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Abstract

We solve the transport equations of the electrons and phonons to understand the

thermoelectric behaviour of the technologically important half-Heusler alloys MNiSn

(M:Ti,Zr,Hf). Doping is simulated within the rigid band approximation. We clarify

the origin of the electron dominated thermoelectric response and determine the carrier

concentrations with maximal figures of merit. The phonon mean free path is studied

to calculate the grain size below that grain refinement methods can enforce ballistic

heat conduction to enhance the figure of merit.
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Introduction

MNiSn alloys are explored for thermoelectric applications because of their environmental

friendliness, high temperature stability, and straight forward synthesis.1 They have narrow

bandgaps and cubic F 4̄3m structures (MgAgAs-type)2 with the M, Ni, and Sn atoms occu-

pying the 4b, 4c, and 4a Wyckoff positions, respectively, leaving the 4d site vacant. Since

the figure of merit (zT = S2σT/κ) is related to the Seebeck coefficient (S), electrical con-

ductivity (σ), and thermal conductivity (κ), fundamental understanding of the electron and

phonon transport processes is necessary for improving the thermoelectric performance.

Photoemission spectra3 and structural refinement studies4,5 suggest that Ni occupies

≈ 2% of the 4d sites and results in in-gap states responsible for the excellent thermoelectric

behaviour. Despite various efforts there still seems to be disagreement in the literature about

the exact value of the bandgap.6–9 For n-doped samples values of up to zT = 0.81 have been

reported,10 whereas p-doped samples, which can be achieved by partial replacement of Ni

with Co/Ir11,12 or of Ti/Zr with Sc/Y,13,14 show zT < 0.31.15 Most of the alloys show

at high temperature electron dominated thermoelectric response.11–13 As a consequence, the

thermoelectric potential of p-doped samples (50% larger peak powerfactors than for n-doping

predicted by first-principles calculations16) cannot be used.

The high thermal conductivities in the large grain limit (TiNiSn: 9.3 Wm−1K−1,13 Zr-

NiSn: 17.2 Wm−1K−1,17 HfNiSn: 12.8 Wm−1K−1 17) can be overcome by grain refinement

(to increase the boundary scattering)18–20 and alloying (to increase the mass fluctuation

scattering)10,13,17,21–24 methods. A systematic improvement of the thermal conductivity is

not possible, because the roles of the different phonon modes are not known, even though

the lattice contribution to the thermal conductivity has been estimated for TiNiSn25,26 and

ZrNiSn.26 The aim of the present study therefore is not only to clarify the origin of the elec-

tron dominated thermoelectric response but also to provide detailed insight into the lattice

thermal conductivity.
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Methodology

First-principles calculations are performed using the Vienna Ab-initio Simulation Package.27

Plane waves with energies up to 300 eV are employed in the expansion of the electronic wave

functions, considering the Ti 3d, 4s, Zr 4s, 4p, 4d, 5s, Hf 5d, 6s, Ni 3d, 4s, and Sn 5s, 5p

states as valence states. We employ the generalised gradient approximation of the exchange-

correlation potential in the Perdew-Burke-Ernzerhof flavour. Brillouin zone integrations are

performed using the tetrahedron method with Blöchl corrections.28 Γ-centered 24× 24× 24

k -meshes are used for optimising the structures. For all systems under consideration spin-

degenerate states are obtained.

We solve the semi-classical Boltzmann transport equation within the constant relaxation

time approximation for calculating S, σ, and the electronic contribution to κ. A rigid band

approximation is used to simulate doping (BoltzTraP code29), i.e., it is assumed that the

doping does not modifiy the host band structure but only shifts the chemical potential. For

this purpose, the electronic band structure is calculated on a very fine 44× 44× 44 k -mesh.

Even five times denser meshes are used in the Fourier expansion of the electronic band

energies. We use a constant relaxation time of τ = 1.5× 10−14 s, as obtained by comparing

σ/τ to the experiment (sample 5 in Ref. 30).

