Dalton Transactions

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/dalton

Journal Name

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/CrystEngComm

Ling-Yu Guo,^{a,†} Marko Jagodič,^{b,†} Su-Yuan Zeng,^c Zhi Wang,^a Zhi-Qiang Shi,^a Xing-Po Wang,^a Chen-Ho Tung,^a Di Sun^{*},^a

Modified classical trivacant Wells-Dawson α -[P₂W₁₅O₅₆]¹² and the assembly of related sandwiched transition metal clusters are of interest but surprising scarce because of the mutability of α -[P₂W₁₅O₅₆]¹² sensitive to assembly environments. Herein, we describe the pH-controlled assembly of two novel Dawson-sandwiched clusters (H₂bp₂)₆[Co₂(P₂W₁₆O₅₇)₂]²2H₂O (**1**, bpz = 3,3',5,5'-tetramethyl-4,4'-bipyrazole) and (H₂bp₂)₆[Co₃H₂(P₂W₁₆O₅₇)(P₂W₁₅O₅₆)(H₂O)]¹²H₂O (2) involving *in situ* transformation of α -[P₂W₁₅O₅₆]¹². Both clusters have been characterized by X-ray single-crystal diffraction, FT-IR spectroscopy, UV-Visible spectroscopy, thermogravimetric analysis, powder X-ray diffraction, and elemental analyses. X-ray crystallography showed both heteropolytungstates become to divacant α -[P₂W₁₆O₅₇]⁸ in observed in **2**, which combined with another trivacant α -[P₂W₁₅O₅₆]¹² to asymmetrically clamp three edge-shared CoO₆ octahedra. The α -[P₂W₁₅O₅₆]¹² via self-decomposition equilibria is olution. The electrocatalytic reduction performances toward nitrite, hydrogen peroxide, chlorate, bromate and iodate are fully measured and discussed. Especially, both of them exhibit better electrocatalytic activities toward to the reduction of bromate. Magnetic measurements indicate weak ferromagnetic exchange interactions between Co atoms sandwiched by vacant polyoxometalates.

Introduction

Polyoxometalates (POMs) have find an important niche in the area of inorganic chemistry and material science owing to their rich structural motif and potential applications in many fields such as catalysis, nanotechnology, sensor, magnetism, and medicine delivery.¹ Although Keggin-, Wells-Dawson-, Waugh-, Lindquist-, Silverton- and Anderson-type POMs have been advanced largely, modification of these classical cluster structure to form much more novel POM species or related inorganic-organic hybrids is still a hot but challenge project. There are many ways to realize above targets, such as partial reduction of W^{VI} or Mo^{VI} to their V/VI mixed valent counterparts, called heteropolyblue,³ replacement of heteroatom within the cluster,⁴ knockout of surface MO_6 (M = W or Mo) polyhedra to form diverse vacant POMs,⁵ usage of the surface terminal O atoms to extend transition-metal or rare-earth ions and organic ligand to the POM-based inorganic-organic network,⁶ and vacant POMs sandwiched transition-metal clusters.⁷ Among such

^aKey Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China. Email: dsun@sdu.edu.cn

^bFaculty of Civil and Geodetic Engineering & Institute of Mathematics, Physics and Mechanics, University of Ljubljana, Jamova 2, 1000 Ljubljana, Slovenia.
^cSchool of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng,

People's Republic of China. ^{*†*} These authors contributed equally. rich decoration strategies, the last is especially fascinating due to the novelties from the facile variability of vacant POM as well as the assembly challenge from polynuclear metal-oxo aggregates.

In vacant POMs family, mono- to trivacant species of the Keggin $([XM_{12}O_{40}]^n)$ and the Dawson $([X_2M_{18}O_{62}]^n)$, where X = Si^{IV}, Ge^{IV}, P^V, and S^{VI}; M = W^{VI,V} Mo^{VI,V}) clusters have long been recognized as nucleophilic ligands for gathering transition-metal or rare-earth ions at the high-active vacant sites.⁸ Recently, trivacant α -[P₂W₁₅O₅₆]¹², was found to be an instable inorganic building unit that can experience facile reorganization to form its mono- or divacant derivatives, α -[P₂W₁₇O₆₁]¹⁰ and α -[P₂W₁₆O₅₉]¹², respectively, which is due to self-decomposition equilibria existed in solution.⁹ In addition to the skeletal change of cluster, the protonation states also sensitively followed the solution pH.¹⁰ The above two behaviours of trivacant α -[P₂W₁₅O₅₆]¹² dictate the formation of two novel sandwich POMs in this work.

Since the first synthesis of the trivacant $\alpha - [P_2W_{15}O_{56}]^{12-1}$ sandwiched compounds $([M_4(P_2W_{15}O_{56})_2(H_2O)_2]^{16}, M = Co, Cu, Zn)$ by Finke and Droege thirty years ago, ¹¹ many novel sandwich POMs based on trivacant α -[P₂W₁₅O₅₆]¹²⁻ with 2-7 metal centers encapsulated have been isolated and related magnetic properties and catalytic performances were evaluated.¹² However, the sandwich POMs based on the variants of $\alpha - [P_2 W_{15} O_{56}]^{12}$ are very rare, although what we have known is the instability of α - $[P_2W_{15}O_{56}]^{12}$ in high temperature reaction systems. In 2008, Kögerler group isolated a semi-sandwich POM by reaction of α -[P₂W₁₅O₅₆]¹²⁻ trivacant and bowl-shaped $[Ce^{IV}Mn_{6}^{V}O_{9}(O_{2}CCH_{3})_{9}(NO_{3})(H_{2}O)_{2}]$ cluster at 70 °C. Interestingly, the trivacant $\alpha\text{-}{[P_2W_{15}O_{56}]}^{12\text{-}}$ was changed to divacant $\alpha\text{-}$ [P₂W₁₆O₅₇(OH)₂]¹⁰⁻ during assembly.¹³ Following their work, Cronin

[†] Electronic Supplementary Information (ESI) available. Detailed synthesis procedure, tables, crystal data in CIF files, IR, TGA and powder X-ray diffractogram for 1 and 2. CCDC 1449923-1449924. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/b000000x.

