PCCP

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/pccp

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

BNg₃F₃, the First Three Noble Gas Atoms Inserted Mono-centric Neutral Compounds, A Theoretical Study

Wei Chen,^a Guang-Hui Chen,^a Di Wu^b and Qiang Wang^c

Following the study of HXeOXeH and HXeCCXeH, H_2O and C_2H_2 inserted with two Xe atoms theoretically and experimentally, the structures and stability of BNg_3F_3 (Ng=Ar, Kr and Xe), BF_3 inserted with three Ng atoms, have been explored theoretically at the DFT and *ab initio* calculations. It is shown that D_{3h} symmetried BNg_3F_3 (Ng=Ar, Kr and Xe) are local minima with short B-Ng bond lengths at 1.966, 2.027 and 2.214 Å at the CCSD(T)/aug-cc-pVTZ/L118 level, which are close to their covalent limit. Note that although BNg_3F_3 (Ng=Kr and Xe) are energetically higher than dissociation products $3Ng + BF_3$, they are still kinetically stable as metastable species with protecting barriers at 13.38 and 17.99 kcal/mol for BKr_3F_3 and BXe_3F_3 . Moreover, BKr_3F_3 , as tri-Kr-inserted compound, even has comparable kinetic stability with HXeOXeH and HXeOXeF. In addition, upon the formation of BNg_3F_3 , there is large amount of charge transferred from B to Ng at least 0.619 *e*, the calculated Wiberg Bond Indices (WBI) suggest that B-Ng bonds are naturally singly bonded, the large vibrational frequencies of B-Ng and Ng-F stretching modes and negative Laplacian electron density of B-Ng bonds confirm further that BNg_3F_3 are stiff molecules with covalent B-Ng bonds. It should be noted that three Ng atoms inserted to monocentric neutral molecules haven't been reported so far. We hope the present theoretical study may provide important evidence for experimental synthesis of BNg_3F_3 .

1Introduction

2Noble gas (Ng) is inert in chemistry, because of their stable 3octet electronic configuration in their ground state, thus, 4synthesis and prediction of Ng compound is always a 5challenge to chemists. However, after the first Ng 6compound, XePtF₆, experimentally identified in 1962 by Neil 7Bartlett,¹ more and more kinds of noble gas compounds 8have been predicted theoretically and even synthesized 9experimentally in recent decades, which makes chemists 10creative to predict and verify on noble gas chemistry field.

11 Recently, among the verified Ng containing compounds, 12the Ng inserted compounds receive extensive attentions. In 13the year of 1995, one-Ng-inserted compounds with the 14general formula of HNgX (where Ng=Ar, Kr, and Xe and X = 15electronegative atom or group) prepared by Räsänen and co-16workers received considerable attention and expanded the 17field tremendously,²⁻⁸ especially, HArF,⁴ as the first argon

^c Department of Applied Chemistry, College of Science, Nanjing Tech University Nanjing 211816, (China) 18 inserted stable compound, give a great barrier of 0.35 eV 19(8.07 kcal/mol). This work motivates the researchers to 20predict and prepare various new ionic and neutral noble gas 21 insertion compounds.⁹⁻³³ Later, Khriachtchev et al.³⁴ 22 reported the identifications of HXeCCH ($C_{\infty v}$), HXeCC ($C_{\infty v}$), 23and the first two-Ng-inserted compound, i.e., HXeCCXeH 24(D_{2h}), experimentally and theoretically. And then, Yockel et 25*al.*³⁵ enriched two-Ng-inserted organic molecules by instead 26hydrogen to halogen, i.e. XNgCCNgX (Ng = Ar, Kr; X = F, Cl). 27Subsequently, Khriachtchev et al.³⁶ identified the smallest 28known neutral molecule with two Xe atoms inserted into 29H₂O experimentally and theoretically, i.e., HXeOXeH (C_{2y}) at 30 extremely low temperature. Following that, Avramopoulos 31et al.37 reported one and two fluorine substitution of 32HXeOXeH theoretically, that is, metastable HXeOXeF (C_s) and 33FXeOXeF (C_{2v}), which increased the two-body decomposition 34barriers from 13.14 kcal/mol of HXeOXeH to 14.90 kcal/mol 35 of HXeOXeF and 49.50 kcal/mol of FXeOXeF. All above two-36Ng-atom inserted compounds give stiff structures, and even 37 shorter bond lengths than one-Ng-inserted compound and 38mostly are identified by IR spectrum. Moreover, Gerber³⁸ 39 predicted a slightly bent molecule, inserting with three Xe 40atoms in organic HCCCCH (butadiyne), HXeCCXeCCXeH, as 41tri-Ng-inserted compounds while which is not mono-centric 42insertion like HXeCCXeH. Note that all above Ng inserted 43 compounds are based on neutral main group molecules 44 without transition metal as central atom, with characteristic 45 covalent bonds of H-Ng, Xe-C, and Xe-O with lengths close to 46their covalent radii.