The normal mode polarisation vectors and phonon frequencies are calculated within the

harmonic approximation.31 A 2 × 2 × 2 supercell of the conventional unit cell is employed

with a 3×3×3 k -mesh for evaluating the forces. Long range dipole interactions are included

in the dynamical matrix.32 The dielectric tensor and Born effective charges are evaluated

using perturbation theory.33 In addition, we employ a finite difference scheme for calculat-

ing the third order force constants,34 where each atom up to fourth nearest neighbours is

simultaneously displaced with a given atom (interaction distance up to 6.4 Å). Translational

invariance is imposed on the force constants.35 Second and third order force constants are

used for solving a linearised Boltzmann transport equation self-consistently by the Sheng-

BTE code.36,37 For this purpose, Brillouin zone integrations are carried out on 14× 14× 14

3
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Table 1: Lattice constant (experimental values from Ref. 2), bandgap, high frequency di-
electric tensor (xx component), and in-plane Born effective charges (in electrons).

TiNiSn ZrNiSn HfNiSn

a, theoretical (Å) 5.942 6.147 6.107
a, experimental (Å) 5.941 6.113 6.083

bandgap (eV) 0.44 0.49 0.36
ε∞ 24.56 21.98 20.82
Z∗

M 2.87 2.61 2.74

Z∗

Ni −4.01 −3.63 −3.66

Z∗

Sn 1.14 1.02 0.92
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Figure 1: Electronic band structures.

k -meshes. For temperatures above the Debye temperature (TiNiSn: 283 K, ZrNiSn: 310 K,

HfNiSn: 255 K8) and clearly below the melting point (TiNiSn: 1453 K, ZrNiSn: 1708 K,

HfNiSn: 1760 K38), κ is determined by three phonon Umklapp scattering events39 and our

methodology therefore gives valid results. The three compounds under study show their op-

timal thermoelectric performance around 700 K (because at higher temperatures κ increases

due to ambipolar diffusion10,23,40–42).

Results and discussion

The optimized lattice constants are compared with experimental values in Table 1, showing

good agreement. The electronic band structures in Figure 1 reveal in each case an indirect
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Figure 2: Densities of states (left) and ratios at the band edges (right).

Table 2: Effective mass in units of the free electron mass.

Band Direction TiNiSn ZrNiSn HfNiSN
VBM1 Γ ↔ L 0.39 0.25 0.22
VBM1 Γ ↔ X 0.64 0.40 0.38

VBM2, VBM3 Γ ↔ L 3.72 2.44 2.11
VBM2, VBM3 Γ ↔ X 1.30 0.88 0.71

CBM X ↔ Γ 2.89 3.23 3.14
CBM X ↔ W 0.56 0.38 0.36

bandgap with a triple degenerate valence band maximum (VBM) at the Γ point and the

conduction band minimum (CBM) at the X point. Correspondingly, the density of states

(DOS) at the valence band edge is larger than that at the conduction band edge, see Figure

2. Analysis of the partial DOS (not shown) demonstrates that the VBM is formed by the

M d states and the CBM by the M d and Ni 3d states. The distinct DOS peak around −0.5

eV is due to hybridized M d, Ni 3d, and Sn 5p states. All these results agree well with the

existing literature.43 We number the bands forming the VBM in order of increasing energy

around the Γ point (VBM1, VBM2, and VBM3) and summarize in Table 2 the obtained

carrier effective masses. The heavy holes in the flat band VBM1 enhance S, whereas the

light holes in the bands VBM2 and VBM3 dominate σ. This combination leads to high

powerfactors in the case of p-doping, see Figure 3.