COMMUNICATION

group synthesized a novel Dawson-based trimeric $[K@(Co_2P_2W_{16}O_{60})_3]^{2^{3-}}$ cluster, in which divacant $\{P_2W_{16}\}$ species is *in situ* generated by removal of two adjacent WO₆ octahedra from the "belt" region of non-vacant $K_6[\alpha-P_2W_{18}O_{62}]$.¹⁴ Thus, the formation of divacant $\{P_2W_{16}\}$ species in known examples are usually sporadic and the more difficult is incorporating it into novel sandwich POMs, and both that we have eagerly pursued.

Scheme 1. The polyhdedra representation of classical trivacant α - $[P_2W_{15}O_{56}]^{12-}$ (left) and rare bivacant α - $[P_2W_{16}O_{57}]^{8-}$ (right) POMs.

We herein present two novel Co^{II} sandwich POMs based on *in situ* generated α -[P₂W₁₆O₅₇]⁸⁻ from classical trivacant α -[P₂W₁₅O₅₆]¹²⁻ (Scheme 1). At different pH value (Scheme 2), trivacant α -[P₂W₁₅O₅₆]¹²⁻ completely or partially transformed to α -[P₂W₁₆O₅₇]⁸⁻ POM, then encapsulated different Co_n^{II-}oxo clusters (n = 2 or 3) to form (H₂bpz)₆[Co₂(P₂W₁₆O₅₇)][•]BH₂O (**1**, bpz = 3,3',5,5'-tetramethyl-4,4'-bipyrazole) and (H₂bpz)₆[Co₃H₂(P₂W₁₆O₅₇)(P₂W₁₅O₅₆)(H₂O)][•]12H₂O (**2**). This work provides a new pH-control strategy route to construction of rare α -[P₂W₁₆O₅₇]⁸⁻ POM-based sandwich clusters with adjustable Co^{II}/POM ratio.

Scheme 2. The schematic representation of assembly details of 1 and 2

Experimental

Methods. Commercially available solvents and metal salts were used without further purification. The trivacant $Na_{12}[\alpha$ - $\mathsf{P}_2\mathsf{W}_{15}\mathsf{O}_{56}]^{\boldsymbol{\cdot}}\mathbf{18}\mathsf{H}_2\mathsf{O}$ was prepared according to the literature. 15 ' IR spectra were recorded on a PerkinElmer Spectrum Two in the frequency range of 4000-400 cm⁻¹. Elemental analyses for C, H, and N were performed on a PerkinElmer 2400 CHN elemental analyzer and, for P, W, and Co, were determined with a PLASMASPEC (I) ICP atomic emission spectrometer. Powder Xray diffraction (PXRD) data were collected on a Philips X'Pert Pro MPD X-ray diffractometer with Mo K_{α} radiation equipped with an X'Celerator detector. Thermogravimetric analyses (TGA) were performed on a SHIMADZU DTG-60A thermal analyzer from room temperature to 800 ° C under nitrogen atmosphere at a heating rate of 10° C/min. The diffuse-reflectance spectrum were performed on UV-Vis spectrophotometer (Evolution 220, ISA-220 accessory, Thermo Scientific) using a built-in 10 mm silicon photodiode with a 60 mm Spectralon sphere. The variable-temperature magnetic susceptibilities were collected on a Magnetic Property Measurement System (MPMS), SQUID-VSM (superconducting quantum interference device-vibrating sample magnetometer) (Quantum Design, USA). The electrochemical measurements were carried out on a CHI 660E electrochemical workstation (CH Instruments, Shanghai Chenghua Co.) with a conventional three-electrode cell consisting of a Pt plate as the counter electrode. The Ag/AgCl (3 M KCl filled) was used as the reference electrode. The working electrode was prepared as following: 100 mg graphite powder and 30 mg sample 1 or 2 were mixed, and ground together by a gate mortar and pestle to achieve an even, dry mixture; to the mixture 300 DL paraffin oil was added under stirring with a glass rod; then the mixture was packed into 3 mm inner diameter glass tube, and the surface was pressed tightly onto weighing paper with a copper rod through the back. Electrical contact was established with copper rod through the back of the electrode. Prior to measurement, the electrolyte was thoroughly bubbled by purging it with nitrogen.

Synthesis of 1 and 2

A mixture of $Na_{12}[P_2W_{15}O_{56}]\cdot 24H_2O$ (44.3 mg, 0.01 mmol), Co(NO₃)₂·6H₂O (58.2 mg, 0.2 mmol), and 3,3',5,5'-tetramethyl-4,4'bipyrazole (9.5 mg, 0.05 mmol) is dissolved in 6 mL H₂O, then the pH was adjusted to 2.05 by addition of 1 M HCl, and stirred for 5 min at room temperature. The resulting mixture was sealed in a 25 mL Teflon-lined stainless steel autoclave and heated at 160 °C for 3000 min, after which, it was cooled over 13 h to room temperature. The product was obtained as brown rod crystals (Yield: 51.2% based on W). Elemental analysis: Anal. Calcd (%) for C₆₀H₁₁₂N₂₄Co₂P₄W₃₂O₁₂₂: C, 7.79; N, 3.64; H, 1.22; P, 1.34; Co, 1.27; W, 63.62 found: C, 7.67; N, 3.65; H, 1.25; P, 1.43; Co, 1.23; W, 63.73. Selected IR peak (cm⁻¹): 3671 (w), 2988 (w), 2903 (w), 1583 (w), 1524 (w), 1405 (w), 1260 (w), 1087 (m), 943 (m), 745 (s), 585 (s), 523 (s)

