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ABSTRACT 

 

The signature of hydrotropic solubilisation is the sigmoidal solubility curve; when plotted against 

hydrotrope concentration, solubility increases suddenly after the minimum hydrotrope 

concentration (MHC), and reaches a plateau at higher hydrotrope concentrations. This sigmoidal 

curve is characteristic of cooperative phenomena, yet the true molecular basis of hydrotropic 

cooperativity has long remained unclear. Here we develop a theory, derived from the first 

principles of statistical thermodynamics using partially-open ensembles, to identify the origin of 

hydrophobic cooperativity. Our theory bears a close resemblance to the cooperative binding 

model used for protein-ligand binding. The cause of cooperativity is the enhancement of 

hydrotrope m-body interaction induced by the presence of the solute; m can be estimated from 

experimental solubility data. 

  

1. Introduction 

 

Hydrotropes can increase the solubility of hydrophobic solutes up to several orders of 

magnitude, hence have a number of important industrial applications.
1-6
 The signature 

characteristics of hydrotropes, which sets them apart from other cosolvents, is the sigmoidal 

solubility curve, or more specifically:
2-6  
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1. Solubility hardly increases at low hydrotrope concentrations (<0.5 molar).  

2. Above a certain threshold concentration, commonly referred to as the minimum hydrotrope 

concentration (MHC), solubility increases suddenly.  

3. Solubility ceases to increase after a few molars of hydrotropes (saturation of 

solubilisation).  

Such sigmoidal solubilisation curves (Figure 1) are reminiscent of cooperative phenomena.
7
  

 

What is the origin of hydrotropic cooperativity? Because of the apparent similarity between 

MHC and critical micelle concentration (CMC),
 7-9

 the self-aggregation of hydrotrope in the bulk 

phase has often been considered to be the origin of hydrotropic cooperativity.
7-13

 However, the 

fact that MHC is observed even for urea, which forms near-ideal mixture with water, has 

seriously challenged this hypothesis.
14-17

  

 

Rigorous statistical thermodynamics, on the contrary, has shown that bulk-phase self-

aggregation is not the cause of MHC.
14-17

 Furthermore, such bulk-phase self-aggregation reduces 

the effective number of hydrotrope molecules, thereby reducing the solubilisation efficiency per 

hydrotrope molecule.
14-17

 Instead, MHC is caused by the enhanced hydrotrope self-aggregation 

in the presence of the solute.
16
 This conclusion was reached through the use of the rigorous 

Kirkwood-Buff (KB) theory,
18-30

 which identified, without any approximations, the driving 

forces of hydrotropic solubilisation,
14-17

 which has later been supported by further evidence.
6,31

  

 

Even though our rigorous KB-based approach has revealed the new, universal principles of 

hydrotropy, there still are two shortcomings: (i) the mathematical form of the theory on the 
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origin of MHC is complex and is difficult to use;
14-17,32

 (ii) the origin of solubilisation plateau 

remains unexplained.
16,17

  

 

Hence there is a need for a simple theory, which can identify the cause of hydrotropic 

cooperativity. We start from the first principles of statistical thermodynamics.
30,33,34

 Guided by 

an analogy between ligand binding cooperativity
35-38 

and hydrotropic cooperativity, we propose 

how solubility curve should be analysed, in order to reveal the key aggregation interactions 

responsible for hydrotropic cooperativity.   

 

2. A statistical thermodynamic foundation for hydrotropic cooperativity   

 

The goal of our theory is to express solubility as a function of hydrotrope concentration. We first 

note that solubility measurements are usually carried out in the isobaric-isothermal (NPT) 

ensemble, whereas the concentration polynomial expansion of thermodynamic quantities is 

carried out in the grand canonical (�VT) ensemble.
30,32-34

 Our goal is to obtain such an expansion 

under an isobaric ensemble. This can be done by the use of the partially-open isobaric ensemble 

pioneered decades ago by Stockmeyer and Hill.
39-43

  

 

Consider a three component solution consisting of a solute (i=u), water (i=1), and hydrotrope 

(i=2) molecules. Let �� and �� respectively be the chemical potential and the number of species 

�, �, � and � respectively be the temperature, volume, and pressure of the system. Let �� = ��/� 
be the number density or concentration of species �; when �� is not kept constant, the ensemble 

average of �� is used instead to define ��, such that �� = 〈��〉/�. The convention  = �
�� (where 
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� is the Boltzmann constant) is used throughout. Since � is kept constant throughout this paper, 
it is often omitted in the subsequent discussions.   

