PCCP

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/pccp

Journal Name

COMMUNICATION

Photoactivation of the Ni-SI_r state to Ni-SI_a state in [NiFe] hydrogenase: FT-IR study on the light reactivity of the ready Ni-SI_r state and as-isolated enzyme revisited⁺ Hulin Tai,^{a,b} Liyang Xu,^a Seiya Inoue,^c Koji Nishikawa,^c Yoshiki Higuchi,^{b,c} and Shun Hirota^{a,b,*} through an acid-base equilibrium, where the Ni-SIr and Ni-SIa states

DOI: 10.1039/x0xx00000x

www.rsc.org/

Received 00th January 20xx,

Accepted 00th January 20xx

The Ni-SIr state of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F was photoactivated to its Ni-SI_a state by Ar⁺ laser irradiation at 514.5 nm, whereas the Ni-SL state was light induced from a newly identified state, which was less active than any other identified state and existed in the "as-isolated" enzyme.

Introduction

Hydrogenase is a metalloenzyme which catalyzes the reversible H₂ oxidation reaction, $H_2 \rightleftharpoons 2H^+ + 2e^{-.1-4}$ According to the active site metal composition, hydrogenases are classified into three types: [NiFe], [FeFe], and [Fe].⁴ [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F (DvMF) is a membrane-attached enzyme comprising two subunits, one large and one small.⁵⁻⁷ The large subunit contains the Ni-Fe active site, where the Ni and Fe ions are bridged with two cysteinyl thiolates (Fig. 1). Another two cysteine residues are terminally bound to the Ni ion, whereas one CO and two CN- ligands are coordinated to the Fe ion.7-10 The small subunit contains three Fe-S clusters which mediate the electron transfer between the Ni–Fe active site and cytochrome c_3 .¹¹

Aerobically isolated [NiFe] hydrogenase, herein referred to as "asisolated", is a mixture of mainly two paramagnetic Ni-A (Ni³⁺) and Ni-B $(Ni^{3\scriptscriptstyle +})$ states with some other EPR-silent states. 10,12,13 The Ni-B state is readily activated in the presence of H₂ or under electrochemically reducing conditions, while the Ni-A state requires longer time for activation.14,15 A bridging hydroxo (OH-) ligand between the Ni and Fe ions has been identified for the Ni-B state (Fig.1).^{6,16} For the Ni-A state, the nature of an oxygenic bridging ligand remains contentious,6,16-21 however, bridging OH- and cysteine-sulfenate ligands between the Ni and Fe ions have been indicated recently.²² One electron reduction of the Ni-A and Ni-B states produces EPR-silent unready Ni-SU and ready Ni-SIr states (Ni²⁺), respectively.^{10,16} The Ni-SIr state is activated into another EPR-silent Ni-SI_a state (Ni²⁺) by protonation at the Ni-Fe active site

This journal is C The Royal Society of Chemistry 20xx

represent the deprotonated and protonated states, respectively.^{10,12,23} Several mechanisms have been proposed to explain the acid-base equilibrium. In one of them, the bridging OH⁻ ligand is present in the Ni-SIr state, and a proton is transferred to the OH⁻ ligand, which then leaves the active site as a H₂O molecule.^{2,12,24,25} In the other proposals, a bridging OH⁻ ligand may be present, absent, or replaced by a hydride (H⁻) or a H₂O molecule in the Ni-SI_r state, and the proton is transferred to one of the terminal Ni-coordinating cysteinethiolate^{26,27} or cysteine-sulfenate²⁸ ligand that acts as a proton accepting base in the Ni-SIr state. The acid-base equilibrium between the Ni-SIr and Ni-SIa states is a common feature among [NiFe] hyrogenases, and thus the Ni-SIr state has been identified as a key intermediate for the enzyme activation.⁴ Further reduction of the Ni-SI_a state produces a paramagnetic state (Ni-C, Ni³⁺) and a fully reduced EPR-silent state (Ni-R, Ni²⁺), where the Ni-SIa, Ni-C, and Ni-R states form a catalytic cycle.^{3,4,10}