Figure 4(bottom) shows the variation of the Fermi level µ with the temperature. For

low temperature it is located close to the CBM/VBM for n/p doping. Since the occupation
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Figure 3: Power factors as functions of the carrier concentration.

of states above/below the CBM/VBM increases/decreases with increasing temperature, µ

shifts toward the middle of the bandgap (extrinsic region). For low carrier concentration the

minority carriers start playing a role around 170 K, see Figure 4(top), and µ therefore shows

a crossover into a linear regime (intrinsic/bipolar region). In this regime the thermoelectric

response turns out to be electron dominated (µ located above the middle of the bandgap),

because the DOS at EVBM −∆E (valence states) is much higher than at ECBM +∆E (con-

duction states), see Figure 2(right). For the same reason, µ is characterized by a remarkably

high slope as function of the temperature, see Figure 4(bottom). The higher the carrier

concentration the deeper µ initially is located in the conduction/valence band (n/p-doping).

For increasing temperature it approaches the value obtained for low carrier concentration, as

expected. Figure 4 agrees in this sense for n-doping with the observed decrease of µ between

20 K to 100 K in ZrNiSn44 and with Figure 3 in Ref. 45.

When both electrons (e) and holes (h) participate in the thermoelectric response, we have

S = (Seσe+Shσh)/(σe+σh) with Se < 0 and Sh > 0.46 At low temperature the thermoelectric

response is due to only one type of carrier (extrinsic region). Therefore, |S| first increases with

the temperature but then reaches a maximum (|S|max, Tmax) as the other type of carriers

starts to contribute significantly (bipolar/intrinsic region). These features are clearly seen in

Figure 4. For n-doping S remains negative above Tmax, since µ remains above the middle of

the bandgap. The thermoelectric response therefore is electron dominated. While strongly

6
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Figure 4: Seebeck coefficient and Fermi level as functions of the temperature for low (1015

cm−3) and high (1020 cm−3) doped (n and p) TiNiSn.

p-doped samples behave analogous to strongly n-doped samples, a different behaviour is

found for weak p-doping, see Figure 4. At a certain temperature, S becomes negative

even though the hole concentration exceeds the electron concentration, which is again a

consequence of the fact that µ is located above the middle of the bandgap. Such transitions

have been observed experimentally in ZrNi1−yCoySn for y = 0.04 to 0.12,12 Zr0.98Y0.02NiSn,
13

Hf0.75Zr0.25Ni0.95Co0.05Sn,
11 Zr1−xScxNiSn for x = 0.02 to 0.04,9 and TiNiCoySn for y = 0.025

to 0.075.5 Figure 4 demonstrates that the sign of S in the present class of alloys only reflects

the nature of the dominating carriers and not that of the majority carriers.

The Goldsmid-Sharp formula46 gives for the bandgap the values (2e|S|maxTmax) summa-

7
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Table 3: Peak Seebeck coefficients, corresponding temperatures, and bandgaps estimated
with the Goldsmid-Sharp formula.

Doping (cm−3) |S|max (µV/K) Tmax (K) 2e|S|maxTmax (eV)
TiNiSn n: 1015, 1017, 1019 1088, 760, 435 185, 260, 460 0.40, 0.40, 0.40

p: 1015, 1017, 1019 1248, 858, 519 170, 245, 425 0.42, 0.42, 0.44
ZrNiSn n: 1015, 1017, 1019 1094, 745, 422 205, 300, 535 0.45, 0.45, 0.45

p: 1015, 1017, 1019 1182, 825, 490 195, 280, 490 0.46, 0.46, 0.48
HfNiSn n: 1015, 1017, 1019 1028, 707, 389 165, 235, 440 0.34, 0.33, 0.34

p: 1015, 1017, 1019 1183, 784, 450 150, 225, 410 0.36, 0.35, 0.37
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Figure 5: Seebeck coefficients as functions of the electron concentration. The experimental
data are taken from Refs. 15,17,24,30,44,47,48.