 

To calculate the solvation free energy of a solute molecule, the pair of systems, with and 

without the solute, needs to be considered.
16
 When the solute is present, it is fixed at the origin 

and acts as the source for an external field for the water and hydrotrope molecules. In this case, 

the solution system is inhomogeneous.
16
 When the solute is absent, the system consists only of 

water and hydrotrope; hence this system is homogeneous. The partially-open partition functions 

for the two-component system with and without the solute molecule can be expressed 

respectively in the following
16,30,32-34

   

Γ���, �, ��, ��� = ∑ �������� R���, �, ��, ���      (1)  

Γ��, �, ��, ��� = ∑ ����R��, �, ��, �������        (2)  

where �� is the fugacity of the species i, is defined as16,30,32-34   
�� = exp����           (3)  

and the isobaric-isothermal partition functions are defined as  

R���, �, ��, ��� = �
�"!��!

$"%"$�%�

&"
'%"&�

'%� ()�	+,-./ ()01)2�")2��+,-3�04,2%" ,2%��  (4) 

R��, �, ��, ��� = �
�"!��!

$"%"$�%�

&"
'%"&�

'%� ()�+,-./ ()2�")2��+,-3�2%" ,2%��   (5) 

where Λ� is the de Broglie wavelength, 6� is the intramolecular partition function, 2�"  and 2��  

denote collectively the coordinates of the species 1 and 2, respectively, and 01 is the internal 

coordinates of the solute.  

 

Connection to thermodynamics can be made through the following formulae 
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������1 = −�� ln Γ���, �, ��, ���        (6) 

������ = −�� ln Γ��, �, ��, ���        (7) 

in which �, kept constant throughout the discussion, is omitted. Most importantly, the chemical 

potential of the fixed solute �1∗  can be expressed in terms of the partially-open partition functions 

in the following manner:
16,32

  

+,-;<∗ = +,-=��";"�<,��";"�> = ?@��,.,�",;��
?��,.,�",;��        (8) 

The main concern of this paper is the solubility increase which accompanies the introduction of 

the hydrotrope molecule. This, in the language of thermodynamics, is due to the change of �1∗  

from its pure water value �1∗�  

Δ�1∗ = �1∗ − �1∗�          (9) 

Solubility increase is expressed, using eqn (9), as follows 

+,-B;<∗ = ?@��,.,�",;��
?��,.,�",;��

?��,.,�"C�
?@��,.,�",C� =

D@�E,F,%",G��
D@�E,F,%",H�
D�E,F,%",G��
D�E,F,%"H�

      (10) 

where Γ���, �, ��, ∞� and Γ��, �, ��∞� refers to the partition functions in pure-water solvent, in 
which the concentration of the hydrotrope is 0 and its chemical potential �� diverges. 

 

3. The local subsystem open only to hydrotropes 

 

To construct a theory of hydrotropy in an analogous manner to the cooperative binding theory, 

here we aim to express +,-B;<∗  in terms of the “local” distribution of hydrotropes around the 

solute. To this end, let us introduce a “local” subsystem around the solute, which lies within the 

macroscopic systems introduced in Section 2. Let the boundary of this inhomogeneous 

subsystem be the range of solute-hydrotrope correlation, and J be the volume of this subsystem, 
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which is kept constant throughout. Following the classical works of Stockmeyer
37
 and 

Schellman,
38
 let this subsystem be partially open, namely open only to the hydrotropes. We shall 

later show how to specify J from the behaviours of K1 and K.  
 

 Let us now see the consequence of introducing the local subsystem.
 
To this end, let us first 

note that there are 
��!

L�!���,L��!  ways of choosing M� molecules out of �� identical molecules to be 

placed within the local subsystem. Using the constancy of J in order to move ()2L� out of the 

total volume integral ()� in the isobaric ensemble, the partially-open partition function can be 

rewritten as 

Γ���, �, ��, ��� = ∑ ���� ∑ ��!
L�!���,L��!

��L�N����� R���, �, ��, ���      

= ∑ O�P�
L�!