Light sensitivity of [NiFe] hydrogenase has been reported for various states and utilized to elucidate its catalytic reaction.²⁹⁻³⁶ For example, we have reported photo-conversion of the Ni-C state to the Ni-L and Ni-SI_a states for DvMF [NiFe] hydrogenase, and proposed the Ni-L state as an intermediate between the transition of the Ni-C and Ni-SI_a states.³¹ The Ni-L state has also been shown to be a catalytic intermediate for [NiFe] hydrogenases from Pyrococcus furiosus and Escherichia coli by chemical potential jump kinetic and direct electrochemical studies.³⁷⁻⁴⁰ We have also simultaneously detected two Ni-L states (Ni-L2 and Ni-L3) by FT-IR, and proposed that Ni-coordinating Cys546 is deprotonated during the conversion from the Ni-L2 to Ni-L3 state.³² Furthermore, it has been proposed that the Ni-SIr state is light sensitive, reversibly forming an EPR-

Fig. 1 Active site structure of DvMF [NiFe] hydrogenase in the Ni-B state (PDB: 1WUJ). One CO and two CN⁻ ligands are assigned as Fe ligands.^{7,16,21} Carbon, nitrogen, oxygen, sulphur, nickel, and iron atoms are shown in grey, blue, red, yellow, green, and pink spheres, respectively.

^a Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan

E-mail: hirota@ms.naist.jp; FAX: +81-743-72-6119; Tel: +81-743-72-6110 ^b CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

^c Graduate School of Life Science, University of Hyogo, 3-2-1 Koto kamigori-cho, Ako-gun, Hyogo 678-1297, Japan

[†]Electronic Supplementary Information (ESI) available. See DOI: 10.1039/x0xx00000x

COMMUNICATION

silent Ni-SL state (Ni²⁺) at 90–110 K.³⁶ However, in this work, we found that the Ni-SL state is not light induced from the Ni-SI_r state, but rather the Ni-SI_r state is photo-induced to the Ni-SI_a state.

Experimental

Preparation of [NiFe] hydrogenase

[NiFe] hydrogenase was isolated from sulfate reducing bacterium DvMF, and purified as described previously.⁵ The concentration of [NiFe] hydrogenase was adjusted with its absorption at 400 nm using its absorption coefficient ($\varepsilon = 47 \text{ mM}^{-1}\text{cm}^{-1}$).¹¹

FT-IR measurements

[NiFe] hydrogenase (concentration 1.0-2.0 mM) in 25 mM Tris-HCl buffer (pH 7.4 at 298 K) was degassed with a vacuum line, purged with 1 bar of H₂, and incubated at 310 K for 5.5 h (if not mentioned) to obtain the H₂-activated sample. The sample solution was further degassed with the vacuum line and purged with 1 bar of N₂. The Ni-SIr state was obtained by partial oxidation of the H2-activated enzyme with an anaerobic addition of 5 equivalents of phenosafranin (Sigma-Aldrich) using a glove box (YSD-800L, UNICO, Tsukuba). The sample solution was transferred anaerobically into an infrared cell with CaF_2 windows in the glove box. FT-IR spectra were measured before, during, and after light irradiation at 103-238 K with a FT-IR spectrometer (FT-IR 6100V, JASCO, Tokyo) equipped with an MCT detector. A cryostat system (CoolSpeK IR USP-203IR-A, Unisoku, Hirakata) was used to control the temperature of the cell. The light irradiation spectra were measured 5-22 min after light-irradiation was started. Light irradiation of the sample was performed at 514.5 nm with an Ar⁺ laser (Model 2017, Spectra-Physics, Santa Clara). The laser power was adjusted to 0.5-3.3 W/cm² at the sample point. The corresponding buffer spectrum was collected as a reference spectrum and subtracted from the sample spectra. Spectral data were collected at 2-cm⁻¹ resolution and averaged from 1024 scans.