The synthesis of **2** was similar to that of **1**, but the pH was adjusted to 1.84 by addition of 1 M HCl. The red brown plate crystals was obtained (Yield: 49.8 % based on W). Elemental analysis: Anal. Calcd (%) for $C_{60}H_{124}N_{24}Co_3P_4W_{31}O_{126}$: C, 7.84; N, 3.65; H, 1.36; P, 1.35; Co, 1.92; W, 61.96. found: C, 7.78; N, 3.60; H, 1.42; P, 1.42; Co, 1.86; W, 61.79. Selected IR peak (cm⁻¹): 3502 (w), 1591 (w), 1527 (w), 1423 (w), 1267 (w), 1084 (m), 950 (m), 884 (m), 744 (s), 583 (s), 511 (s)

Table	1.	Crystal	data	for	1	and	2.
-------	----	---------	------	-----	---	-----	----

Compound	1	2
Empirical formula	$C_{60}H_{96}Co_2N_{24}O_{122}P_4W_{32}$	$C_{60}H_{96}CO_3N_{24}O_{126}P_4W_3$
		1
Formula weight	9230.54	9169.62
Temperature/K	298.15	298.15
Crystal system	triclinic	monoclinic
Space group	P-1	P21/c
a/Å	15.082(2)	24.592(3)
b/Å	15.392(2)	14.2596(17)
c/Å	20.427(3)	24.846(3)
α/°	78.8374(13)	90.00
β/°	82.5853(13)	111.4003(10)
γ/°	75.4572(12)	90.00
Volume/Å ³	4487.0(11)	8112.0(17)
Z	1	2
$\rho_{calc}g/cm^3$	3.416	3.754

Dalton Transactions Accepted Manuscrip

This journal is © The Royal Society of Chemistry 20xx

Journal Name COMMUNICATION

µ/mm⁻¹	20.727	22.327
F(000)	4082.0	8134.0
Reflections	78602	45258
collected		
Independent	17648	15970
reflections		
R _{int}	0.0565	0.0581
Data/parameters	17648/1096	15970/1136
GOF	1.078	1.020
Final R indexes	R ₁ = 0.0399	R ₁ = 0.0411
[I>=2σ (I)]	$wR_2 = 0.1006$	$wR_2 = 0.0848$
Final R indexes [all	$R_1 = 0.0610$	R ₁ = 0.0760
data]	$wR_2 = 0.1084$	wR ₂ = 0.0987

Results and discussion

Synthetic Aspects and General Characterizations

According to incomplete statistics, in 50 reported [P₂W₁₅]-based sandwich clusters, we found only one compound 12j were synthesized in hydrothermal condition and others were isolated using stirring method at temperature no higher than 100 $^{\circ}$ C, then growth of single crystals at room temperature. These facts suggested the possible transformation or decomposition of α - $[P_2W_{15}O_{56}]^{12}$ at higher temperature. Thus, we adopted this less dominant method to assemble novel sandwich clusters from common $\alpha\text{-}[P_2W_{15}O_{56}]^{12}$. On the other hand, targeted sandwich POMs synthesis can be realized by elaborate adjustment of the assembly environments such as stoichiometric ratio of reactant, solvent, pH, counterions, and temperature.¹⁶ In this system, low pH favors the formation of them and the lower pH environment is essential to formation of 2, but neither of them can be alternatively isolated by changing Co/α - $[P_2W_{15}O_{56}]^{12}$ stoichiometry, despite this is different in the final structures of 1 and 2. The achievement of different pH is controlled by adding the different amount of 1 M HCl solution. The detail yield-pH correlations for 1 and 2 are plotted in Figure 1. The best pH values for synthesis of them are 2.05 and 1.84, respectively. The different reaction temperatures (120, 140, 160 and 180 °C) were also tried in the synthesis of 1 and 2. The best yields are obtained at 160 °C for them. Only 2 could be isolated at 140 °C with a lower yield of 28 %. Whereas only brown precipitates were found after reaction at 180 or 120 °C for 1 and 2. Both of them can be readily prepared in high purity with ca. 50% isolated yield under the optimal reaction conditions.

Figure 1. The plot of reaction pH value vs yield for synthesis of 1 and 2.

Compared PXRD patterns (Figure S1) indicate both **1** and **2** are pure phases for the following characterizations. In IR spectra (Figure S2), P-O stretching peaks appeared at 1087 and 1085 cm⁻¹, for **1** and **2** respectively.¹⁷ The classical W-O and W-O-W bands are shown in the region lower than 1000 cm⁻¹.^{18a} The TGA curves (Figure S3) of them show similar two steps weight losing behaviour and the first weight loss of 4.1% (calc. 4.2%) and 2.9% (calc. 2.5%) for **1** and **2** occur at 123 and 127 °C, respectively. The strong adsorption band below 300 nm should be attributed to O_{2p} - W_{5d} charge transfer transitions^{18b} and the *d-d* absorption bands contributed by Co^{II} ions were observed as a weak shoulder peaks at around 580 nm for **1** and **2**, as indicated in the solid-state diffusion-reflection UV-Vis spectra (Figure S4).

Fig 2. Side view of structures of the polyanion 1 (a) and 2 (b). All PO₄ units highlighted as yellow tetrahedra and all WO₆ units in cyan octahedra. The sandwiched Co ions were shown as purple balls.

Cluster Structures of 1 and 2

X-ray diffraction on claret-red single crystals of 1 and 2 show they crystallize in the triclinic P-1 and monoclinic $P2_1/c$ space groups. respectively (Table 1). Both asymmetric units of 1 and 2 contain a half of complete cluster imposed by crystallographic inversion center. The bond valence sum calculations indicate that all Co and W centers are +2 and +6 oxidation state, respectively (Table S1). In 1, the reactant trivacant $\alpha\text{-}{[P_2W_{15}O_{56}]^{12}}$ has in situ gained an extra tungsten site of W16 atom, and thus is transformed to a rare divacant derivative of Dawson $\{P_2W_{18}\},$ which further binds two edge-shared but not corner-linked CoO6 octahedra (Co-O =1.993(9) - 2.191(8) Å; Co…Co = 3.24 Å) in the interior using the O atoms at the lacuna position to form the resulting sandwich cluster with an overall C_i symmetry (Figure 2a). Alternatively, the anionic cluster of 1 also could be described to a layer of two internal Co ions and two external W ions, which is sandwiched by two trivacant α - $[P_2W_{15}O_{56}]^{12}$ units upper and lower.