$�P�
&�
'P� ()2L�R�Q�, �, ��, ��R; 2L�T Γ���, �, ��, ∞�L���     (11) 

where, at the last step, a new variable is introduced as ��R = �� − M�. Note that the kernel of the 

integration has been denoted here as R�Q�, �, ��, ��R; 2L�TΓ���, �, ��, ∞�, because of a clear 

physical meaning which can be attributed to R�Q�, �, ��, ��R; 2L�T. This can be appreciated by 
rewriting, using eqn (11), the numerator of eqn (10) into the following form:   

?@��,.,�",;��
?@��,.,�"C� = ∑ ��L�L��� K1,L�     (12) 

K1,L� = $�P�
L�!&�

'P� ()2L�R�Q�, �, ��, ��R; 2L�T	     (13)  

R�Q�, �, ��, ��R; 2L�T , according to eqn (13), has a clear physical meaning: the fugacity of 

inserting M� identical hydrotrope molecules fixed at the configuration 2L�. 
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Importantly, K1,L� is a microscopic quantity, since the range of the integral is over the local 

system, which is microscopic. In a similar vein, a homogeneous subsystem must be defined in 

order to complete the link between solubilisation and local hydrotrope distribution. Let us 

consider the same volume J, which does not contain any solute molecules and sets its origin at 

the centre-of-mass position of the solute that is to be inserted. 

 

Using the same argument which led to eqn (12) and (13), the following relationships for the 

bulk solution:  

?��,.,�",;��
?��,.,�"C� = ∑ ��L�L��� KL�      (14) 

KL� = $�P�
L�!&�

'P� ()2L�RQ�, �, ��, ��R; 2L�T		     (15)  

 

Solubilisation can now be linked to the local distribution of hydrotropes; this can be achieved 

by combining eqn (10), (12)-(15) in following form: 

+,-B;<∗ = �U∑ V<,P�O�P�P�W"
�U∑ VP�O�P�P�W"

         (16)  

We emphasise that K1,L�  and KL�  in eqn (16) are microscopic.  

 

Now we derive a rational polynomial expansion of +,-B;<∗  based upon eqn (16). To do so, we 

employ the elegant method of the MM theory, namely to consider ��R → 0 limit of K1,L�  and 

KL� . In our definition of the local subsystem, J represents the range of correlation between solute 

and hydrotrope-hydrotrope interaction; putting ��R → 0 is equivalent to ignoring the contribution 
from the hydrotrope molecules outside of the correlation range. Hence eqn (16), when 
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considered under the ��R → 0  limit, serves as the basis for the rational polynomial expansion of 

solubilisation that we sought after.  

 

4. Hydrotropic cooperativity versus binding cooperativity  

 

Our result, eqn (16) (at  ��R → 0  limit) is mathematically analogous to binding polynomials
35-

37 
in the theory of cooperative binding. This can be better appreciated by a trivial rewriting of eqn 

(16),  

+,-B;<∗ − 1 = ∑ BVP�O�P�P�W"
�U∑ VP�O�P�P�W"

         (17)  

in which ΔKL� = K1,L� − KL� . This equation is analogous to binding polynomials.   

 

The analogy between hydrotropic solubilisation and cooperative binding theories opens up a 

new possibility towards revealing the mechanism of hydrotropic cooperativity. (In fact it is 

considered to be the continuation of the classical attempts to extend the theory of binding to 

weak-nonspecific interactions characteristic of solvation).
39,44,45

 We assume that the summations 

in the denominator and numerator of eqn (16) are dominated by a few terms for both, which will 

greatly simplify the analysis. To this end, let us rewrite eqn (17) in the following manner:  

+,-B;<∗ − 1 = ∑ [L� 	\
V<,P�,VP�

VP�
]L�          (18) 

where  

[L� = VP�O�P�
�U∑VP�O�P�

          (19) 
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signifies the probability of finding M� hydrotrope molecules in the local subsystem without the 

solute. Now, the denominator and numerator of eqn (16) can be shown to be dominated by a few 

terms if the following conditions are met, regardless of the M�-dependence of [L�:  

a. 	V<,P�,VP�
VP�

= 0 for M� < M�___ − ΔM� 

b. 
V<,P�,VP�

VP�
 is large and positive for M�___ − ΔM� < M� < M�___ + ΔM� 

c. 
V<,P�,VP�

VP�
= 0 for M� > M�___ + ΔM� 

d. ΔM� is at its minimum, or ΔM� ≃ 0 
In Appendix, we show that these four conditions will lead to a unique determination of J and M�___, 
and that J signifies the range within which hydrotrope-hydrotrope interactions are affected by 
the presence of a solute.      

