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Two bright, europium (III) complexes based on an achiral heptadentate triazacyclononane 
ligand bearing two strongly absorbing chromophores have been evaluated for the selective 
emission and CPL signalling of various chiral O-phosphono-anions.  Binding of O-
phosphono-Ser and Thr gives rise to a strong induced CPL signature and a favoured Δ 
complex configuration is adopted.  A similarly large induced CPL signal arises when 
[Eu.L1]2+ binds to lysophosphatidic acid (LPA), where the strong binding (log K 5.25 (295K)) 
in methanol allowed its detection over the range 5 to 40 µM.  Strong and chemoselective 
binding to the phosphorylated amino-acid residues was also observed with a set of four 
structurally related hexapeptides: in one case, the sign of the gem value in the ΔJ = 1 transition 
allowed differentiation between the binding to O-P-Ser and O-P-Tyr residues. 

___________________________________________________________________________ 

Introduction 

We introduce a dynamically racemic probe, [Eu.L1]Cl2, that can bind to a range of 

structurally different chiral O-phosphono anions, and signal the binding of the analyte 

via induction of circularly polarised luminescence.   

Rather erratic progress has been made in the design of lanthanide-based probes for O-

phosphono oxy-anions, and many recent examples simply offer detection via emission 

quenching or via displacement assays of limited  utility1 The parent phosphate di-

anion is usually considered to bind to a lanthanide centre through a single negatively 

charged oxygen atom. The hypothesis of monodentate binding is based on the 

analysis of kinetic emission and NMR spectroscopic data for a wide range of 

complexes, based on 1,4,7,10-tetraazacyclododecane (12-N4) ligand systems. 2,3 For 

these examples, which are less sterically demanding than the 1,4,7-triazacyclononane 

(9-N3) analogues described more recently, the available experimental data is in line 

with the preference of phosphate to act as a monodentate ligand to a single metal 

centre, as reflected in X-ray structural data  (e.g. for Na+, Ca2+, Zn2+).4,5  
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The development of CPL probes has been dominated by strongly emissive 

lanthanide(III) complexes, as they serve as pure spherical emitters with large emission 

dissymmetry factors.6,7 Time-gating techniques allow the signal from the 

lanthanide(III) centre to be observed selectively over the millisecond timescale,  long 

after ligand fluorescence has decayed. 8–10 The emissive lanthanide excited state may 

be perturbed in a number of different ways.11 In particular, changes in the ligand field 

that take place following reversible binding to the metal or the ligand, cause 

significant variations in emission spectral form, lifetime and polarisation.1,12–15 The 

latter type of modulation is of particular use in signalling selectively the presence of 

chiral species in solution.  

Emission spectra of LnIII complexes are well known to be sensitive to changes in the 

coordination environment determining the ligand field.16–18 With europium(III) 

emission spectra, the oscillator strength of the magnetic-dipole (MD) allowed ΔJ = 1 

transition (ca. 590 nm) is normally independent of the ligand environment. The ΔJ = 

2 and ΔJ = 4 transitions (ca. 615 and 700 nm respectively) are electric-dipole (ED)-

allowed. In each case, they are hypersensitive to ligand perturbation. To a good first 

approximation, their intensities are directly proportional to the square of the ligand 

polarisabilities.  Electric-quadrupole allowed transitions, e.g. 5D0 to 7F2/4, gain ED 

strength via a quadrupole/induced dipole (Ln3+ion/ligand donor) mechanism of 

coupling. The induced dipoles on the ligands, in turn, are caused by direct coupling to 

the electric dipole components of the radiation field.  In this way, the electric dipole 

strength of 4f–4f transitions is related to ligand dipolar polarisabilities and to the 

directional dependence (i.e. the anisotropy) of these polarisabilities.19,20 The 

perturbation of the ligand field has a major impact on the emission profile of Eu(III) 

complexes. Variation of the axial donor in mono-capped square-antiprismatic, 9-

coordinate complexes, for example, has a major effect on the relative intensity of the 
7F2 ← 5D0 transition 21, and has been exploited in signalling  reversible anion binding 

to the metal centre. Examples of anion signalling and sensing have evolved, including 

practicable assays for lactate, bicarbonate and citrate, in complex bio-fluids. 22–25 

In an achiral environment, a racemic mixture of Eu(III) complexes does not exhibit 

CPL. Following addition of a chiral agent, a net CPL signal can be observed in 

principle.  When a chiral anion binds reversibly to the metal centre of a racemic 

Page 2 of 24Dalton Transactions

D
al

to
n

Tr
an

sa
ct

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



Dalton Trans                                                                                        Neil, Fox Pal and Parker 

 3 

complex, diastereoisomeric complexes of differing relative stability are formed and 

may lead to an induced CPL signal, whose relative intensity is a function of the 

binding selectivity and conformational rigidity of the complex, on the emission 

timescale. Recently, a series of very bright Eu(III) complexes has been reported, in 

which 1,4,7-triazacyclononane (9-N3) acts as the core ligand structure.  Up to three 

pyridyl-alkynylaryl groups can be introduced to serve as the chromophore, allowing 

sensitised emission to take place.26–32 In particular, coordinatively unsaturated 

complexes based on heptadentate ligands have been prepared 33 that bind reversibly to 

anions in aqueous media.  
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In this work, we compare and contrast the behaviour of the Eu(III) complexes of the 

ligands L1 and L2, (Scheme 1) and examine the issues related to chemoselective 

signalling of binding for a range of chiral O-phosphono anions,  allowing an 

evaluation of their scope and utility as chiral probes for CPL.  At the outset, it was 

hypothesised that the greater steric demand at the europium centre would disfavour 

chelation of anions with a small bite angle, such as carbonate or a simple carboxylate. 