Interestingly, for **2**, two slices of "bread" are different to that in **1**, one trivacant $\alpha - [P_2W_{15}O_{56}]^{12}$ and another bivacant $\alpha - [P_2W_{16}O_{57}]^{8}$ (Figure 2b), and the "meat" layer is also dissimilar to that in **1**. Three CoO6 octahedra (Co-O = 1.993(9) - 2.178(9) Å; Co···Co = 3.19 - 3.33 Å) are edge-shared to form a defected cube, then asymmetrically clamped by one trivacant $\alpha - [P_2W_{15}O_{56}]^{12}$ and one bivacant $\alpha - [P_2W_{16}O_{57}]^{8}$. Since the external Co1 and W1 statistically occupied, molecular symmetry of **2** is essentially an overall C_s point group, although the sandwich anion of **2** sits on an inversion center in the crystallography. Until now, there are only two bivacant α -

COMMUNICATION

$$\begin{split} & \left[P_2 W_{16} O_{57}\right]^{8^{*}} \text{based compounds.}^{13,14} \text{ One is } \textit{in situ transformed from} \\ & \text{trivacant } \alpha \text{-} \left[P_2 W_{15} O_{56}\right]^{12^{*}} \text{, giving a half-sandwich cluster, whereas} \\ & \text{another is a trimer of } \left[Co_2 P_2 W_{16} O_{60}\right]^{8^{*}} \text{ from non-vacant } \left[\alpha \text{-} P_2 W_{18} O_{62}\right]^{6^{*}} \text{.} \\ & \text{However, the genuine sandwich POM cluster from } \textit{in situ generated bivacant } \alpha \text{-} \left[P_2 W_{16} O_{57}\right]^{8^{*}} \text{ is unprecedented.} \end{split}$$

Figure 3. Cyclic voltammograms of (a) **1**-GCE, (b) **2**-GCE in 0.5 M Na₂SO₄-H₂SO₄ aqueous solutions (pH = 2.52) at different scans (from inner to outer: 20, 50, 100, 200, 300, 400, 500 mV s⁻¹). Inset: variation of the second cathodic peak current intensity as a function of the square root of the scan rate.

Figure 4. Cyclic voltammograms showing the electrocatalytic activity of (a) **1**-GCE, (b) **2**-GCE in 0.5 M Na₂SO₄-H₂SO₄ aqueous solutions (pH = 2.52) with scan rate of 20 mV s⁻¹, in the presence of different concentration of nitrite. (c) Graph of CAT versus concentration of NO₂⁻ for **1**-GCE and **2**-GCE, (*I*p values of cathodic peak at -0.85 V for NO₂⁻).

Electrochemical properties and electrocatalytic activities of 1 and

2.

The Naphthol-modified glassy carbon electrode (GCE) were fabricated as working electrode to investigate the electrochemical properties of 1 and 2 in 0.5 M Na₂SO₄-H₂SO₄ aqueous solutions (pH = 2.52) using cyclic voltammograms (CV). As shown in Figure 3, the potentials of three pairs of reversible redox peaks are -0.180 and -0.201 V (I-I'), -0.454 and -0.489 V (II-II'), -0.633 and -0.679 V (III-III') for 1-GCE and -0.172 and -0.212 V (I-I'), -0.442 and -0.518 V (II-II'), -0.644 and -0.70 V (III-III') for 2-GCE, respectively. The half-wave potentails $E_{1/2} = (Epa + Epc)/2$ of I/I', II/II', and III/III' are -0.190, -0.470 and -0.656 V for 1-GCE, and -0.192, -0.480 and -0.672 V for 2-GCE (scan rate: 20 mV s⁻¹), which are ascribed to the multi-electrons redox process of W^{VI} centers,¹⁹ whereas redox peaks of Co^{II} ions were not observed under our experimental conditions. Moreover, the peak current of the second cathodic wave is proportional to the square root of the scan rate between -0.85 to 0.75 V, suggesting a diffusion-controlled redox process (see inset plots in Figure 3a and 3b).

The electrocatalytic reduction activities toward nitrite, hydrogen peroxide, chlorate, bromate, iodate are fully studied in 0.5 M Na_2SO_4 -H₂SO₄ aqueous solutions (pH = 2.52) using CVs with the scan rate of 20 mV s⁻¹. The catalytic efficiency is defined as CAT = $[I_p$ (POM, substrate) – I_p (POM)] / I_p (POM) × 100%, where I_p (POM, substrate) and $I_{\rm p}(\rm POM)$ are the peak currents for the reduction of the POM with and without the presence of substrate (nitrite, hydrogen peroxide and so on).²⁰ Figure 4a and 4b showed that 1and 2-GCE have moderate electrocatalytic activity towards the reduction of nitrite, as revealed by the changes peak current upon the addition of nitrite, that is, the cathodic current gradually increases with a continuous increase in the concentration of nitrite, while the corresponding anodic current decreases. Based on the reduction peak currents at -0.85 V, the catalytic efficiencies (CAT) of 1-GCE are calculated to 0%, 43.6%, 106.7%, 165%, 193%, corresponding to the concentration of nitrite varied from 0 to 20 mM, whereas the CAT values for 2-GCE are 0%, 42.2%, 120.37%, 182.6%, 226.5% under the same measurement condition, which indicates that 2-GCE is better than 1-GCE on electrocatalytic reduction of nitrite (Figure 4c).