 

There is also a logically possible yet less likely scenario that [L�  is non-zero only between  

M� = M�___ − ΔM� and M�___ + ΔM�, and 
V<,P�,VP�

VP�
  is positive in the same range. In either case, if we 

neglect the peak width such that ΔM� = 0,  eqn (18) can be rewritten as  

+,-B;<,%FE∗ − 1 = BVP�____O�P�____
�UVP�____O�P�

____         (20) 

Eqn (20) is analogous to the Hill model of binding cooperativity.
35-37,45

 Now we modify eqn. (20) 

in two different ways. The first is completely general; we rewrite eqn (20) in terms of the 

hydrotrope activity, c� . This can be done by using the the standard chemical potential of 

hydrotrope ��d = �� − K� ln c�  and the corresponding fugacity of pure hydrotrope ��d =
exp���d�, as  

+,-B;<∗ − 1 = BVP�____
e f�

P�____

�UVP�____
e f�

P�____         (21) 
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Where 

ΔKL�____
g = ���d�L�____K1,L�____ − ���d�L�____KL�____        (22) 

KL�____
g = ���d�L�____KL�____          (23) 

 

A simplification of eqn (21)-(23) is possible when the aqueous hydrotrope solution obeys the 

dilute ideal solution. In this case, eqn (20) can be rewritten in terms of the mole fraction of the 

hydrotrope, h� . This can be achieved by using the dilute ideal standard chemical potential 

��di = �� − K� ln h� and the corresponding standard fugacity ��di = exp���di�, as  

+,-B;<∗ − 1 = BVP�____
ee i�P�____

�UVP�____
ee	 i�P�____

         (24) 

where 

ΔKL�____
gg = ���di�L�____K1,L�____ − ���di�L�____KL�____        (25) 

KL�____
gg = ���di�L�____KL�____          (26) 

Note that M�___ does not depend on the choice of the standard state of the chemical potential, i.e., M�___ 
is the same for eqn (20), (21) and (24).  

 

We emphasize there that we have introduced the conditions a-d to specify when hydrotrope-

induced solubilization behaves in a cooperative manner (eqn (20)). In our present theoretical 

formalism, the validity of these conditions can only be verified through how well eqn (20), (21) 

or (24) can fit the solubility data, as will be demonstrated in the next section.   

 

5. Linearised plot for analysing solubility data  
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In the study of ligand binding, key parameters for binding cooperativity can be obtained from 

experimental binding data through the linear plot, which can visually show how well the 

experimental data fits the model.
35-37

 A formal analogy between hydrotropy and cooperative 

binding suggests that this powerful method can be extended to hydrotropic cooperativity.  

 

We aim to reproduce the overall shape of the solubility curve by eqn (21) or eqn (24). Here we 

focus on eqn (24), because aqueous hydrotrope solutions can often be treated as dilute ideal 

solutions. Eqn (24) contains only three parameters, M�___ , KL�____
gg , and ΔKL�____

gg = ���di�L�____K1,L�____ −

���di�L�____KL�____	. For simplicity, let us first exploit that solubilisation +,-B;<∗  converges to a plateau, 

whose value will be referred to as  +,-B;<∗,jkl at large h�, which, according to eqn (24), leads to  
V<,P�____
VP�____

= +,-B;<∗,jkl          (27) 

Combining eqn (24) and (27), we obtain  

ln m �,nopqG<∗

nopqG<∗ ,nopqG<∗,jkl
r = M�___	ln h� + lnKL�____

gg        (28)  

which suggests that by plotting ln m �,nopqG<∗

nopqG<∗ ,nopqG<∗,jkl
r against ln h�,  M�___ can be determined from 

the gradient and ln KL�____
gg  from the intercept.  