Results and discussion

Observation of the light-induced states at low temperatures

It has been reported that the midpoint potential (E_m) for the redox transition between the Ni-B and Ni-SI (Ni-SI_r and Ni-SI_a) states of DvMF [NiFe] hydrogenase is -151 mV at pH 7.4, whereas between the Ni-SI and Ni-C states it is -375 mV.²³ Under N₂ atmosphere, the H₂-activated enzyme contained the Ni-C and Ni-R states for ~70% and ~30%, respectively (See S1, ESI[†]), with ~90 % of the proximal Fe-S cluster reduced.²⁹ The Ni-SI_r state was obtained by partial oxidation of the H₂-activated enzyme with an anaerobic addition of 5 equivalents of phenosafranin under N₂ atmosphere, since phenosafranin exhibits its redox potential at $E_m = -252$ mV between -375 and -151 mV.

The CO stretching (vco) and CN⁻ stretching (vcn) frequencies of the Fe site are reliable sensors for the changes in the electron density of the Fe ion in [NiFe] hydrogenase.⁴¹ Negative IR bands at 1924, 2056, and 2071 cm⁻¹ and positive bands at 1943, 2077, and 2089 cm⁻¹ were observed in the difference (light-minus-before) FT-IR spectra between the spectra during and before light irradiation by Ar⁺ laser (514.5 nm) for phenosafranin-oxidized [NiFe] hydrogenase at 178– 238 K under N₂ atmosphere at pH 8.0 (Fig. 2A). The negative and

Fig. 2 FT-IR spectra of (A) phenosafranin-oxidized and (B) as-isolated *Dv*MF [NiFe] hydrogenase at 178–238 and 103–198 K, respectively, under N₂ atmosphere at pH 8.0. (a) FT-IR spectra before light irradiation and (b–e) light-minus-before difference spectra between the spectra during and before light irradiation are shown. Phenosafranin-oxidized enzyme was obtained by partial oxidation of the H₂-activated enzyme with an anaerobic addition of 5 equivalents of phenosafranin. The difference spectra of phenosafranin-oxidized enzyme was adjusted to 2.5 W/cm² at the sample point. The pH value was measured at 274 K.

positive bands were related to the light-sensitive reactant and lightinduced product, respectively. The frequency of the negative band at 1924 cm⁻¹ corresponded to that of the vco band of the Ni-SIr state of DvMF [NiFe] hydrogenase, whereas 2056 and 2071 cm⁻¹ corresponded well to the frequencies of its conjugated v_{CN} bands.²³ The positive frequencies at 1943, 2077, and 2089 cm⁻¹ corresponded well to those of the vco and two conjugated vcn bands of the Ni-SIa state of the H₂-activated enzyme.^{23,31,32} These results showed that the Ni-SIr state was converted to the Ni-SIa state by the light irradiation (Fig. 3). Ciaccafava et al. have reported that electrochemical activation of an O2-tolerant [NiFe] hydrogenase from Aquifex aeolicus is promoted by UV-vis light irradiation, but the detailed activation mechanism was unspecified.³⁰ Although the Ni-SIr state has not been observed by electrochemical FT-IR measurements for O2-tolerant [NiFe] hydrogenases, the Ni-SIr state may be highly reactive leading to the fast transition of the Ni-B state to Ni-SIa state by the light irradiation.⁴² Judging from the intensities of the vco bands of the Ni-SIr state in the light-minus-before difference FT-IR spectra, approximately 3% of the Ni-SIr state was converted to the Ni-SI_a state by the light irradiation at 238 K. The intensities of the vco bands of the Ni-SIr and Ni-SIa states increased in the lightminus-before difference spectra with a decrease in the temperature, and approximately 34% of the Ni-SIr state was converted to the Ni-SIa state at 178 K. Notably, the light-induced conversion of the Ni-SIr state decreased significantly at pH 9.6 (See S2, ESI[†]), indicating that protonation occurred in the photo-activation process. The reported photochemical reactions in various [NiFe] hydrogenases are usually associated with dissociation of non-protein ligands bound to the metal ions at the Ni-Fe active site.^{13,29-36,43} Stronger laser power was required for photo-activation of the Ni-SIr state to the Ni-SIa state compared to photo-activation of the Ni-C state to the NI-L state associated with dissociation of the bridging H^{-.31} Considering these results, we propose that the protonation of the Ni-SIr state is related to dissociation of the putative bridging OH- ligand as a H2O molecule by the light irradiation, although the possibility of the Ni-