Such thinking was based on the experimental observation that [Eu.L2]+ does not bind 

a solvent molecule in water or methanol solution, consistent with the notion that the 

N-benzyl creates a significant steric demand as a result of free rotation about the N-C 

and C-phenyl bonds, thereby inhibiting hydrogen bonding to the second sphere of 

solvation that would otherwise stabilise the metal-coordinated solvent, with respect to 

dissociation.    
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The ligand L2 has been reported earlier, and forms a mono-cationic complex with 

Eu(III). The introduction of a methylammonium group in the meta-position of the N-

benzyl moiety, gives rise to a dicationic complex. It was hypothesised that the 

primary electrostatic binding interaction to any coordinated anion would be stronger 

with [Eu.L1]2+ vs [Eu.L2]+, aided in certain cases by directed hydrogen bonding 

between the ammonium group, serving as a hydrogen bond donor, and, for example,  

a metal-coordinated phosphate group acting as a hydrogen bond acceptor.  

 

Results and Discussion 

Ligand and complex synthesis and characterisation 

It was necessary first to synthesise an aromatic precursor containing a charged amino 

group that also contains an electrophilic benzylic substituent at the meta position. An 

N-methylbenzylamine group was selected, as it has an appropriate pKa value (~9.7), 

ensuring that it is positively charged at ambient pH and is not too sterically bulky. It 

also offers scope for stabilising hydrogen-bonding interactions. 

The synthetic pathway began with formation of the mono-amide, 2: reaction of 1 with 

oxalyl chloride furnished the acid chloride, followed by addition of methylamine to 

generate the amide, 2. Simultaneous reduction of the amide and ester groups using 

LiAlH4 in THF gave the amino-alcohol, 3.  A reasonable yield was achieved by using 

the classical ‘Fieser work-up’ procedure: the granular aluminium salts that formed 

were easily removed by filtration. Protection of the amine with a formamide group 

was achieved using 2,2,2-trifluoroethylformate (TFEF). The formamide group was 

selected as it is removed under basic conditions. Therefore, deprotection could occur 

at the same time as hydrolysis of the methyl ester groups of the ligand. The final step 

in the synthesis of the precursor was conversion of the alcohol, 4, to the mesylate, 5, 

under standard conditions, (Scheme 2).    
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      Scheme 3   

The synthesis of the ligand was completed by alkylation of the secondary amine, 6, 

with the mesylate, 5, in MeCN in the presence of potassium carbonate. Treatment 

with base followed by complexation afforded the cationic complex, [Eu.L1]2+, which 

was purified by reverse phase HPLC.  The high absorbance of each complex in the 

range 332 to 352 nm arises from the strong ICT band. 23,28 Several photophysical 

measurements were made to characterise the chloride salt of the complex [Eu.L1]2+ 

and data compared to the control N-benzyl complex, [Eu.L2]+, (Table 1). The 

complex was not fully soluble in H2O and the emission intensity was significantly 

quenched, probably due to self-aggregation. Therefore, in order to get an 

understanding of the number of metal bound solvent molecules, the rate of radiative 

decay of europium (III) emission was determined in methanol and d4-methanol. The 

solvation state, q, was estimated using literature methods, modified to allow for the 

presence of only one quenching OH oscillator. The number of metal-bound solvent 
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molecules was estimated to be zero in each case, consistent with the data obtained for 

[Eu.L2]+ in water, reported earlier.34  

Table 1  Photophysical properties of Eu(III) complexes of L1 and L2 (295 K, MeOH). 

 [Eu.L2]+ [Eu.L1]2+ 

λ/nm 348 352 

ε/mM-1 cm-1 36.0 35.0 

ɸ 0.18 0.18 

k(MeOH)/ms-1 0.83 0.77 

k(CD3OD)/ms-1 0.93 1.01 

 

The two Eu(III) complexes  do  not possess a bound solvent molecule. In each case, 

the steric demand imposed by the benzylic substituent suppresses solvent 

coordination. The lack of variation of the emission spectrum in water compared to 

methanol is consistent with the rate data analysis.    