 

6. Hydrotropic cooperativity from solubility data 

 

Now we apply eqn (28) to analyse experimental data.
15,47-49

 As model systems, the solutes 

butyl acetate (BA) and benzyl benzoate (BB) in water are solubilized by the hydrotropes urea, 

sodium benzoate (sb) and sodium salicylate (ss). Solubilization reaches plateau at approximately 

h� ≃0.04 for urea and 0.08 for ss and sb, during which the activity coefficients of water, s�, 
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hardly deviate from 1, meaning that the aqueous hydrotrope solution can be considered as ideal 

dilute solution. Hence we use the theory for dilute ideal solutions, eqn (24).  

 

Figure 2 presents the linearised plot (eqn (28)), which exhibits near-straight lines below 

solubility saturation concentration. This shows that eqn (24) is indeed a good approximation. 

Based upon this linear fit, and the resultant parameters tabulated in Table 1, we have made a 

direct comparison (Figure 3) between eqn (24) and experimental data.  Figure 3 shows that eqn 

(24) captures the sigmoidal concentration dependence, hence hydrotropic cooperativity, with 

only three parameters.  

   

Note that the M�___ values determined from Figure 2 are not integers. This is not surprising, 

considering that eqn (24) is based upon an approximation ΔM� = 0 which means the abrupt onset 

of the cooperative effect. Hence M�___ = 4.37  for BA in urea, for example, indicates that the 

cooperative effect is operative around M� = 4 or 5.  
 

Our theory has clarified that MHC and saturation both arise from the same physical origin: a 

large positive (K1,L� − KL� ) at around a certain M� = M�___ . Considering that KL�  signifies the 

fugacity of inserting M� hydrotropes into the system, there are two possible scenarios:  

1. Around M� = M�___, inserting M� hydrotropes becomes easier in the presence of the solute 

compared to the bulk. (Increase of K1,L�  from KL�) 

2. Around M� = M�___, inserting M� hydrotropes becomes more difficult in the bulk phase. 

(KL�  as a function of M� has a minimum; see below). 
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In the case of monomeric hydrotropes devoid of micelle formation, scenario 1 would be the 

mechanism of solubilisation, which is consistent with our previous conclusion based upon the 

KB theory of solution.
14-17

 If there is strong anti-cooperativity in hydrotrope self-association, 

scenario 2 may be possible; however, what is commonly reported in the hydrotrope literature is 

on the contrary the self-aggregation of hydrotropes.
14-17

 In the case of micellar hydrotropes, KL�  

takes a maximum value when M� is equal to the aggregation number. Scenario 2 is therefore not 

likely; hence according to Scenario 1, the fugacity of M� hydrotropes increases in the presence of  

a solute due to a strong solute-hydrotrope binding.  

 

7. Discussion  

 

Our theory has identified the cause of hydrotropic cooperativity: the strengthening of M�___-body 
hydrotrope aggregation around the solute from their aggregation tendency in the bulk solution. 

This simple picture clarifies further what has been revealed by our previous work, namely, the 

increase of the hydrotrope-hydrotrope KB integral induced by the solute molecule.
16,17,32

  

 

The small molecule hydrotrope systems analysed in this paper involved the enhancement of 

the association of 2 to 5 hydrotrope molecules in the presence of the solutes (Table 1). 3-5 body 

hydrotrope association is most affected around BA, whereas BB induces the changes of 2-3 body 

hydrotrope associations. Since the coefficients K1,L�  and  KL�  are defined at the ��R → 0 limit, 

this means that the sigmoidal shape of the solubility curve can be understood entirely by how the 

interaction of 2 to 5 hydrotropes in water is affected when the solute is introduced. This leads to 

the significant facilitation of simulation-based approaches to hydrotropy. In this context, 

Page 14 of 29Physical Chemistry Chemical Physics



 

 15

understanding aggregation through the combination of statistical thermodynamics with computer 

simulation is indispensable.
50,51

  

 

We have successfully shown that the sigmoidal shape of the solubility curve can be reproduced 

with only a few parameters. In contrast to the present theory, which is based firmly upon the first 

principles of statistical thermodynamics, none of the previous models were able to fit the overall 

shape of the solubility curve with few parameters, and at the same time to provide a molecular-

based insight into the mechanism of solubilisation. Indeed, the association model
12
 can fit 

solubility at lower hydrotrope concentrations, but cannot reproduce the plateau. Alternatively, a 

polynomial fitting of solubility, incorporating up to the sixth order of hydrotrope concentration 

was able to fit the data.
52
 This approach may be founded firmly upon the MM theory of 

solutions, yet, as we have previously shown, the higher the order, the increasingly more 

cumbersome the theoretical expression becomes, hence is difficult to obtain physical insights.
32
 

In contrast to these previous models, our theory can now describe the entire region of the 

solubility curve with clear physical insights.  