Journal Name

Journal Name

COMMUNICATION

Fig. 3 Reaction states of [NiFe] hydrogenase. The v_{CO} and v_{CN} frequencies for each state of *Dv*MF [NiFe] hydrogenase are depicted.¹³ The frequencies at 198 and 298 K are shown with and without parentheses, respectively.

coordinating cysteine-thiolate or cysteine-sulfenate ligand being protonated after the light irradiation cannot be excluded.²⁶⁻²⁸

The light-induced FT-IR spectrum converted back immediately to the initial spectrum when the light irradiation was stopped at 218 and 238 K, and no vco or vcn band was observed in the difference (afterminus-before) FT-IR spectra between the spectra after and before light irradiation (See S3, ESI[†]). However, the v_{C0} and v_{CN} bands of the Ni-SIa state were observed in the after-minus-before difference spectrum at 198 K and the intensities in the difference spectrum increased at 178 K, indicating that the light-induced Ni-SIa state was trapped at low temperatures. Interestingly, the relative intensities of the vco bands of the Ni-SIr and Ni-SIa states in the light-minusbefore difference spectra at 103 K depended on the irradiation time and light intensity (See S4, ESI[†]). The Ni-SIr state photo-converted to the Ni-SIa state for only ~50 % after ~40 min of light irradiation with the laser power of 3.3 W/cm² at 103 K and pH 8.0, indicating that the photo-conversion process of the Ni-SIr state to the Ni-SIa state was relatively slow. However, the photo-conversion rate of the Ni-SIr state did not change significantly at pH 7.0 compared to that at pH 8.0, although the relative intensity of the Ni-SIr vco band before light irradiation decreased.

A negative IR band at 1957 cm⁻¹ and a positive band at 1972 cm⁻¹ were observed in the light-minus-before difference FT-IR spectrum of as-isolated DvMF [NiFe] hydrogenase under N2 atmosphere at pH 8.0 and 198 K (Fig. 2B). The negative and positive bands corresponded well to the vco bands of the Ni-A and light-induced Ni-AL states, respectively.^{29,36} Additionally, negative IR bands at 1922, 2061, and 2070 cm⁻¹ and positive bands at 1968, 2076, and 2090 cm⁻¹ were observed in the light-minus-before difference spectra at 103-158 K. The frequencies of the positive bands were similar to the vco and vcn frequencies of the light-induced Ni-SL state obtained from as-isolated DvMF [NiFe] hydrogenase,³⁶ indicating formation of the Ni-SL state. However, the frequencies of the negative bands (vco: 1922 cm⁻¹, vcn: 2061 and 2070 cm⁻¹) were 1-5 cm⁻¹ shifted from those of the vco and two conjugated vcn bands of the Ni-SIr state (vco: 1924 cm⁻¹, vcn: 2056 and 2071 cm⁻¹) (Fig. 2).²³ These frequency differences indicate that the light-reacted state other than the Ni-SIr state converted to the Ni-SL state. We term this newly identified light-reacted state, Ni-SX (Fig. 3). Previously, spectroscopic studies on the as-isolated DvMF [NiFe] hydrogenase have determined a third bridging ligand between the Ni and Fe ions, but misassigned the state to the Ni-SIr state.36 The Ni-SX state corresponds to this previously studied state. The intensities of the $v_{\rm CO}$ and $v_{\rm CN}$ bands of the Ni-SX and Ni-SL states in the difference

Fig. 4 FT-IR spectra of (A) phenosafranin-oxidized and (B) as-isolated DvMF [NiFe] hydrogenase under (a) N₂ and (b) CO atmospheres at pH 7.4 and 298 K.

(light-minus-after) spectra between the spectra during and after light irradiation increased with decrease in the temperature from 158 K to 103 K, indicating reversibility for the formation of the Ni-SL state by the light irradiation (See S5, ESI†).