Anion binding behaviour 

The anion binding behaviour towards hydrogenphosphate, bicarbonate and lactate 

was examined first, prior to a study of the more complex phosphorylated amino acid 

and hexapeptide anions (Scheme 4).  
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Scheme  4    Structures of the three common O-phosphono amino acids, the non-
phosphorylated hexapeptide Gly-Ala-Pro-Tyr-Lys-Phe (GAPYKF) and the phosphorylated 
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hexapeptides Gly-Ala-Pro-O-P-Tyr-Lys-Phe (GAPY*KF), Gly-O-P-Ser-Pro-Phe-Lys-Phe 
(GS*PFKF) and Gly-O-P-Ser-Pro-O-P-Tyr-Lys-Phe (GS*PY*KF). 

Incremental addition of aqueous solutions containing a given anion, to each Eu 

complex in turn, was monitored by emission spectroscopy examining changes in the 

relative intensity and form of the Eu(III) emission spectrum. The relative intensity of 

the ΔJ = 2 and ΔJ = 1 emission bands was plotted as a function of anion concentration 

and the variation was fitted to a 1:1 binding model by non-linear least-squares fitting, 

to give an estimate of the association constant.  

Each Eu(III) complex (5 µM, 295K, 50/50 MeOH/water, apparent pH 7.4, 10 mM 

HEPES) exhibited no change in spectral form in aqueous methanol, following 

addition of hydrogencarbonate in one thousand fold excess, consistent with the 

absence of anion binding at the metal centre.  The binding of lactate had earlier been 

examined with [Eu.L2]+ and a set of three analogues with differing sensitising groups 

and overall charge. Lactate bound reversibly to give a ternary adduct in each case, for 

which the estimated binding constants were 4.37 and 3.15(±0.07) for [Eu.L1]2+ and 

[Eu.L2]+ respectively. The higher affinity with the dicationic complex may simply be 

attributed to the greater attractive electrostatic term. With added hydrogenphosphate, 

whilst [Eu.L2]+ showed no change in spectral form with added anion,  [Eu.L1]2+ 

exhibited a significant modulation, and a binding constant of 4.2 (±0.1) was estimated 

(ESI). Given that the analogue of [Eu.L2]+, where the N-benzyl group is replaced by 

NH,  underwent decomplexation of the Eu(III) ion with added hydrogenphosphate, 

the origins of the enhanced stability of the phosphate adduct of [Eu.L1]2+ were 

assessed using DFT computational methods.   

Stereochemistry of a model hydrogenphosphate  adduct : a DFT study 

As the paramagnetic europium(III) complexes are rather difficult to model 

computationally, optimised geometries of the analogous diamagnetic yttrium(III) 

complex was investigated. It has been shown earlier that they serve as suitable models 

for the Eu analogues 26,35–38; consistent with the fact that the Y(III) ion differs in ionic 

radius from the Eu(III) ion by only 0.05 Å. The functional/basis set of B3LYP/3-

21G* gives model geometries of yttrium complexes with reasonable confidence34 and 

is arguably superior to alternative reported26,35–37,39 functionals and basis sets. The 

binding of one hydrogenphosphate molecule to the model geometry [Y.L1]2+ (Figure 
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1) was examined here at B3LYP/3-21G* and compared to the behaviour of the aqua, 

acetate, lactate, hydrogencarbonate and carbonate adducts. The corresponding adducts 

of the model geometry [Y.L2]+ (Figure 1) were also explored for comparison and  

Table 2 summarises the relative binding energies of [Y.L1]2+ and [Y.L2]+. 

 

 

Figure 1. Yttrium complexes [Y.L1]2+ and [Y.L2]+ explored here as model complexes 

in computations for [Eu.L1]2+ and [Eu.L2]+ respectively. 

Table 2   Binding energies (kJ mol-1) for [Y.L1]2+ and [Y.L2]+ as models of the 
Eu(III) complexes, [Eu.L1]2+ and [Eu.L2]+. 

  [Y.L1]2+   

NH…O interaction 

 [Y.L1]2+  

No NH…O interaction 

 [Y.L2]+ 

H2O  27.2 46.4 

HCO3
- 159.7  117.6 129.2 

CH3CH(OH)CO2
- 163.5  124.7 129.9 

CH3CO2
- 192.6  133.8 161.3 

HPO4
2- 383.0  356.4 342.6 

CO3
2- 406.1  327.9 

 

Of the many minima located for the hydrogenphosphate complex [Y.L1(HOPO3)], the 

the lowest energy minima are discussed in which hydrogenphosphate is a 
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monodentate ligand (Figure 2), resulting in an eight coordinate Y centre. There are no 

examples in the CCDC of hydrogenphosphate chelating to a Eu centre in a 

monomeric complex. Directed hydrogen bonds occur between the negatively charged 

phosphate oxygen and the ammonium NH proton that contribute to stronger 

hydrogenphosphate binding in [Y.L1]2+ compared to [Y.L2]+ observed experimentally 

for the europium analogues. The lowest energy minimum located without such an N-

hydrogen interaction is 26.6 kJ mol-1 higher. 

  

Figure 2 Top and side elevations showing the two lowest energy minima for 
[Y.L1(HOPO3)], in which the substituted phenyl groups are omitted for 
clarity; there is a directed hydrogen bond (green) between the negatively 
charged phosphate oxygen and the ammonium NH proton. 