As shown in Figure S5a and S5b, the **1**- and **2**-GCE also exhibit electrocatalytic reduction ability to H_2O_2 in the potential range of - 0.85 - 0.75 V. For **1**-GCE, with the addition of H_2O_2 , the reduction peak (III) currents increase while the corresponding oxidation peak currents decrease. Additionally, the second redox peaks gradually become undistinguished and the first redox peak currents are almost constant with the increase concentration of H_2O_2 , which indicates they has negligible electrocatalytic contributions to the reduction of H_2O_2 . For **2**-GCE, the redox peak profiles dramatically changed along with the increase of the concentration of H_2O_2 , but the gradually increased cationic peak currents are still observed in - 1 - 0V, suggesting its electrocatalytic activity towards to the reduction of H_2O_2 . The highest CAT values are 334.0% and 242.0% for **1**- and **2**-GCE, respectively, when the concentration of H_2O_2 is 60 mM.

The electrocatalytic reduction abilities of **1**- and **2**-GCE toward CIO_3^{-} , BrO_3^{-} and IO_3^{-} are evaluated in the same electrolyte using cyclic voltammograms (CV). As shown in Figure S6a-S6h, it was clearly seen that both **1**- and **2**-GCE should have the same order of electrocatalytic reduction abilities toward XO_3^{-} (X= Cl, Br and I), that is, BrO_3^{-} , IO_3^{-} , and CIO_3^{-} . As given in Figure S6b and S6e, for both **1**- and **2**-GCE, the second (II) and the third (III) reduction peak currents increase while the corresponding oxidation peak currents decrease when increasing concentration of BrO_3^{-} . The increment of the third

Page 4 of 8

Journal Name

Journal Name COMMUNICATION

reduction peak currents are much larger than the second one, suggesting that the third reduction peak mainly contributes the electrocatalytic activity to the BrO₃ reduction. In addition, the first redox peaks are nearly constant upon addition of BrO₃, indicating the little electrocatalytic contribution to the BrO₃ reduction. Differently, with the addition of IO_3^- , all reduction peak currents increase with similar degrees while the corresponding oxidation peak currents decrease, which indicates that all reduction peaks have electrocatalytic activity to IO₃ reduction. The best electrocatalytic reduction performances of 1- and 2-GCE on BrO3 are further proved by counting the CAT values of them as shown in Figure S6g and S6h. For example, the CAT values of 1-GCE are 8.6%, 231.67%, 62.7%, respectively, when the concentration of ClO_3 , BrO₃, IO₃ reaches to 6 mM. The electrocatalytic reduction efficiency to BrO3 is 27 times higher than that to ClO3, and 3.7 times higher than that to IO_3 , which indicates the selectively electrocatalytic ability toward low concentration of BrO3⁻ with 1-GCE. A similar electrocatalytic reduction performances are also found for 2-GCE. These results are well accordant with the strongest oxidization ability of BrO₃⁻ with respect to the others.²¹ Furthermore, the electrocatalytic efficiencies of 1- and 2-GCE are also compared in Figure S6g-S6h, 1-GCE has higher CAT value than **2**-GCE towards the reduction of CIO_3^{-} , BrO_3^{-} and IO_3^{-} . In the electrolyte solution containing 4 mM ClO₃, BrO₃, IO₃, the corresponding CAT values of 1-GCE are 5.7%, 160.0%, 39.8%, and those of 2-GCE are only 2.0%, 60.2%, 23.3%.

Magnetic properties

The temperature dependence of the magnetic susceptibility $\chi(T)$ of **1** and **2** was investigated between 2 K and 300 K in a magnetic field of 1000 Oe. Magnetization curves M(H) where measured at 2 K in magnetic fields up to 80 kOe. All magnetic measurements were performed on a SQUID magnetometer. Before analysis the data were corrected for sample holder contribution and the Larmor core diamagnetic contribution as obtained from Pascal's tables.²²

The $\chi T(T)$ curves for both samples (inset on Figure 5) are constant above approximately 50 K and increase when approaching lower temperatures, which indicates ferromagnetic interactions between Co centers. By fitting the $\chi(T)$ data (Figure 5) with the Curie-Weiss model, $\chi = C/(T - \theta)$, above 50 K a Curie constant C = 10.5 emu K/mol and a Curie-Weiss temperature $\theta = 7.2$ K were obtained for 1, yielding an effective magnetic moment $\mu_{eff} = \sqrt{8\chi T} = 6.5 \,\mu_B$ per Co atom. This value matches $6.54 \,\mu_B$ which is the theoretical value for Co(II) atoms when J = |L + S|.²³ For 2 C = 6.9 emu K/mol and $\theta = 4.1$ K were obtained, yielding an effective magnetic moment $\mu_{eff} = 4.3 \,\mu_B$ per Co atom, which is closer to $4.8 \,\mu_B$ the usually measured value for Co(II) ions with non-zero orbital contribution to the magnetic moment.²⁴ Positive values of θ for both samples further support weak ferromagnetic interactions between Co atoms.

Figure 5. Temperature dependence of magnetic susceptibility measured at 1000 Oe for samples **1** (green circles) and **2** (blue squares). The corresponding Curie-Weiss fits are shown as red full lines. In the inset the $\chi T(T)$ curves are shown.

The magnetic field dependences of magnetization for 1 and 2 are shown in Figure 6. The curves do not show any coercivity and both saturate above 20 kOe. The data were fitted with the function

$$M = M_0 B_J \left(\frac{g J \mu_B H}{k_B T}\right),$$

where M_0 is the saturation magnetization, B_J is the Brillouin function, g the g-factor, J the total angular momentum and μ_B the Bohr magneton. For **1** the values g = 4.8 and J = 2.8 were obtained, whereas for **2** g = 4.4 and J = 2.2 gave the best fit. Both values for gare close to 4.3 which is the approximate value for a Co(II) atom with octahedral coordination.²² The obtained J values for both samples are close to 5/2, which is the theoretical value for a Co(II) atom.