Differences between the $Ni\mathchar`SI_r$ and $Ni\mathchar`SX$ states in pH sensitivity and carbon monoxide reactivity

The acid-base equilibrium between the Ni-SIr and Ni-SIa states is important for the activation of [NiFe] hydorogenase (Fig. 3).⁴ In the FT-IR spectrum of phenosafranin-oxidized [NiFe] hydrogenase under N₂ atmosphere at pH 7.4 and 298 K, the v_{CO} bands of the Ni-SIr (1923 cm⁻¹; corresponding to the 1924-cm⁻¹ band at 178–238 K in Fig. 2A) and Ni-SI_a (1943 cm⁻¹) states were the major v_{CO} bands, whereas a weak v_{CO} band (1961 cm⁻¹) corresponding to the Ni-C state was also detectable (See S6A, ESI[†]). The pH-dependence of the ratio between the Ni-SIa and Ni-SIr vCO band intensities revealed that the Ni-SIa and Ni-SIr states form an acid-base equilibrium.10,12,23 In the spectrum of as-isolated [NiFe] hydrogenase, the v_{CO} bands corresponding to the Ni-A (1956 cm⁻¹), Ni-B (1955 cm⁻¹), and Ni-SX (1922 cm⁻¹) states were observed, 13,23,36 but the intensities of these bands did not change with a change in pH (See S6B, ESI[†]), showing that no acid-base equilibrium existed for the Ni-SX state. These results support the hypothesis that the Ni-SX state is different from the Ni-SIr state and indicate that the Ni-SX state is not a ready state.

Carbon monoxide (CO) is known as a reversible inhibitor for [NiFe] hydrogenases from earlier enzymatic studies.⁴⁴ X-ray crystallographic experiments have demonstrated that exogenous CO coordinates to the active site Ni ion of DvMF [NiFe] hydrogenase.43 For the FT-IR spectrum of phenosafranin-oxidized [NiFe] hydrogenase in CO-saturated buffer, IR bands were observed mainly at 1941, 2056, 2071, and 2084 cm⁻¹ (Fig. 4A). The bands at 1941, 2071 and 2084 cm⁻¹ correspond well to the vco and two conjugated vcn bands of the Ni-SCO state (exogenous CO-bound state), whereas the band at 2056 cm⁻¹ corresponds well to that of the exogenous CO bound to the Ni ion, revealing that most of the enzyme molecules were in the Ni-SCO state.¹³ Previous spectroscopic studies have showed that CO reacts selectively with the Ni-SIa and Ni-L states. $^{13,36,43\cdot45}$ These results indicate that the $Ni\mathchar`state$ was converted into the Ni-SCO state under CO atmosphere apparently through the acid-base equilibrium (Fig. 3). On the other hand, no change was observed in the FT-IR spectrum of as-isolated [NiFe] hydrogenase by introduction of CO, indicating that the Ni-SX state

COMMUNICATION

Fig. 5 FT-IR spectra of *Dv*MF [NiFe] hydrogenase under N₂ atmosphere at pH 8.0 and 103 K: (a,c,e,g) Spectra before light irradiation and (b,d,f,h) light-minus-after difference spectra. The spectra of the as-isolated enzyme in the (a,b) absence and (c,d) presence of 10 equivalents of dithionite and the spectra of the air-oxidized enzyme (obtained by exposure of the H₂-activated enzyme to air) in the (e,f) absence and (g,h) presence of 10 equivalents of dithionite are shown. The "after" spectra were measured 30–47 min after light irradiation was stopped. The laser power was adjusted to 2.5 W/cm² at the sample point. The pH value was measured at 274 K.

was unreactive toward CO (Fig. 4B), in agreement with the results that an acid–base equilibrium did not exist for the Ni-SX state (See S6B, ESI⁺).