^a Department of Chemistry, Shantou University, Shantou 515063, China. E-mail: ghchen@stu.edu.cn

^{b.} Institute of Theoretical Chemistry, Jilin University Changchun 130023, China

Electronic Supplementary Information (ESI) available: Covalent and van der waals limits of B-Ng and Ng-F, harmonic vibrational frequencies of F₂BNgF, FBNg₂F₂ and **TS1-3**, geometrical parameters of transition state, IRC profiles of BNg₃F₃ \rightarrow BF₃+3Ng, the plotted ELF diagrams of F₂BNgF and FBNg₂F₂ (Ng=Ar, Kr and Xe). The geometrical parameters, charge distribution, the Laplacian electron density ($\square^2 \rho$) contour line diagram and ELF diagram of BXe₃H₃ (D_{3h}). See DOI: 10.1039/x0Xx00000x

to find tri-Ng-atom nter. BF_3 molecule is cause electronegative -F bond. For example, 2 as a white solid has der 173K on the basis roscopic data,³⁹ and bund to be thermally udy. Moreover, the ost regular noble gas NgF^{*,43} FNgBF^{*,44} and CH, CHCH₂, F, and OH). 56for saving source, actually, BNgF group on C_2 axis is 57independent with two others, and CASSCF(18,15) is chosen, 58because it can give almost the same bond lengths of BNg₃F₃ 59with optimization limited in C_{2v} symmetry, and the active 60electrons are less than 0.02 *e* in the unoccupied valence 61space. Herein, the active space of (18, 15) was adopted, 62indicating that totally 18 valence electrons were activated in 6315 molecular orbitals (MOs), including 9 occupied orbitals 65 Furthermore, any located critical point was verified as 66energy minimum or transition state (TS) by calculating their 67harmonic frequencies, and all transition states were

67harmonic frequencies, and all transition states were 68unambiguously related to its interconnected energy minima 69by intrinsic reaction coordinate (IRC) calculations. In the 70energetic calculations, the zero-point vibrational energies 71(ZPVE) are taken into account. Note that anharmonic 72vibrations may have effect on the vibrational frequencies 73observed, and the anharmonic vibrational frequencies were 74derived from the vibrational self-consistent field (VSCF) and 75its extension by corrections via second-order perturbation 76theory (CC-VSCF)⁶⁰⁻⁶³ using NWChem program of version 776.5.⁶⁴

The natural population analysis (NPA) and chemical 78 79bonding analysis were carried out based on the theory of 80natural bond orbital in NBO 3.1 package as implemented by 81GAUSSIAN 09 program.⁴⁶ The chemical bonding topology 82analysis based on the Quantum Theory of Atoms-In-83Molecule (QTAIM)⁶⁵ was used to explore the property of 84bond critical point (BCP), while Electron Localization 85Function (ELF)⁶⁶ calculation was performed to describe 86bonding nature by color-scale plot, as implemented in the 87Multiwfn 3.6 program.⁶⁷The electron density function (EDF) 88 information was utilized to represent the corresponding 89 inner-core density to avoid the error that pseudopotential 90added on Xe. Hence, the result of the wavefunction analysis 91that is purely based on electron density can be almost 92identical to the full-electron one, but we should notice that 93EDF information has no effect on the real space functions 94that relied on wavefunction (e.g. kinetic energy density, ELF).

95Results and Discussion

96To be concise, the results and discussion are organized as 97follows: in section A, we will give the geometrical structures 98of the optimized minima and transition states of BNg_3F_3 99(Ng=Ar, Kr, Xe); in section B, the decomposition energy and 100stability of the obtained minima will be discussed; in section 101C, charge distribution and bonding of BNg_3F_3 will be analyzed 102to obtain the nature of Ng-F and B-Ng bonding; in section D, 103harmonic vibrational frequencies of BNg_3F_3 species will be 104assigned.

