 1 passed 70%, suggesting that zwitterionic complexes A–E could be less robust than their cationic analogues. Nonetheless, no trace of over-reduced alkane has been ever detected, even prolonging warming after full conversion. In these cases, partial isomerization to 3 and 4 was however noticed (below 5% upon 24 hours).

Complexes with fluorinated phosphines proved active with either aromatic or aliphatic bridging thiolates (entries 1 and 2). The latter proved a better substitution pattern providing complete conversion of substrate upon five hours. In both cases, cis-selectivity resulted lower than that previously observed (85% and 87% respectively). No traces of alkane were detected. Alkenes 3 and 4 formed in a comparable amount (6–8%). Complexes bearing two p-tolyolphosphines were even more active (entries 3 and 4). In combination with bridging methylthiolates, complete conversion of 1 was achieved within 3 hours, albeit at the expense of selectivity towards 2 (77%). 3 and 4 formed in 10% and 13% yield respectively. The same outcome was observed using complex E (entry 5, 77%). Interestingly, the catalytic system using any complex of the series A–E proved both more active and less selective than the best one previously developed based on C2-symmetric [Pd4] complexes (Scheme 1, top). We reasoned that this might be a trans-like effect of the anionic ligand that would make more labile the phosphate on the opposite edge of the metal kernel. It can correlate with (slight) upfield shifts of the latter observed by 31P NMR and could rationalise the activity of complexes with p-fluorinated phosphines (A and B, entries 1–2). Their corresponding C2-symmetric [Pd3] peers are indeed fairly active only for the semi-reduction of 1, not even attaining full conversion upon 96 hours. DFT modeling supports this hypothesis. The Pd-P distance with the anionic phosphine shortens in D compared to I, while those with neutral ones are slightly longer (Figure 2, details in ESI).

In all cases we noticed formation of traces of Pd black when conversion of 1 passed 70%, suggesting that zwitterionic complexes A–E could be less robust than their cationic analogues. Nonetheless, no trace of over-reduced alkane has been ever detected, even prolonging warming after full conversion. In these cases, partial isomerization to 3 and 4 was however noticed (below 5% upon 24 hours).

Taken together, these results confirmed the complete chemoselectivity of the catalytic system towards alkynes and let us speculate that isomerisation of 2 could be due to Pd species generated from the decomposition of the actual catalyst in the reducing reaction medium. We wondered...
whether addition of a suitable ligand might slow down these undesired processes without quenching activity (Table 3). We were delighted that addition of 3 mol% of p-tolylphosphine proved decisive (entry 1). Full conversion of 1 was achieved upon 4 hours and the selectivity towards 2 was almost complete (96%). Isomers 3 and 4 formed in 2% yield each. Furthermore, the homogeneous orange solution of complex D did not show any trace of formation of black metal colloids before consumption of 1 (photos in ESI). We then added 10 mol% of phosphine (entry 2). Conversion of 1 required 24 hours, in agreement with a stiffer competition between substrates and ligands for metal coordination. Selectivity towards 2 remained 96% despite the prolonged warming. As in the previous case, no traces of visible heterogeneous aggregates appeared throughout this (longer) experiment. The use of a coordinating electron-poor olefin as dba confirmed the outcome previously observed generating a [Pd(db)₃]⁺ complex in-situ (vide supra), requiring 24 hours to achieve full conversion of 1 (entry 3). In this case, traces of Pd black were observed together with a slightly more pronounced formation of 3 and 4 (4% each). Addition of 3 mol% of the sodium salt of a sulfonated phosphine gave 2 with 96% selectivity within 4 hours (entry 4) and the reaction mixture remained once more a red homogeneous solution.

We performed ESI-MS analyses on samples collected at regular intervals to check the stability of D during the reaction. This method proved useful to detect a fading concentration of cation I throughout the reaction, in agreement with the formation of visible Pd black. However, no Pd-containing ion has been detected in this case, likely owing to a difficult ionisation of zwitterion D (spectra in ESI). We thus resorted to UV-Vis absorption to monitor the diagnostic bands of D in the region between 300 and 550 nm (Figure 3, box), which is not affected by any reagent during the catalytic reaction. Figure 3 shows absorption spectra of reaction samples. Both bands in the near UV (320-380 nm) and the saddle at 450 nm remains clearly visible throughout the reaction, indicating that the complex remains stable in solution until full conversion of 1. These results suggest that addition of a suitable ligand can be a tool to stabilise the active species and to minimise undesired isomerization of cis-olefins. We thus tried to exploit these hypotheses by reducing the catalyst loading (Table 4).

Keeping in mind the practical viability of the synthetic method, we decided to fix the concentration of complex D in the mixture, reducing progressively the amount of THF to hold for a higher amount of 1. This is possible thanks to the increased solubility in apolar media of zwitterion D compared to salt I. Reducing the catalyst loading to 0.3 mol% proved beneficial for selectivity (90%, entry 2) and full conversion was attained upon four hours. Further reduction of D to 0.1 mol% provided 96% of 2 upon 7 hours (entry 3). The reaction with 0.05 mol% did not reach full conversion, and the consumption of 1 ended at 77% upon 6 hours (entry 4). In all these cases, formation of traces of Pd black were observed. For comparison, first generation complexes, as I, were no longer active before full conversion of alkyne at catalyst loadings lower than 1 mol%.

We then repeated our last attempt adding 0.15 mmol% of phosphine (entry 5). To our delight, the solution remained homogeneous and 1 was completely converted upon 5 hours, delivering almost exclusively 2 (98%). We further reduced the loading of D to 300 ppm, observing a comparable outcome (entry 6). Full conversion of 1.20 g of 1 was observed upon 6 hours, with 98% selectivity using commercial reagents without any previous purification. Pure 2 has been isolated adsorbing the crude on a 2 cm silica pad and eluting with 5 mL of pentane (1.15 g, 96% yield). This highlights the practical and environmental viability of present method. We are unaware of Pd-based catalytic systems active at so-low loadings under transfer-hydrogenation conditions.
Conclusions

We reported preliminary studies on the mechanism of formation of triangular Pd complexes with delocalized metal-metal bonds. Through this approach, the panel of readily accessible structures has been further expanded, allowing to access zwitterionic tri palladium complexes. These clusters form in one-step from commercial reagents, are definitely stable at the solid state and proved remarkable precatalysts under transfer-hydrogenation conditions, highlighting the great potential of all-metal aromatics in catalysis.

Notes and references

† We thank MIUR, UPCM and CNRS for funding. Research on metal aromaticity is funded through SIR Project “AROMA-TriP” (Grant No.: RBS14NKFL, GM).
Zwitterionic all-metal aromatic tri-Palladium complexes can catalyse the cis-selective semi-reduction of internal alkynes at ppm levels