Reaction of the Ni-SX state with dithionite

To gain information on the activation of the Ni-SX state, lightminus-after difference FT-IR spectra were measured for as-isolated and dithionite-reduced DvMF [NiFe] hydrogenase at 103 K (Fig. 5). The photo-conversion of the Ni-SX state to the Ni-SL state was successfully observed in the light-minus-after difference spectra, because the Ni-SL state converted back to the Ni-SX state (See S5, ESI[†]) but the light-induced Ni-SI_a and Ni-L states were trapped at 103 K when the light irradiation was stopped (See S7, ESI⁺).³¹ By assuming equal absorption coefficients for the vco bands, approximately 16% was in the Ni-SX state for the as-isolated enzyme (Fig. 5, curve a), and almost (~95%) all the enzymes in the Ni-SX state converted to the Ni-SL state by the light irradiation at 103K (Fig. 5, curve b). However, approximately 10% of the enzyme was still in the Ni-SX state after reduction with dithionite (Fig. 5, curves c and d), indicating that the Ni-SX state was very inactive. For [NiFe] hydrogenases from the sulphur-metabolizing bacterium Allochromatium vinosum and Desulfovibrio fructosorans (Df), an inactive state (Ni-'Sox') similar to the Ni-SX state has been reported.^{12,22} The vco and vcn frequencies of the Ni-'Sox' state for Df [NiFe] hydrogenase (vco: 1911, vcn: 2059 and 2068 cm⁻¹) were 1–5 cm⁻¹ shifted from those of its Ni-SIr state (vco: 1913 cm⁻¹, vcn: 2054 and 2069 cm⁻¹),^{22,46} which was very similar to those of the Ni-SX state detected in the present study (Fig. 2B). The Ni-'Sox' state has been proposed by X-ray crystallographic analysis to possess a cysteine-persulfide terminal Ni-coordinating ligand at the active site.²² The required reduction of the persulfide bond may explain the observed slow activation of the Ni-SX state.

As-isolated DvMF [NiFe] hydrogenase contained the Ni-SX state exhibiting a vco band at 1922 cm⁻¹ and two vcN bands at 2061 and 2070 cm⁻¹.^{13,36} The intensities of these bands decreased

exponentially with a time constant of ~50 min by incubation under H_2 atmosphere at 310 K (See Figs. S8 and S9, ESI[†]), revealing that the Ni-SX state was activated very slowly under H_2 atmosphere. However, the Ni-SX state was not observed for the air-oxidized enzyme, where the H₂-activated enzyme was exposed to air (Fig. 5, curves e and f). Additionally, the Ni-SX state was not observed after further dithionite reduction of the air-oxidized enzyme (Fig. 5, curves g and h). These results reveal that although the as-isolated enzyme contained the Ni-SX state, the Ni-SX state was not formed during the generation or activation of the Ni-A and Ni-B states in vitro.

Conclusions

We have shown for the first time that the ready Ni-SI_r state of DvMF[NiFe] hydrogenase is converted to the active Ni-SI_a state by laser light irradiation at 514.5 nm (Fig. 3). From the pH-dependent lightreactivity of the Ni-SI_r state, we propose that the bridging OHligand dissociates as a H₂O molecule from the Ni–Fe active site by light irradiation at low pH. We have identified a light-sensitive Ni-SX state (vco, 1922 cm⁻¹; vcn, 2061 and 2070 cm⁻¹), which was photo-converted to the Ni-SL state. A certain amount of the enzyme was still in the Ni-SX state after treatment of the as-isolated enzyme with dithionite, although the enzyme was activated slowly by H₂, revealing that the Ni-SX state was highly inactive. These findings provide new insights into the activation mechanism of [NiFe] hydrogenase.

Acknowledgment

We thank Prof. Takashi Matsuo, Nara Institute of Science and Technology, for the use of the glove box system and helpful discussions. We also acknowledge Mr. Leigh McDowell for his advice during manuscript preparation. This work was supported in part by Grants-in-Aid for Scientific Research from JST (CREST (Y.H. and S.H.)) and JSPS (Scientific Research on Innovative Areas, No. JP15H00945 (S.H.); Scientific Research B, No. JP26288080 (S.H.); Young Scientists B, No. JP16K17936 (H.T.)).