Figure 6. Magnetization curves versus magnetic field measured at 2 K for samples 1 (green circles) and 2 (blue squares). The fits with the Brillouin function are shown as red full lines.

Conclusions

We isolated and structurally characterized two novel Dawsonsandwiched clusters, the formation of which are depended on pH values and involves completely or partially *in situ* transformation of trivacant α -[P₂W₁₅O₅₆]¹² to rare divacant α -[P₂W₁₆O₅₇]⁸. The sandwiched Co_n^{II}-oxo clusters are also different in 1 and 2, thus giving an adjustable Co^{II}/POM ratio. Characteristic multi-electrons redox process relating to W^{VI} centers are also found in cyclic

COMMUNICATION

voltammograms. Both of them exhibit best electrocatalytic activities toward to the reduction of bromate, compared to chlorate and iodate. Intra-cluster weak ferromagnetic interactions between Co^{II} atoms of both 1 and 2 are confirmed by magnetic susceptibility measurements. This work demonstrated here releases a new approach to controllable strategy for assembly and functionalization of POM-based materials for various applications.

Acknowledgements

This work was supported by the NSFC (Grant Nos. 21201110 and 21571115), Young Scholars Program of Shandong University (2015WLJH24), and The Fundamental Research Funds of Shandong University (104.205.2.5 and 2015JC045). Marko Jagodič is funded by Slovenian Research Agency (ARRS), Program Number P2-0348.

Notes and references

- (a) M. T. Pope and A. Muller, Angew. Chem., Int. Ed., Eng. 1991, 30, 34; (b) E. Coronado and C. J. Gomez-Garcia, Chem Rev 1998, 98, 273; (c) A. Dolbecq, E. Dumas, C. R. Mayer and P. Mialane, Chem Rev 2010, 110, 6009; (d) J. T. Rhule, C. L. Hill and D. A. Judd, Chem Rev 1998, 98, 327; (e) M. Sadakane and E. Steckhan, Chem Rev 1998, 98, 219-237. E. Cadot, M. N. Sokolov, V. P. Fedin, C. Simonnet-Jegat, S. Floquet and F. Secheresse, Chemical Society Reviews 2012, 41, 7335; (f) D.-Y. Du, J.-S. Qin, S.-L. Li, Z.-M. Su and Y.-Q. Lan, Chem. Soc. Rev., 2014, 43, 4615; (g) H. Lv, Y. V. Geletii, C. Zhao, J. W. Vickers, G. Zhu, Z. Luo, J. Song, T. Lian, D. G. Musaev and C. L. Hill, Chem. Soc. Rev., 2012, 41, 7572; (h) H. N. Miras, L. Vila-Nadal and L. Cronin, Chem. Soc. Rev., 2014, 43, 5679; (i) S.-S. Wang and G.-Y. Yang, Chem Rev 2015, 115, 4893; (j) Y.-F. Song and R. Tsunashima, Chem. Soc. Rev., 2012, 41, 7384; (k) Y. Wang and I. A. Weinstock, Chem. Soc. Rev., 2012, 41, 7479; (I) T. Hirano, K. Uehara, K. Kamata and N. Mizuno, J Am Chem Soc 2012, 134, 6425; (m) K. Kamata, K. Yonehara, Y. Nakagawa, K. Uehara and N. Mizuno, Nat Chem 2010, 2, 478;
- (a) J. M. Clemente-Juan and E. Coronado, *Coord. Chem. Rev.*, 1999, **193-5**, 361;
 (b) D.-Y. Du, L.-K. Yan, Z.-M. Su, S.-L. Li, Y.-Q. Lan and E.-B. Wang, *Coord. Chem. Rev.*, 2013, **257**, 702;
 (c) W.-W. He, S.-L. Li, H.-Y. Zang, G.-S. Yang, S.-R. Zhang, Z.-M. Su and Y.-Q. Lan, *Coord. Chem. Rev.*, 2014, **279**, 141;
 (d) C. Yvon, A. Macdonell, S. Buchwald, A. J. Surman, N. Follet, J. Alex, D. L. Long and L. Cronin, *Chem Sci* 2013, **4**, 3810;
 (e) P. F. Wu, P. C. Yin, J. Zhang, J. Hao, Z. C. Xiao and Y. G. Wei, *Chem-Eur J* 2011, **17**, 12002;
 (f) J. Zhang, W. Li, C. Wu, B. Li, J. Zhang and L. X. Wu, *Chem-Eur J* 2013, **19**, 8129;
 (g) X. L. Wang, Y. Q. Guo, Y. G. Li, E. B. Wang, C. W. Hu and N. H. Hu, *Inorg Chem* 2003, **42**, 4135;
 (h) Y. Gong, T. Wu, P. G. Jiang, J. H. Lin and Y. X. Yang, *Inorg Chem* 2013, **52**, 777;
 (i) Y. X. Kuang and I. R. Evans, *Inorg Chem* 2010, **49**, 6005;
 (j) Y. Jia, J. Zhang, Z.-M. Zhang, Q.-Y. Li and E.-B. Wang, *Inorg Chem* 2014, **43**, 5;
 (k) H. Tan, W. Chen, Y.-G. Li, D. Liu, L. Chen and E. Wang, *J Solid State Chem* 2009, **182**, 465.
- (a) K. Yu, B. Wan, Y. Yu, L. Wang, Z. H. Su, C. M. Wang, C. X. Wang and B. B. Zhou, *Inorg Chem* 2013, *52*, 485; (b) K. Yu, B. B. Zhou, Y. Yu, Z. H. Su and G. Y. Yang, *Inorg Chem* 2011, *50*, 1862-1867; (c) J. Gao, J. Yan, S. Beeg, D. L. Long and L. Cronin, *J Am Chem Soc* 2013, *135*, 1796; (d) H. Imai, T. Akutagawa, F. Kudo, M. Ito, K. Toyoda, S. Noro, L. Cronin and T. Nakamura, *J Am Chem Soc* 2009, *131*, 13578; (e) H. N. Miras, C. J. Richmond, D. L. Long and L. Cronin, *J Am Chem Soc* 2012, *134*, 3816; (f) H. N. Miras, M. Sorus, J. Hawkett, D. O. Sells, E. J. L. McInnes and L. Cronin, *J Am Chem Soc* 2012, *134*, 6980.
- (a) J. Yan, D. L. Long and L. Cronin, *Angew Chem Int Ed* 2010, *49*, 4117; (b)
 M. N. Corella-Ochoa, H. N. Miras, A. Kidd, D. L. Long and L. Cronin, *Chem Commun* 2011, *47*, 8799.
- (a) B. Godin, Y. G. Chen, J. Vaissermann, L. Ruhlmann, M. Verdaguer and P. Gouzerh, Angew Chem Int Ed 2005, 44, 3072; (b) P. Mialane, A. Dolbecq, E. Riviere, J. Marrot and F. Secheresse, Angew Chem Int Ed 2004, 43, 2274; (c) S. G. Mitchell, P. I. Molina, S. Khanra, H. N. Miras, A. Prescimone, G. J. T. Cooper, R. S. Winter, E. K. Brechin, D.-L. Long, R. J. Cogdell and L. Cronin, Angew Chem Int Ed 2011, 50, 9154; (d) J.-W.Zhao, J. Zhang, S.-T. Zheng and G.-Y. Yang, Chem Commun 2008, 570; (e) S.-T. Zheng, D.-Q. Yuan, H.-P. Jia, J. Zhang, G.-Y. Yang, G.-Y. Yang and J. M. Clemente-Juan, Chem-Eur J 2011, Zhang, W.-H. Fang, G.-Y. Yang and J. M. Clemente-Juan, Chem-Eur J 2011,