The binding energy of [Y.L2]+ with hydrogenphosphate is 342.6 kJ mol-1 which is 

lower than the binding energy of [Y.L1]2+ with the phosphate by 40.4 kJ mol-1. This 

suggests that the stronger binding involving [Y.L1]2+ is a combination of the higher 

electrostatic binding interaction and the directed hydrogen bonding between the 

ammonium group and the phosphate group. 

The binding energies listed (Table 2) follow the experimental observations of an 

absence of binding between [Eu.L1]2+ and [Eu.L2]+ with water molecules and are 

consistent with the spectral evidence for binding between [Eu.L1]2+ and [Eu.L2]+ and 

lactate anions. The higher affinity of [Eu.L1]2+ compared to [Eu.L2]+ with the lactate 

is in agreement with computed binding energies (Table 2) . However, the spectral 

observations that [Eu.L1]2+ and [Eu.L2]+ bind neither with hydrogencarbonate nor 

with acetate anions, and, in the case of [Eu.L2]+, with hydrogenphosphate are not in 
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agreement with DFT-computed binding energies. The absence of binding may be 

explained by two effects: first the fact the N-benzyl group is rotating quickly on the 

emission timescale creates a greater effective steric demand at the metal centre; 

secondly, the ligand hydrophobicity means there is a smaller second sphere of 

solvation which would otherwise stabilise the metal-coordinated solvent with respect 

to dissociation. Such solvation stabilisation models would require considerable 

computational efforts,  and are beyond the scope of this study.  

Binding behaviour of the chiral anions and CPL studies 

Emission spectral changes for [Eu.L1]2+ were investigated following the addition of 

O-P-Ser, O-P-Thr and O-P-Tyr, in a MeOH-H2O solvent system (1:1, v/v), 

maintaining the apparent pH at 7.4 using a HEPES buffer (10 mM). The form of the 

total emission spectrum of [Eu.L1]2+ was similar to that following addition of 

inorganic phosphate, and the changes that did occur were relatively subtle, except in 

the hypersensitive ΔJ = 4 transitions, where isoemissive points could be distinguished 

(Figure 2).  Moreover, a broadening from one into three transitions in the ΔJ = 1 

manifold was observed. In each case, it was possible to measure an estimated binding 

constant assuming a 1:1 stoichiometry for the ternary adduct. The stability constant 

for binding of each O-P-amino acid was calculated to be logK = 4.80 ± 0.05, 

revealing that there is no preference for a particular phosphorylated amino acid.  

Such behaviour contrasts to previous work based on 12-N4 europium (III) complexes, 

where a preference for O-P-Tyr was observed in pure water, most likely as a result of 

the lower hydration energy of the tyrosine moiety.41 However, the study involving 

[Eu.L1]2+ was carried out in a 1:1 MeOH-H2O solvent system, to aid solubility. 

Selective solvation of the complex by a cluster of methanol molecules is likely to be 

occurring,42 and so the effect of the differential anion hydration energy is diminished. 

It is worth noting that no change in the emission spectrum was observed following 

addition of a 1000-fold excess of the non-phosphorylated amino acids. Binding must 

occur through the anionic phosphate group. 
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Figure 3 Variation of the Eu(III) total emission (left) as a function of added O-
phosphono-Ser and the limiting CPL spectral profile for [Eu.L1] (right).  The 
insets show the fit (line) to the experimental data points and an expansion of 
the ΔJ = 1 CPL transition for 50 µM added R-O-phosphono-Ser (red) and the 
S-enantiomer (blue) (λexc 352 nm, apparent pH 7.4; 50% H2O/MeOH, 10 mM 
HEPES, 5 µM complex).  The CPL spectrum was nearly identical for 
addition of O-phosphono-Thr, but no CPL signal was observed with added 
O-phosphono-Tyr. 

The change in emission spectral form was accompanied by the induction of a strong 

CPL signal, upon adding O-P-Ser or O-P-Thr (Figure 3). The emission dissymmetry 

values, gem (where gem = 2(IL-IR)/(IL+IR) for the ΔJ = 1 transition were bigger for O-P-

Thr (gem (592.5 nm) = +0.08 vs +0.04 for O-P-Ser), perhaps as a result of the 

additional methyl group providing a slightly higher degree of conformational rigidity 

at the metal centre. No induced CPL signal could be recorded for the [Eu.L1.O-P-Tyr] 

adduct.  From the total emission studies, it is clear that the phosphorylated amino acid 

binds to the lanthanide centre in a similar manner to O-P-Ser and O-P-Thr.  

Therefore, an alternative explanation must explain the lack of induced chiroptical 

activity:  the chiral centre is more remote in the O-P-Tyr molecule, and simply 

explains the lack of CPL activity observed. Addition of R- and S-O-P-Ser resulted in 

an induced CPL spectrum of equal and opposite form, with identical gem values at 593 

nm. Comparative analysis with the CPL spectrum of the control N-benzyl complex, 

[Eu.L2]+, following addition of R and S-lactate, allowed a tentative assignment of the 

absolute configuration of the complex adduct, as Δ-[Eu.L1.O-P-S-Ser] and Λ-

[Eu.L1.O-P-R-Ser]. 