References

- 1. P. M. Vignais and B. Billoud, *Chem. Rev.*, 2007, **107**, 4206-4272.
- J. C. Fontecilla-Camps, A. Volbeda, C. Cavazza and Y. Nicolet, *Chem. Rev.*, 2007, **107**, 4273-4303.
- 3. A. L. De Lacey, V. M. Fernández, M. Rousset and R. Cammack, *Chem. Rev.*, 2007, **107**, 4304-4330.
- W. Lubitz, H. Ogata, O. Rüdiger and E. Reijerse, *Chem. Rev.*, 2014, **114**, 4081-4148.
- Y. Higuchi, H. Ogata, K. Miki, N. Yasuoka and T. Yagi, *Structure*, 1999, 7, 549-556.
- H. Ogata, S. Hirota, A. Nakahara, H. Komori, N. Shibata, T. Kato, K. Kano and Y. Higuchi, *Structure*, 2005, 13, 1635-1642.
- 7. H. Ogata, K. Nishikawa and W. Lubitz, *Nature*, 2015, **520**, 571-574.
- R. P. Happe, W. Roseboom, A. J. Pierik, S. P. J. Albracht and K. A. Bagley, *Nature*, 1997, 385, 126.
- A. J. Pierik, W. Roseboom, R. P. Happe, K. A. Bagley and S. P. Albracht, J. Biol. Chem., 1999, 274, 3331-3337.
- A. L. de Lacey, E. C. Hatchikian, A. Volbeda, M. Frey, J. C. Fontecilla-Camps and V. M. Fernandez, J. Am. Chem. Soc., 1997, 119, 7181-7189.
- T. Yagi, K. Kimura, H. Daidoji, F. Sakai and S. Tamura, J. Biochem., 1976, 79, 661-671.