17, 13032; (g) J.-W. Zhao, H.-P. Jia, J. Zhang, S.-T. Zheng and G.-Y. Yang, *Chem-Eur J* 2007, 13, 10030; (h) J.-W. Zhao, C.-M. Wang, J. Zhang, S.-T. Zheng and G.-Y. Yang, *Chem-Eur J* 2008, 14, 9223.

- (a) Y. Q. Lan, S. L. Li, J. S. Qin, D. Y. Du, , X. L. Wang, Z. M. Su and Q. Fu, Inorg Chem 2008, 47, 10600; (b) Y. Q. Lan, S. L. Li, X. L. Wang, K. Z. Shao, D. Y. Du, H. Y. Zang and Z. M. Su, Inorg Chem 2008, 47, 8179; (c) X. L. Wang, H. L. Hu, G. C. Liu, H. Y. Lin and A. X. Tian, Chem Commun 2010, 46, 6485; (d) X. L. Wang, Y. F. Bi, B. K. Chen, H. Y. Lin and G. C. Liu, Inorg Chem 2008, 47, 2442; (e) D. B. Dang, Y. Bai, C. He, J. Wang, C. Y. Duan and J. Y. Niu, Inorg Chem 2010, 49, 1280; (f) D. B. Dang, G. S. Zheng, Y. Bai, F. Yang, H. Gao, P. T. Ma and J. Y. Niu, Inorg Chem 2011, 50, 7907; (g) X. F. Kuang, X. Y. Wu, R. M. Yu, J. P. Donahue, J. S. Huang and C. Z. Lu, Nat Chem 2010, 2, 461; (h) M.-X. Liang, C.-Z. Ruan, D. Sun, X.-J. Kong, Y.-P. Ren, L.-S. Long, R.-B. Huang and L.-S. Zheng, Inorg Chem 2014, 53, 897; (i) T.-P. Hu, Y.-Q. Zhao, Z. Jagličić, K. Yu, X.-P. Wang and D. Sun, Inorg Chem 2015, 54, 7415; (j) Y.-Q. Zhao, K. Yu, L.-W. Wang, Y. Wang, X.-P. Wang and D. Sun, Inorg Chem 2014, 53, 11046.
- 7. (a) S. T. Zheng and G. Y. Yang, Chem Soc Rev 2012, 41, 7623; (b) J.-D. Compain, P. Mialane, A. Dolbecq, I. M. Mbomekalle, J. Marrot, F. Secheresse, E. Riviere, G. Rogez and W. Wernsdorfer, Angew Chem Int Ed 2009, 48, 3077; (c) M. Ibrahim, Y. Lan, B. S. Bassil, Y. Xiang, A. Suchopar, A. K. Powell and U. Kortz, Angew. Chem. Int. Ed., 2011, 50, 4708; (d) L. Lisnard, P. Mialane, A. Dolbecq, J. Marrot, J. M. Clemente-Juan, E. Coronado, B. Keita, P. de Oliveira, L. Nadjo and F. Secheresse, Chem-Eur J 2007, 13, 3525; (e) S. S. Mal, M. H. Dickman, U. Kortz, A. M. Todea, A. Merca, H. Boegge, T. Glaser, A. Mueller, S. Nellutla, N.Kaur, J. van Tol, N. S. Dalal, B. Keita and L. Nadjo, Chem-Eur J 2008, 14, 1186; (f) P. Mialane, C. Duboc, J. Marrot, E. Riviere, A. Dolbecg and F. Secheresse, Chem-Eur J 2006, 12, 1950; (g) B. S. Bassil, S. Nellutla, U. Kortz, A. C. Stowe, J. van Tol, N. S. Dalal, B. Keita and L. Nadjo, Inorg Chem 2005, 44, 2659; (h) L. Chen, K. Zhu, L.-H. Bi, A. Suchopar, M. Reicke, G. Mathys, H. Jaensch, U. Kortz and R. M. Richards, Inorg Chem 2007, 46, 8457; (i) Y. Hou, L. Xu, M. J. Cichon, S. Lense, K. I. Hardcastle and C. L. Hill, Inorg Chem 2010, 49, 4125; (j) B. Li, J.-W. Zhao, S.-T. Zheng and G.-Y. Yang, Inorg Chem 2009, 48, 8294; (k) H. Liu, C. Qin, Y.-G. Wei, L. Xu, G.-G. Gao, F.-Y. Li, and X.-S. Qu, Inorg Chem 2008, 47, 4166; (I) C.-M. Wang, S.-T. Zheng and G.-Y. Yang, Inorg Chem 2007, 46, 616; (m) Q.Wu, Y.-G. Li, Y.-H. Wang, E.-B. Wang, Z.-M. Zhang and R. Clerac, Inorg Chem 2009, 48, 1606.
- (a) M. T. Pope, in *Comprehensive Coordination Chemistry II*, Elsevier, New York, 2004, vol. 4, pp. 635–678; (b) C. L. Hill, in *Comprehensive Coordination Chemistry II*, Elsevier, New York, 2004, vol. 4, pp. 679–759; (c) D. L. Long, E. Burkholder and L. Cronin, *Chem. Soc. Rev.*, 2007, 36, 105; (d) A. Muller, F. Peters, M. T. Pope and D. Gatteschi, *Chem. Rev.*, 1998, 98, 239