Three phosphorylated peptides were selected for this study, varying in the 

phosphorylated residue (Ser or Tyr) and the number of phosphorylated sites (mono or 
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di). The corresponding non-phosphorylated peptide, GAPYKF, was also studied as a 

control. These systems had been used earlier in related emission studies using 12-N4 

based cationic complexes. 41 

In order to try and gain insight into the solution state structures of the three 

phosphorylated peptides, electronic circular dichroism (ECD) and 2D 1H NMR 

methods were used to assess peptide conformation. The hexapeptides each contain a 

proline residue, which can often induces a turn in peptide, particularly when followed 

by an aromatic residue.43 Weak ECD activity (around 200-230 nm) was observed for 

each of the three phosphorylated peptides.  The hexapeptides GAPY*KF and 

GS*PY*KF exhibited ECD spectra that were very similar in form, consistent with the 

assignment of an open conformation peptide.44 In the case of GS*PFKF, the ECD 

spectrum was slightly more well-defined with a positive and negative component at 

220 and 200 nm respectively, indicating that the mono-phosphorylated hexapeptide 

adopts a more structured preferred conformation  in solution. 

The induced CPL response of [Eu.L1]2+ was investigated, following addition of a 20-

fold excess of each peptide. The addition of the non-phosphorylated control peptide, 

GAPYKF, resulted in no induced CPL, providing further evidence that the peptide 

binds to the europium (III) centre via the phosphate group, (Figure 4). In the case of 

the O-P-Tyr peptide, GAPY*KF, the CPL spectral form resembles that of the O-P-

amino acids, O-P-Ser and O-P-Thr). However, it is interesting to recall that the simple 

O-P-Tyr amino acid did not induce a CPL response. In contrast, the O-P-Tyr peptide 

induced significant CPL, with a measured emission dissymmetry value of gem (592.5 

nm) = +0.10, which is amongst the highest induced gem values observed with a 

dynamically racemic europium (III) complex.12,13,45  
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Figure 4 Limiting CPL spectra for [Eu.L1]2+, induced following addition of a 20-fold 
excess of peptide: (top left)-GAPY*KF; (top right)-GS*PFKF; (bottom left)-
GS*PY*KF; (bottom right)-GAPYKF (10 µM complex, λexc 352 nm, 295 K, 
MeOH). 

Another interesting observation, was the induced CPL spectral response of the O-P-

Ser peptide, GS*PFKF; this was opposite in sign and form to that of GAPY*KF. The 

gem value at the same transition, λ = 592.5 nm, was -0.04 and therefore much smaller 

than the O-P-Tyr peptide. Such behaviour, suggests that it may be the chiral structure 

of the entire peptide, when bound to the lanthanide centre that is associated with the 

induced CPL response.  

The di-phosphorylated peptide, contains both a phosphorylated serine and tyrosine 

residue. The induced CPL is much weaker than for the other two peptides, and 

appears to be an additive sum of the two separate spectra. One possible explanation is 

that the complex has no preferential binding site, as the estimated affinity constants 

for the O-P-amino acids are the same (vide supra). Therefore, the emission spectrum 

observed is a combination of the lanthanide complex bound to the O-P-Ser of the 

peptide and the O-P-Tyr residue. The gem values for the induced CPL were bigger for 

the O-P-Tyr residue, which may explain why the major chiral emissive species for the 

GS*PY*KF adduct of [Eu.L1]2+, generated an induced CPL spectrum that more 

closely resembles that created by the O-P-Tyr hexapeptide. 
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Figure 5 (left): Variation in the Eu(III) emission spectral profile for [Eu.L1]2+ as a 
function of added GAPY*KF showing the fit (line) to the experimental data 
points, assuming a 1:1 binding model; (right)- changes in the ΔJ = 1 manifold 
of the CPL spectrum for [Eu.L1]2+, following peptide addition, showing the 
fit to the data points (10 µM complex, λexc 352 nm, 295 K, MeOH). 

Investigation of the binding affinities of the three hexapeptides with [Eu.L1]2+ was 

carried out by monitoring the emission and induced emission dissymmetry values, 

gem, as a function of peptide concentration. Emission spectral changes with [Eu.L1]2+ 

were very subtle, following addition of the phosphorylated peptide, GAPY*KF. It 

was much more informative to monitor the switching on of CPL with the system, 

particularly because the gem values were as large as +0.10 (Figure 5). The change in 

the intensity of the ΔJ = 2 and ΔJ = 1 transitions of the emission spectrum was plotted 

as a function of added concentration of peptide, and the data was fitted to a 1:1 

binding isotherm, following iterative least-squares fitting. The estimated binding 

affinity in methanol, logK = 5.9 (±0.1), was very large and consistent with the value 

obtained by plotting the induced gem values against concentration of peptide, logK = 

6.1(±0.1). Such behaviour implies that the charged amino complex, [Eu.L1]2+, has a 

strong binding affinity with GAPY*KF, and that the major chiral species in solution 

is the most emissive species. A slightly higher binding affinity was calculated from 

the CPL data suggesting that it is associated with formation of the favoured isomer 

(Δ).  