 

In contrast to our previous statistical thermodynamic approaches,
14-17,32

 we employed here the 

combination of the partially-open ensemble and the local subsystem whose volume remains 

constant throughout. This is partly reminiscent of the KB theory, which is based upon the 

combination of the grand canonical ensemble and the local subsystem with constant volume.
16,25

 

The advantage of our present approach is in its simplicity, because there is no need for a link 

between an NPT and a grand canonical ensemble through a cumbersome process of changing 

thermodynamic constraints.
16,32

 The disadvantage, however, is the lack of a direct link to the KB 
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integrals, which have a clear definition in terms of the radial distribution functions.
32
 Our K1,L� 

and KL�  nevertheless have a clear physical meaning of the fugacity of M� hydrotrope molecules 

around the solute and in the bulk, hence can be accessible through simulation.  

 

Note that, because eqn (17) does not depend on how hydrotrope molecules interact in the bulk 

phase, it can be used for monomeric and micellar hydrotropes. However, when attempting to 

identify the dominant K1,L�____  and KL�____  terms in view of a further simplification of eqn (17), a 

careful discussion may be necessary in order to grasp the nature of hydrotrope-hydrotrope 

interaction.  

 

8. Conclusion 

 

The solubility increase in the presence of hydrotropes exhibits features of cooperative 

phenomena. The sudden onset of solubilisation at minimum hydrotrope concentration (MHC), as 

well as solubility saturation at high hydrotrope concentrations makes up the sigmoidal 

hydrotrope concentration dependence, whose molecular origin has not been captured sufficiently 

by our previous statistical thermodynamic studies.
21-25,32

 A new statistical thermodynamic theory 

was formulated in this paper to clarify the origin of hydrotropic cooperativity and to establish a 

close analogy between hydrotropy and cooperative binding phenomena.  

 

In our new theory, hydrotropic cooperativity, which includes MHC and solubility saturation, 

arise from the same origin: the enhancement of m-body hydrotrope aggregation in the presence 

of the solute. This is the only information needed to reproduce the overall sigmoidal shape of the 
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solubilisation curve, which can be extracted from experimental solubility data in a method 

analogous to the linearised plot in cooperative binding theory.   

 

The present theory, because of its generality, can be applied straightforwardly to both 

monomeric and micellar hydrotropes. The future application of our theory to the micellar system 

will be useful in clarifying the role of micelle formation in solubilisation. In addition, our 

theoretical framework may be useful in clarifying the molecular basis of biomolecular solvation 

in the presence of salts,
53-55

 as well as protein denaturation cooperativity in the presence of 

cosolvents.
56
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Appendix  

 

In order to derive eqn (20), which establishes the analogy between hydrotropy and cooperative 

binding, we have introduced in Section 3 the local subsystem open only to hydrotropes, whose 

volume is J . Here we show that J  can be determined uniquely from the four conditions in 

Section 4 and that the physical meaning of the boundary of such a subsystem will be made clear.  

 

To do so, let us first appreciate that 
V<,P�____
VP�____

, which can be linked to experimental data via eqn 

(27), has a clear physical interpretation. Using eqn (13) and (15), we have  

V<,P�____
VP�____

= (x2P�____y@Q�,.,�",�;2P�____T	
(x2P�____yQ�,.,�",�;2P�____T		         (A1) 

Note that Eq. (A1) is defined at the ��R → 0 limit. Eq. (A1) can be rewritten in the following 

form:   

V<,P�____
VP�____

= ()2L�____�2P�____ 	 	y@Q�,.,�",�;2P�____T
yQ�,.,�",�;2P�____T        (A2)  

where 
	y@Q�,.,�",�;2P�____T
yQ�,.,�",�;2P�____T  signifies the fugacity of a solute fixed at the origin, when M�___ hydrotrope 

molecules in the system take the configuration 2L�____ . The probability of observing such a 

configuration 2L�____ is defined by  

�2P�____ = yQ�,.,�",�;2P�____T
(x2P�____yQ�,.,�",�;2P�____T		        (A3)  

This shows that, given the volume of the subsystem J, how hydrotrope molecules are distributed 

crucially determines 
V<,P�____
VP�____

. We emphasise here that while 
	y@Q�,.,�",�;2P�____T
yQ�,.,�",�;2P�____T  is not dependent on the 
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size of the subsystem J , �2P�____  does depend on J , because of the increase in the number of 

allowed hydrotrope configurations as the increase of the subsystem size. 