- R. Contant and G. Herve, *Rev. Inorg. Chem.*, 2002, **22**, 63.
- 10. X. Fang and C. L.Hill, Angew. Chem., Int. Ed., 2007, 46, 3877.
- 11. R. G. Finke and M. W. Droege, *Inorg. Chem.* 1983, **22**, 1006.
- (a) C. P. Pradeep, D.-L. Long, P. Koegerler and L. Cronin, Chem. Comm., 2007, 4254; (b) T. M. Anderson, K. I. Hardcastle, N. Okun and C. L. Hill, Inorg. Chem. 2001, 40, 6418; (c) L. Ruhlmann, J. Canny, R. Contant and R. Thouvenot, Inorg. Chem. 2002, 41, 3811; (d) J. M. Clemente-Juan, E. Coronado, A. Gaita-Arino, C. Gimenez-Saiz, H. U. Gudel, A. Sieber, R. Bircher and H. Mutka, Inorg. Chem. 2005, 44, 3389; (e) L. Ruhlmann, C. Costa-Coquelard, J. Canny and R. Thouvenot, Eur. J. Inorg. Chem., 2007, 14931; (f) N. H. Nsouli, M. Prinz, N. Damnik, M. Neumann, E. Talik and U. Kortz, Eur. J. Inorg. Chem., 2009, 5096; (g) D. Schaming, J. Canny, K. Boubekeur, R. Thouvenot and L. Ruhlmann, Eur. J. Inorg. Chem., 2009, 5004; (h) T. M. Anderson, X. Zhang, K. I. Hardcastle and C. L. Hill, Inorg. Chem. 2002, 41, 2477; (i) X. Fang, P. Koegerler, M. Speldrich, H. Schilder and M. Luban, Chem. Comm. 2012, 48, 1218; (j) X. Wang, S. Liu, Y. Liu, D. He, N. Li, J. Miao, Y. Ji and G. Yang, Inorg. Chem. 2014, 53, 13130.
- 13. X. Fang and P. Kogerler, *Chem. Comm.* 2008, 3396.
- S. G. Mitchell, S. Khanra, H. N. Miras, T. Boyd, D.-L. Long and L. Cronin, *Chem. Comm.* 2009, 2712.
- R. G. Finke, M. W. Droege and P. J. Domaille, *Inorg. Chem.* 1987, *26*, 3886.
 Polyoxometalates: M. T. Pope, U. Kortz in *Encyclopedia of Inorganic and Bioinorganic Chemistry*, Wiley, New York, 2012.
- 17. C. Rocchiccioli-Deltcheff and R. Thouvenot, Spectrosc. Lett. 1979, 12, 127.
- 18. (a) C. Rocchiccioli-Deltcheff, R. Thouvenot and R. Franck, Spectrochim.
- Acta 1976, **22A**, 587; (b) E. N. Glass, J. Fielden, A. L. Kaledin, D. G. Musaev, T. Q. Lian and C. L. Hill, *Chem-Eur J* 2014, **20**, 4297.
- 19. M. Sadakane and E. Steckhan, Chem. Rev., 1998, 98, 219.
- B. Keita, A. Belhouari, L. Nadjo and R. Contant, J. Electroanal. Chem., 1995, 381, 243.

This journal is © The Royal Society of Chemistry 20xx

Journal Name COMMUNICATION

- 21. C. M. A. Brett and A. M. O. Brett, *Electrochemistry; Principles, Methods and Applications*, 1994, Oxford University Press.
- 22. O. Kahn, in Molecular Magnetism, VCH Publishers, New York, 1993.
- 23. N. W. Ashcroft and N. D. Mermin, *Solid State Physics*, Saunders College Publishing, USA, 1976.
- (a) Q. Chen, M.-H. Zeng, L.-Q. Wei and M. Kurmoo, *Chem Mater* 2010, *22*, 4328. (b) J.-Y. Zou, W. Shi, N. Xu, L.-L. Li, J.-K. Tang, H.-L. Gao, J.-Z. Cui and P. Cheng, *Chem Commun* 2013, *49*, 8226. (c) R. Boca and R. Herchel, *Coord. Chem Rev* 2010, *254*, 2973. (d) M. Kurmoo, *Chem Soc Rev* 2009, *38*, 1353

For Table of Contents Use Only

Two novel Dawson-sandwiched clusters involving *in situ* reorganization of trivacant α -[P₂W₁₅O₅₆]¹²⁻ into divacant α -[P₂W₁₆O₅₇]⁸⁻ were assembled under the different pH environments