A similar experiment was carried out for the peptide GS*PFKF, however the data did 

not fit well to a 1:1 binding model, and a stability constant could not be reliably 

estimated. In the case of the di-phosphorylated peptide, GS*PY*KF, unusual 
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behaviour was observed following the sequential addition of the peptide to the 

europium (III) complex. The induced CPL signal at 592.5 nm (ΔJ = 1) initially gave 

rise to increasingly negative values, until a critical concentration was reached. At this 

point, the sign of the CPL reversed and increasing positive gem values were recorded, 

until the limiting spectral response was achieved. Such behaviour provides further 

evidence that there is only a very small energy difference between the binding 

affinities of the two phosphorylated sites (O-P-Ser and O-P-Tyr). Nonetheless, at 

higher concentration of added peptide, the most emissive observed chiral species has 

a positive gem value at 592.5 nm, corresponding to binding at the O-P-Tyr residue.  

 [Eu.L1]2+ as a chiral probe for oleoyl-lysophosphatidic acid 

Oleoyl-L-α-lysophosphatidic acid (LPA) is a phospholipid present at a physiological 

concentration of <0.1-6.3 µM and at significantly increased levels (up to about 40 

µM) in ovarian cancer cells, (Scheme 5). 46   

 O

O

HO O
P

O

HO

-O

LPA                

 

Scheme 5 Structures of lysophosphatidic acid (LPA) and a putative Eu(III)-salophene 
complex.  

Some attempts have been made to develop lanthanide probes able to detect LPA in 

MeOH, by monitoring an increase in the fluorescence intensity of the ligand.47 In a 

study using a coordinatively unsaturated europium (III) salophene complex of ill-

defined speciation, an apparent selectivity of binding was demonstrated in methanol 

for a number of competitive analytes, such as serum albumin, phospholipids 

(phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine) and selected 

carboxylates (phosphate and citrate). However, selectivity over bicarbonate and 

lactate (anions present at the highest physiological concentration) was not discussed. 

Furthermore, the chemical origin for the particularly high affinity of the europium 

(III) complex for LPA was neither apparent nor investigated. The study monitored the 

fluorescence response of the europium (III) complex in methanolic extracts of human 

serum, spiked with LPA. However, no information regarding the composition of the 
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extract was given, making it difficult to determine the nature of the background 

medium in which LPA was ‘selectively’ detected. This particular lanthanide probe 

relied on short-lived ligand-centred emission to detect the biomolecule.  

The anion LPA has a lower pKa2 than phosphatidic acid (PA), the related 

phospholipid with a simple phosphate head group, illustrated by the calculated values 

in a phosphatidylcholine bilayer (PA: pKa1 3.2 ± 0.3, pKa2 7.92 ± 0.03; LPA: pKa1 2.9 

± 0.3, pKa2 7.47 ± 0.03).48 Intramolecular hydrogen bonding is observed between the 

hydroxyl group on the glycerol backbone of the molecule and the phospho-monoester 

head group in the crystal structure, and is believed to persist at physiological pH 

(Figure ).48,49 Therefore, ionisation of the phosphate hydroxyl group of LPA occurs 

more easily than for PA (and other phosphate anions), generating a higher negative 

charge on the analyte, facilitating proposed binding to a positively charged probe, for 

example [Eu.L1]2+. 

 

Figure 6   Intramolecular hydrogen bonding of lysophosphatidic acid (LPA) and 
phosphatidic acid (PA), R = oleoyl acid chain.  

 

LPA must bind to the lanthanide centre via the phosphate head group, in the same 

mode discussed for the phosphorylated amino acids and peptides in the preceding 

sections.  

Emission and induced CPL studies with LPA 

The emission spectral form changes following addition of LPA to [Eu.L1]2+ were 

particularly apparent in the ΔJ = 1 transition, which broadened from a single 

manifold, into three distinct transitions, (Figure 7). Such a change resembled the 

emission spectral response of [Eu.L1]2+ following addition of the other phosphate 

anions investigated (i.e. HPO4
2-, O-P-amino acids and O-P-peptides). Upon increasing 
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the concentration of LPA, characteristic changes in the total emission spectrum were 

observed until a limiting spectrum was achieved, beyond which the total intensity 

continued to increase consistently across all transitions, with no further change to the 

emission spectral form. Such behaviour may be attributed to the long lipophilic chains 

in the molecule, which may aggregate to form a micelle, reducing the degree of 

quenching from second sphere solvent molecules. The changes in the local solvent 

permittivity may slightly change the ICT excited state energy level and favour the 

intramolecular energy transfer process, thereby significantly enhance the europium 

emission intensity.  