105A. Geometrical Structures of BNg₃F₃ (Ng=Ar, Kr and Xe)

106 For $BNg_3F_3(Ng=Ar, Kr and Xe)$, that is, mono-centric tri-107Ng-atom inserted neutral molecules, the geometrical 108structures of D_{3h} symmetry were optimized at M06-2X, MP2, 109CCSD(T) and CASSCF levels, respectively, as plotted in Figure

ARTICLE

Their achievements inspire us to find tri-Ng-atom 1 2inserted compound with mono center. BF_3 molecule is 3mostly appropriate for insertion because electronegative 4atom F will benefit the making of Ng-F bond. For example, 5one-Ng-inserted compound of FXeBF₂ as a white solid has 6been synthesized by Xe and O_2BF_4 under 173K on the basis 7 of analytical and vibrational spectroscopic data,³⁹ and 8FNgBF₂ (Ng=Ar, Kr and Xe) were found to be thermally $9\,\text{metastable}^{40}$ from theoretically study. Moreover, the 10 formula of XBNgF is one of the most regular noble gas 11compounds, OBNgF,⁴¹ SBNgF,⁴² NBNgF,⁴³ FNgBF^{+,44} and 12 RNBNgF⁴⁵ (Ng= Ar, Kr, Xe; R=H, CH₃, CCH, CHCH₂, F, and OH). 13 In this context, we try to insert three Ng (Ng=Ar, Kr and 14Xe) atoms into the B-F bonds of BF₃ to form mono-centric 15BNg₃F₃ using quantum chemical calculations. Previously, we 16also tried to insert three Ng atoms into BH₃, but abandoned 17them because of their long B-Xe and Xe-H bond lengths as 18shown in Table S1 (Support Information). From the analysis 19 of geometrical structures, potential energy surfaces, bonding 20nature and harmonic frequencies, we found there exist 21strong B-Ng and Ng-F bonds in BNg₃F₃ with large kinetic 22stabilities

23 Computational Methods

24All calculations were carried out with GAUSSIAN 09⁴⁶ and 25MOLCAS 8.0⁴⁷ program packages. The employed basis sets 26for B, F, Ar and Kr atoms are Dunning's correlation consistent 27triple-ζ augmented with diffuse functions (aug-cc-pVTZ).⁴⁸⁻⁵⁰ 28For Xe atom, we employed LaJohn 18 valence electrons 29(LJ18),⁵¹ aug-cc-pVTZ-pp,⁵² and Stuttgart/Dresden (SDD)⁵³ 30basis sets together with corresponding scalar relativistic 31effective core potentials. LJ18 pseudopotential has been 32previously demonstrated to be efficient and reasonably 33accurate for compounds with Xe, while aug-cc-pVTZ-pp basis 34set and ECP can describe the electronic structure and 35wavefunction very well. However, the SDD pseudopotential 36is implemented for the consideration of cost saving of the 37 post-HF calculations and comparison of relativistic effects.

38 The optimizations of BNg_3F_3 were performed at the 39hybrid-meta-exchange correlation functional (M06-2X)⁵⁴ of 40density functional theory (DFT), the second-order Møller-41Plesset perturbation (MP2),⁵⁵ and the coupled cluster levels 42 of theory including the contribution from single and double 43substitutions and an estimate of connected triples 44[CCSD(T)].^{56,57} Herein, we use M06-2X functional rather than 45popular B3LYP functional, just because M06-2X has been 46very successful in the description of many types of chemical 47bonding containing Ng atoms, but B3LYP is not.⁵⁸ In addition, 48The multi-reference property of the optimized BNg_3F_3 49structures is checked by calculations of diagnostic factor⁵⁹ 50(T1) at the CCSD(T) level. It is shown that the T1 for all $51BNg_3F_3$ are 0.0305 of BAr₃F₃, 0.0240 of BKr₃F₃, and 0.0213 of 52BXe₃F₃, respectively, which are larger than 0.02. Therefore, 53multi-configurational method, CASSCF are performed. It's 54 impossible that all valence electrons of BNg_3F_3 are 55 considered, BNg_3F_3 (D_{3h}) were optimized at Abelian C_{2v} group

11 and listed in Table 1. Note that all the calculated harmonic 2vibrational frequencies are real ones, indicating there are 3local minima.