Journal Name

Journal Name

- B. Bleijlevens, F. A. van Broekhuizen, A. L. De Lacey, W. Roseboom, V. M. Fernandez and S. P. J. Albracht, J. Biol. Inorg. Chem., 2004, 9, 743-752.
- 13. M. E. Pandelia, H. Ogata, L. J. Currell, M. Flores and W. Lubitz, *Biochim. Biophys. Acta*, 2010, **1797**, 304-313.
- 14. V. M. Fernandez, E. C. Hatchikian and R. Cammack, *Biochim. Biophys. Acta*, 1985, **832**, 69-79.
- S. E. Lamle, S. P. Albracht and F. A. Armstrong, J. Am. Chem. Soc., 2004, 126, 14899-14909.
- A. Volbeda, L. Martin, C. Cavazza, M. Matho, B. W. Faber, W. Roseboom, S. P. J. Albracht, E. Garcin, M. Rousset and J. C. Fontecilla-Camps, J. Biol. Inorg. Chem., 2005, 10, 239-249.
- 17. H. Ogata, P. Kellers and W. Lubitz, J. Mol. Biol., 2010, 402, 428-444.
- P. Amara, A. Volbeda, J. C. Fontecilla-Camps and M. J. Field, J. Am. Chem. Soc., 1999, 121, 4468-4477.
- M. Stein, E. van Lenthe, E. J. Baerends and W. Lubitz, J. Am. Chem. Soc., 2001, 123, 5839-5840.
- M. van Gastel, M. Stein, M. Brecht, O. Schröder, F. Lendzian, R. Bittl, H. Ogata, Y. Higuchi and W. Lubitz, *J. Biol. Inorg. Chem.*, 2006, 11, 41-51.
- 21. J. L. Barilone, H. Ogata, W. Lubitz and M. van Gastel, *Phys. Chem. Chem. Phys.*, 2015, **17**, 16204-16212.
- A. Volbeda, L. Martin, E. Barbier, O. Gutierrez-Sanz, A. L. De Lacey, P. P. Liebgott, S. Dementin, M. Rousset and J. Fontecilla-Camps, J. Biol. Inorg. Chem., 2015, 20, 11-22.
- C. Fichtner, C. Laurich, E. Bothe and W. Lubitz, *Biochemistry*, 2006, 45, 9706-9716.
- S. Kurkin, S. J. George, R. N. F. Thorneley and S. P. J. Albracht, Biochemistry, 2004, 43, 6820-6831.
- 25. S. J. George, S. Kurkin, R. N. F. Thorneley and S. P. J. Albracht, *Biochemistry*, 2004, **43**, 6808-6819.
- A. L. De Lacey, A. Pardo, V. M. Fernandez, S. Dementin, G. Adryanczyk-Perrier, E. C. Hatchikian and M. Rousset, *J. Biol. Inorg. Chem.*, 2004, 9, 636-642.
- 27. T. Krämer, M. Kamp, W. Lubitz, M. van Gastel and F. Neese, *ChemBioChem*, 2013, **14**, 1898-1905.
- A. Volbeda, L. Martin, P. P. Liebgott, A. L. De Lacey and J. C. Fontecilla-Camps, *Metallomics*, 2015, 7, 710-718.
- H. Osuka, Y. Shomura, H. Komori, N. Shibata, S. Nagao, Y. Higuchi and S. Hirota, *Biochem. Biophys. Res. Commun.*, 2013, 430, 284-288.
- A. Ciaccafava, C. Hamon, P. Infossi, V. Marchi, M. T. Giudici-Orticoni and E. Lojou, *Phys. Chem. Chem. Phys.*, 2013, 15, 16463-16467.
- H. Tai, K. Nishikawa, M. Suzuki, Y. Higuchi and S. Hirota, Angew. Chem. Int. Ed., 2014, 53, 13817-13820.
- H. Tai, K. Nishikawa, S. Inoue, Y. Higuchi and S. Hirota, J. Phys. Chem. B, 2015, 119, 13668-13674.
- P. Kellers, M.-E. Pandelia, L. J. Currell, H. Gorner and W. Lubitz, *Phys. Chem. Chem. Phys.*, 2009, 11, 8680-8683.
- E. Siebert, M. Horch, Y. Rippers, J. Fritsch, S. Frielingsdorf, O. Lenz, F. Velazquez Escobar, F. Siebert, L. Paasche, U. Kuhlmann, F. Lendzian, M.-A. Mroginski, I. Zebger and P. Hildebrandt, *Angew. Chem. Int. Ed.*, 2013, **52**, 5162-5165.
- M. Horch, J. Schoknecht, M. A. Mroginski, O. Lenz, P. Hildebrandt and I. Zebger, J. Am. Chem. Soc., 2014, 136, 9870-9873.
- M.-E. Pandelia, H. Ogata, L. J. Currell, M. Flores and W. Lubitz, J. Biol. Inorg. Chem., 2009, 14, 1227-1241.
- R. Hidalgo, P. A. Ash, A. J. Healy and K. A. Vincent, *Angew. Chem. Int.* Ed., 2015, 54, 7110-7113.
- B. J. Murphy, R. Hidalgo, M. M. Roessler, R. M. Evans, P. A. Ash, W. K. Myers, K. A. Vincent and F. A. Armstrong, *J. Am. Chem. Soc.*, 2015, 137, 8484-8489.
- 39. B. L. Greene, C. H. Wu, P. M. McTernan, M. W. Adams and R. B. Dyer, J. Am. Chem. Soc., 2015, 137, 4558-4566.
- B. L. Greene, C. H. Wu, G. E. Vansuch, M. W. Adams and R. B. Dyer, Biochemistry, 2016, 55, 1813-1825.
- 41. M. Y. Darensbourg, E. J. Lyon and J. J. Smee, *Coord. Chem. Rev.*, 2000, **206**, 533-561.
- M. E. Pandelia, V. Fourmond, P. Tron-Infossi, E. Lojou, P. Bertrand, C. Leger, M. T. Giudici-Orticoni and W. Lubitz, J. Am. Chem. Soc., 2010, 132, 6991-7004.
- H. Ogata, Y. Mizoguchi, N. Mizuno, K. Miki, S.-I. Adachi, N. Yasuoka, T. Yagi, O. Yamauchi, S. Hirota and Y. Higuchi, *J. Am. Chem. Soc.*, 2002, **124**, 11628-11635.

- 44. J. W. Vanderzwaan, S. P. J. Albracht, R. D. Fontijn and Y. B. M. Roelofs, *Biochim. Biophys. Acta*, 1986, **872**, 208-215.
- 45. K. A. Bagley, C. J. Van Garderen, M. Chen, E. C. Duin, S. P. Albracht and W. H. Woodruff, *Biochemistry*, 1994, **33**, 9229-9236.
- A. L. De Lacey, C. Stadler, V. M. Fernandez, E. C. Hatchikian, H. J. Fan, S. Li and M. B. Hall, J. Biol. Inorg. Chem., 2002, 7, 318-326.