 

Figure 7 (left): Variation of the Eu(III) spectral emission profile for [Eu.L1]2+ as a 
function of added LPA, showing the fit to the experimental data points for a 
1:1 binding model (5 µM complex, MeOH, λexc 352 nm, 295 K). (right): 
Increased emission intensity, without change of spectral form, in the range 
100-600 µM LPA, consistent with micelle formation with an aggregation 
constant of 0.8 (±0.04) mM.  

The limit of detection for LPA was 5 µM; the limiting spectrum was reached at a 

concentration of 40 µM, which is in the desired range for LPA detection in ovarian 

cancer cells. The estimated stability constant in methanol, logK = 5.25, was high, 

demonstrating that there is indeed a strong binding affinity in the ternary adduct, 

[Eu.L1.LPA].  

The induced CPL response (ESI) resembled that observed with O-P-Ser, O-P-Thr and 

the phosphorylated hexapeptides, with little activity observed in the ΔJ = 3 and ΔJ = 4 

region. An emission dissymmetry value, gem, of +0.04 at 593 nm was measured. This 

value is lower than that measured for the O-P-Tyr phosphorylated peptide, suggesting 

that there is less conformational rigidity, consistent with the structure of LPA, which 

contains a long, aliphatic carbon chain. 

Page 17 of 24 Dalton Transactions

D
al

to
n

Tr
an

sa
ct

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



Dalton Trans                                                                                        Neil, Fox Pal and Parker 

 18 

Comparison of the CPL spectrum (ESI) with the parent N-benzyl complex, [Eu.L2]+, 

on addition of a number of chiral analytes, allowed a tentative assignment of the 

configuration of the complex adduct as Δ-[Eu.L2.L-LPA]. It is useful to recall that the 

O-P-S-amino acids also induced a similar CPL spectral response, resulting in the same 

Δ-assignment of helicity. 

Following the promising results of the emission and CPL studies, further work set out 

to investigate the binding selectivity of the complex and LPA in a competitive 

environment. The nature of the ‘signature’ induced CPL response would provide 

further evidence for determination of the species bound to the europium centre.  

No spectral evidence for an interaction was found for addition of other phospholipid 

species including phosphatidyl-serine, -inositol and –ethanolamine.  The addition of 

HSA (human serum albumin) resulted in no change in the emission spectral form, 

although significant quenching of the emission intensity was observed at a protein 

concentration >0.2 mM, with no induced CPL. The binding affinity for LPA may be 

compared to other physiologically relevant anions, including lactate, bicarbonate and 

phosphate, (Table ). 

Table 3   Affinity constants, logK, for analyte complexation with [Eu.L1]2+ and physiological 
concentrations of relevant biomolecules. (MeOH-H2O 1:1,10 mM HEPES, 295 K).  

 Concentration in serum / mM logK 

HCO3
- 24-27 * 

lactate 0.6-2.3 4.37 

HPO4
2- 1.2-1.3 4.20 

HSA 0.5-0.75 * 

LPA 0-0.05 5.25a 

a affinity constant estimated in 100% MeOH due to solubility of the biomolecule; (*) no evidence for a significant 

binding interaction was observed. 

It is important to note that the affinity constant for LPA complexation was estimated 

in 100% MeOH and so is expected to be higher than the value measured in MeOH-

H2O (1:1, v/v), due to the lower solvation energy of the anion. However, with that in 

mind, analysis of the affinity constants revealed that selective binding of LPA may be 

possible in a competitive environment. In aqueous methanolic solution (1:1, v/v; 

apparent ‘pH’ 7.4), simulating an extracellular fluid containing HSA (0.4 mM), 
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sodium lactate (2.3 mM), hydrogen phosphate (0.9 mM), citrate (0.13 mM) and 

sodium bicarbonate (30 mM), the observed emission spectrum of [Eu.L1]2+ (5 µM) 

was the same as that observed for the complex alone. LPA was titrated into the 

solution in 5 µM aliquots until 100 µM was added. However, neither a change in the 

emission spectrum nor an induction of CPL was observed, under these conditions.  

Summary and Conclusions 

This study has demonstrated that [Eu.L1]2+ binds selectively via the phosphate group 

to the O-phosphono amino acids and model phosphorylated peptides and a CPL 

response is induced. Accurate determination of stability constants can be achieved by 

monitoring the CPL spectral changes, as an alternative to europium (III) emission 

spectral modulation. Such an approach is particularly useful in cases where the 

changes in the total emission response are small or indistinct.   

The sign of the gem value in the ΔJ = 1 transition allows differentiation between O-P-

Ser and O-P-Tyr residues. The magnitude of the induced CPL emission dissymmetry 

value for the O-P-Tyr hexapeptide, GAPY*KF was +0.10; such a value is amongst 

the highest that have been recorded for a dynamically racemic europium (III) 

system.12,13,45 The large gem value allows quick and easy detection of this peptide in 

solution when using CPL as the detection technique.  