4 The MP2, M06-2X (in parentheses) and CCSD(T) (in 5square brackets) calculations with aug-cc-pVTZ/LJ18 basis 6set gave B-Ng bond lengths at 1.878 (1.842) [1.966], 2.006 7(2.004) [2.027] and 2.118 (2.209) [2.193] Å and Ng-F lengths 8at 1.944 (1.961) [1.998], 2.027 (2.029) [2.037] and 2.122 9(2.112) [2.124] Å for Ng=Ar, Kr and Xe, respectively. Note 10that bond lengths at CCSD(T) level are invariably longer than 11those of at the other two levels. In view of the possibility of 12 multi-configurational effect, the CASSCF(18,15) level 13 calculations were performed and gave B-Ng at 1.796, 1.997 14and 2.264 Å of and Ng-F at 1.993, 2.049 and 2.134 Å, 15 respectively, which are generally shorter than single-slater-16determinant methods except for B-Xe of BXe₃F₃. Note that 17 the distance of neighboring Ar-Ar, Kr-Kr and Xe-Xe in BNg₃F₃ 18at 3.353, 3.511 and 3.849 Å are longer than those of 19HNgNgF⁶⁸ at CCSD(T)/aug-cc-pVTZ/SDD level, but which are 20shorter than the van de waals radii of Ng-Ng,⁶⁹ respectively, 21 indicating that the present Ng-Ng weak interaction in BNg_3F_3 22 possibly make themselves more stable.

23 To test the stability of BNg_3F_3 geometrically, we try to 24add one extra F (F1) anion to bond with boron atom of 25BNg₃F₃ (D_{3h}) from C_3 axis to form C_{3v} symmetried F₃Ng₃BF⁻ at 26the MP2 and M06-2X levels of theory. Take the MP2 27 calculations as an example, the B-Ng of the F_3Ng_3BF (Ng=Ar, 28Kr and Xe) are slightly elongated to 1.902, 2.069 and 2.294 Å 29 from BNg₃F₃, and those of Ng-F are elongated to 2.147, 302.199 and 2.288 Å as listed Table 2, respectively. At the same 31time, the Ng-Ng distances are shortened. Furthermore, all B-32Ng-F in F_3Ng_3BF still keep linear, but the $\angle Ng$ -B-Ng reduce 33to 106.8°, 107.7° and 109.6° with the \angle Ng-B-F1 changed to 34112.0°, 111.2° and 110.3° for Ng=Ar, Kr, and Xe, which are 35very close to 109.5°, indicating the covalent bond nature of 36B-Ng in F_3Ng_3BF and the transformation from sp^2 to sp^3 37 hybrid orbital of boron atom. The successful optimization of $38F_3Ng_3BF$ provides evidence of the probable large stability of $39BNg_3F_3$, since the additional F⁻ did not give rise to great 40 geometrical changes of BNg₃F₃ and just get a rational 41 symmetrical change according to hybrid orbital theory.

42 Furthermore, we also tried to optimize the compounds 43 with one or two Ng atoms inserted into BF₃, i.e., F₂BNgF and 44FBNg₂F₂ (Ng=Ar, Kr and Xe), and found that they are both 45 local minima with real frequencies as plotted in Figure 1 and 46summarized in Table 1. At the MP2/aug-cc-pVTZ/SDD level, 47the calculated Ng-F (Ng=Ar, Kr and Xe) are 2.075, 2.098, and 482.172 Å in sequence for F₂BNgF as well as 1.991, 2.052, and 492.153 Å for two-Ng-inserted $FBNg_2F_2$ ($C_{2\nu}$), which are longer 50than that of 1.944, 2.026 and 2.137 Å for BNg₃F₃, 51respectively. But the B-Ar bond lengths of F₂BArF, FBAr₂F₂ 52 and BAr₃F₃ increase slightly from 1.835 to 1.863 and 1.878 Å, 53 which is different from the almost equal lengths of B-Kr and 54B-Xe bonds in F₂BNgF, FBNg₂F₂ and BNg₃F₃, which are almost 55 with equal lengths at MP2/aug-cc-pVTZ/SDD level. Thus, 56 one, two or three inserted Ng atoms including Ar, Kr and Xe $57 certainly cannot elongate the Ng-F and B-Ng bonds greatly in <math display="inline">58 \mbox{BF}_3.$

59 It is of interest to compare the B-Ng and Ng-F bond 60lengths with some Ng inserted analogs, such as linear $61FNgBF^{+,44}$ $FNgBN^{-,43}$ and $FNgBNH^{45}$ (Ng=Ar, Kr and Xe). It was 62found that the B-Ng bond lengths in $FNgBF^{+}$ (Ng=Kr and Xe) 63with 2.186 and 2.311 Å, and those of Ng-F in $FNgBN^{-}$ (Ng=Ar, 64Kr and Xe) with 2.293, 2.311 and 2.349 Å are longer than 65those of BNg_3F_3 at CCSD(T)/aug-cc-pVTZ/SDD level. But the 661.873 and 1.966 Å of Ng-F in $FNgBF^{+}$ (Ng=Kr and Xe) are 67slightly shorter than that in BNg_3F_3 . Therefore, BNg_3F_3 give 68reasonable bond lengths compared with $FNgBF^{+}$, $FNgBN^{-}$.