 

We have thus seen that the value of J  is crucial to the thermodynamics of cooperative 

hydrotropy. This makes one wonder if J can be determined uniquely; otherwise there will be 

multiple combinations of J and M�___ that satisfies eqn (20) onwards, which makes it impossible to 

interpret our results at a molecular level. Contrary to such pessimism, we will demonstrate below 

that it is the condition d that guarantees the uniqueness of J.  
 

To do so, let us take the second local subsystem with volume Jg�> J�, which contains the first 
subsystem (volume J ) within, as well as M�  hydrotrope molecules. There are two possible 

scenarios by which the condition b (which has been introduced in Section 4) is satisfied by this 

new setup (Jg, M�) in addition to the first (J, M�___ ):   
1. All M� = M�___  and all hydrotrope molecules are located within the local subsystem J.  
2. M�___ hydrotrope molecules are located within J, and M� − M�___ are located in the exterior of J, 

i.e., Jg − J 
Obviously, the larger Jg becomes the more likely scenario 2 becomes. The larger the Jg the 

more different ways by which the scenario 2 is satisfied. Hence the range of M� that satisfies the 

condition b, namely ΔM�, increases.  

 

This is why we have imposed the condition d (which has been introduced in Section 4), by 

which we choose J in order that ΔM� is minimum, hence can be approximated safely as 0.  Thus 
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J can be determined by the minimum volume (with minimum ΔM�) that encompasses the range 

of hydrotrope-hydrotrope interaction.    
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Figure 1 

 

Figure 1. Solubility of butyl acetate (BA) and benzyl benzoate (BB) in the presence of three 

hydrotropes, sodium benzoate (sb, green circle), sodium salicylate (ss, red square) and urea (blue 

triangle). Note that the “solubilisation” refers to the molar solubility relative to the value at zero 

hydrotrope concentration, i.e. +,-B;<∗  in the main text. Experimental data taken from Refs 47 and 

48.   

  

0

10

20

so
lu

b
il

iz
at

io
n

1 2 3

[hydrotrope] mol dm
-3

0

10

BA

BB

urea

sb

ss

Page 25 of 29 Physical Chemistry Chemical Physics



 

 26

Figure 2 

 

Figure 2. Fitting experimental solubility data to eqn (28), in order to determine the necessary 

parameters tabulated in Table 1. Note that the vertical axis refers to z ≡ ln m �,nopqG<∗

nopqG<∗ ,nopqG<∗,jkl
r , 

i.e., l.h.s. of eqn (28). The hydrotropes used to solubilize BA and BB are sodium benzoate (sb, 

green circle), sodium salicylate (ss, red square) and urea (blue triangle). 
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Figure 3 

 

 
 

Figure 3. Comparison of our theory (eqn (24)) against experimental data, with the parameters 

summarised in Table 1. The hydrotropes used to solubilize BA and BB are sodium benzoate (sb, 

green circle), sodium salicylate (ss, red square) and urea (blue triangle). 
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Table 1. Fitting parameters for the linearized plot (Figure 2). The definition of each parameter 

can be found in eqn (28).  

  

Solute  Hydrotrope  M�___ ln KL�____
gg  +,-B;<∗,jkl = K1,L�____

gg

KL�____
 

Butyl acetate Sodium benzoate 4.68 13.1 5.86 

Butyl acetate Sodium salicylate 3.55 9.82 2.41 

Butyl acetate Urea 4.37 16.1 15.2 

Benzyl benzoate Sodium benzoate 2.93 8.98 8.03 

Benzyl benzoate Sodium salicylate 2.72 8.73 8.46 

Benzyl benzoate Urea 2.61 10.4 8.65 
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