rized in Table 3. They lie within ±10% of the calculated bandgap despite the non-parabolic

nature of the electronic bands. Figure 5 shows S as a function of the temperature for differ-

ent carrier concentrations and demonstrates excellent agreement with experimental results

for n-doped samples.15,17,24,30,44,47,48

The high frequency dielectric tensors and Born effective charges reported in Table 1

are used along with the second order force constants to determine the harmonic phonon

dispersion relations. The resulting lattice contributions to the thermal conductivity are

plotted in Figure 6. Fitting by the relation κlatt ∝ 1/T gives almost perfect agreement,

which demonstrates that κ is limited by Umklapp scattering.49 Figure 6 also shows that

most of the heat conduction happens through acoustic phonons. At room temperature we

obtain for κlatt values of 13.4 Wm−1K−1 for TiNiSn, 14.4 Wm−1K−1 for ZrNiSn, and 14.4
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Table 4: Maximal figure of merit, corresponding carrier concentration, and maximal phonon
mean free path at 300 K and 700 K.

p-doping n-doping Λmax

(×1020 cm−3) zT (×1020 cm−3) zT (nm)
300 K TiNiSn 4.6 0.07 2.1 0.04 1233

ZrNiSn 3.2 0.06 1.5 0.04 1238
HfNiSn 2.4 0.06 1.5 0.04 1485

700 K TiNiSn 7.1 0.46 3.6 0.36 403
ZrNiSn 4.8 0.41 2.2 0.35 486
HfNiSn 3.6 0.40 2.2 0.35 586

Wm−1K−1 for HfNiSn. For ZrNiSn this result fits well to the experimental single crystal

value of κ = 18 Wm−1K−1 30), since κlatt is expected to dominate in semiconductors.

The possible effects of grain refinement are studied by expressing the contributions to

κ in terms of polarisation averaged phonon mean free paths. When the grain size is less

than the largest phonon mean free path, Λmax, boundary scattering becomes dominant. The

effective phonon mean free paths span a range of three orders of magnitude, see Table 4.

Grain refinement below Λmax will reduce κlatt. The maximal achievable values of zT and the

required carrier concentrations are listed in Table 4. These values correspond to large grains

with only diffusive heat transfer. Since the mean free paths of the electrons are smaller

than those of the phonons,50 improvement of zT can be achieved by grain refinement below

Λmax, because the boundary scattering reduces κlatt without affecting σ. Due to the larger

9
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powerfactors, see Figure 3, p-doping gives a slightly better thermoelectric performance than

n-doping, but high p-doping levels could not be achieved experimentally so far.

Conclusions

We have solved the Boltzmann transport equations for the electrons and phonons to study

the electron dominated thermoelectric response in the MNiSn (M:Ti,Zr,Hf) alloys. Previous

experimental observations are explained in terms of the doping and temperature dependences

of the position of the Fermi level with respect to the band edges. Since the Fermi level

shifts at elevated temperatures with an unusally high slope towards the conduction band

minimum, the electron dominated thermoelectric response can be overcome only by a high

hole concentration to realise an efficient p-type thermoelectric material. Analysis of the

phonon mean free paths provides guide to grain refinement methods, as the grain sizes below

which the heat conduction becomes ballistic (and the thermoelectric performance therefore

can be enhanced by such methods) are determined.
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(28) Blöchl, P. E.; Jepsen, O.; Andersen, O. K. Improved Tetrahedron Method for Brillouin-
Zone Integrations. Phys. Rev. B 1994, 49, 16223–16233.

(29) Madsen, G. K. H.; Singh, D. J. BoltzTraP. A Code for Calculating Band-Structure
Dependent Quantities. Comput. Phys. Commun. 2006, 175, 67–71.

(30) Kafer, W.; Fess, K.; Kloc, C.; Friemelt, K.; Bucher, E. Thermoelectric Properties of
MNiSn (M=Ti,Zr,Hf) Single Crystals and Related Alloys. XVI International Conference
on Thermoelectrics, 1997. Proceedings ICT ’97. 1997; pp 489–492.
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