The detection of LPA using [Eu.L1]2+as a lanthanide probe has also been 

demonstrated, within the range 5-40 µM. This result is the first example of induced 

CPL from an LPA adduct. The total emission and circularly polarised luminescence 

of the probe was monitored as a function of added lysophosphatidic acid. Due to the 

bright, strongly emissive nature of the lanthanide complex, detection of LPA was 

readily achieved. Analysis of the europium emission and CPL spectra revealed 

information about the structure of the ternary adduct, improving upon previous 

examples of lanthanide LPA probes. The absolute configuration of the [Eu.L1.L-LPA] 

adduct was tentatively assigned as Δ, consistent with the configuration assigned for 

the adducts with the O-P-L-amino acids.  

Further work may seek to enhance the scope of the use of this, or analogous water-

soluble complexes, in the detection and recognition of more complex and structurally 
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diverse series of peptides, for example, those incorporating phosphorylated tyrosine 

residues.  

Experimental 

Details of the synthesis of the stated precursors 1-5, general experimental aspects and 

spectroscopic, analytical and computational methods are given in the ESI. The 

synthesis of [Eu.L2]+ and compound 6 have been reported earlier. 34 

Dimethyl 6,6'-((7-(3-((N-methylformamido)methyl)benzyl)-1,4,7-triazonane-1,4-

diyl)bis(methylene))bis(4-((4-methoxy-2,6-dimethylphenyl)ethynyl)picolinate), 7 

 

The bis-alkylated ligand, 6,  (23 mg, 0.031 mmol) and K2CO3 (5 mg, 0.037 mmol) were 

dissolved in anhydrous CH3CN (2.5 mL) and bubbled with argon (20 minutes). The mesylate 

5 (8 mg, 0.031 mmol) was added and the mixture was stirred under argon at 65 °C and 

monitored by LC-MS. After 24 h the reaction was cooled and filtered to remove excess 

potassium salts. The solvent was removed under reduced pressure and the crude material was 

purified by flash column chromatography (silica, gradient elution starting from 100% CH2Cl2 

to 10% CH3OH in CH2Cl2 in 1% increments) to give 7 as a glassy solid (13 mg, 46%). TLC 

analysis Rf 0.32 (silica, 10% CH3OH in CH2Cl2); 1H NMR (295 K, 600 MHz, CDCl3) δH 8.25, 

8.11 (1H, 2 x s, NCOH, NCOH’), 8.02 (2H, s, py-H3), 7.62 (2H, s, py-H5), 7.49–7.14 (4H, m, 

Ph-H), 6.62 (4H, s, Ar-H2/2’), 4.49 (1H, s, NCH2Ph), 4.39 (1H, s, NCH2’Ph), 4.12 (4H, s, py-

CH2), 3.93 (6H, s, CO2CH3), 3.80 (6H, s, OCH3), 3.47-2.99 (12H, br m, rings Hs), 2.87, 2.74 

(3H, 2 x s, NCH3, NCH3’), 2.47 (12H, s, Ar-CH3); 13C NMR (295 K, 150 MHz, CDCl3) δC 

165.3 (CO2CH3), 162.9 (NCOH), 160.4 (Ar-C1), 157.8 (py-C6), 148.0 (Ar-C4), 143.1 (Ar-

C3/3’), 137.4 (Ph-C), 134.6 (Ph-C), 130.3 (Ph-C), 129.6 (Ph-C), 129.5 (Ph-C), 128.8 (Ph-C), 

128.0 (py-C5), 125.9 (py-C3), 113.8 (py-C4), 112.9 (Ar-C2/2’), 94.8 (alkyne C5), 93.0 (alkyne 

C6), 61.9 (ring Cs), 59.7 (ring Cs), 55.4 (OCH3), 53.6 (CO2CH3), 53.1 (py-CH2), 51.7 (ring 
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Cs), 47.7 (NCH2Ph), 34.6, 29.7 (NCH3), 21.5 (Ar-CH3); m/z (HRMS+) 905.4599 [M+H]+ 

(C54H61N6O7 requires 905.4602) 

 [Eu.L1]Cl2 

 

An aqueous solution of sodium hydroxide 0.3 M (0.5 mL) was added to a solution of ligand 7 

(13 mg, 14 µmol) in methanol (0.5 mL). The mixture was stirred at 70 °C for 48 h. The 

reaction was cooled to r.t. and aqueous hydrochloric acid (0.1 M) was added until pH 7 was 

achieved. The crude solid was purified by preparative HPLC, tR = 16.5 min. The solid was 

passed down an ion exchange column to remove the presence of formate. Europium chloride 

hexahydrate (3 mg, 8 µmol) was added and the pH was readjusted to 6.5 by addition of 

aqueous sodium hydroxide (0.1 M). The reaction was stirred at 65 °C for 24 h. The solvent 

was removed under reduced pressure to give the complex [Eu.L1]Cl2 as a white solid (5 mg, 

68%). m/z ESI (MeOH no column) 1044 [M+H]+;  λexc (MeOH) = 352 nm; ɸem (MeOH) = 

0.18;  ε (MeOH) 36,000 M-1cm-1; τ (MeOH) = 0.77 ms. 
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