69B. Decomposition energies and stabilities of BNg_3F_3 (Ng=Ar, 70Kr, and Xe)

71To ascertain the stability of BNg₃F₃ species, the reaction 72potential energy surfaces (PESs) of decomposition have to 73be built as plotted in Figure 2. It has been shown that the 74DFT method often yields for noble-gas hydrides more 75 reliable energetics than the MP2 method.⁷⁰ Moreover, M06-762X functional performed very well on the B-Ng bond 77 distance with mean unsigned errors less than 0.02 Å in most 78cases.⁵⁸ Thus, the related compounds of BNg₃F₃ as well as 79various possible decomposed products are optimized at the 80M06-2X/aug-cc-pVTZ/LJ18 and refined at the single-point 81CCSD(T)/aug-cc-pVTZ/LJ18 levels, simplified as 82CCSD(T)//M06-2X in Table 4. For all the three D_{3h} 83 symmetried BNg_3F_3 (Ng=Ar, Kr and Xe) species, the possible 84 decomposition channels fall into three groups, i.e., (1) \sim (5) 85 correspond to molecular and atomic channels; (6) \sim (8) 86 correspond to ionic channels; and channel (9) \sim (11) 87 correspond to stable species theoretically reported, 88including F₂, NgF₂ (Ng=Kr and Xe), and FNgNgF,⁷¹ 89respectively. The first group is listed as follows:

$BNg_3F_3 \rightarrow FBNg_2F_2 + Ng \rightarrow F_2BNgF + 2Ng \rightarrow BF_3 + 3Ng$
(1)
\rightarrow B + 3Ng + 3F or B + 3NgF
(2)
\rightarrow BNg ₂ F ₂ + Ng + F or BNg ₂ F ₂ + NgF
(3)
\rightarrow BNgF (¹ Σ) + 2Ng + 2F or BNgF (¹ Σ) + 2NgF
(4)
\rightarrow BNgF (³ П) + 2Ng + 2F or BNgF (³ П) + 2NgF
(5)
Channel (1) corresponding to the decomposition to the

101global minimum (BF₃+3Ng) is preceeding in three steps with 102respective transition states (**TSs**) as plotted PES in Figure S1 103and the detailed IRC profiles are plotted in Figure S2. At first, 104one Ng-F bonds are elongated with relevant B-Ng bond 105shortened, the fluorine atom breaks away from the plane to 106form **TS1** with 5.70, 13.38, and 17.99 kcal/mol to 107FBNg₂F₂+Ng as plotted in Figure S1 followed by, FBNg₂F₂ 108decomposed to F₂BNgF+Ng via **TS2** by 9.72, 15.70 and 21.67 109kcal/mol, respectively. Note that the C_{2v} symmetried FBNg₂F₂ 110and F₂BNgF are plotted in Figure 1. At last, F₂BNgF 111decompose to BF₃+Ng via **TS3** with 7.14, 15.03 and 24.98 112kcal/mol for Ng=Ar, Kr and Xe, respectively. Note that **TS3** 113has been reported by Ghanty.¹⁵ It is found that the process

Page 4 of 20

ARTICLE

1 from BNg_3F_3 to BF_3 + 3Ng are exothermic largely by ca. 2323.47~498.79 kcal/mol. Probably, it may be a record-3breaking value for high-energy materials. Note that the two-4body decomposition reaction of BNg₃F₃ (Ng=Kr and Xe) have 5transition states that are higher than that of two-Ng-inserted 6compound, including experimentally verified HXeOXeH at 713.14 kcal/mol,³⁶ as well as HXeOXeF³⁷ and HXeXeF⁶⁸ at 814.90 and 11.76 kcal/mol, but lower than that of $FXeOXeF^{37}$ 9and HXeCCXeH³⁴ at 62.26 and 49.50 kcal/mol.

10 Note that except for channel (1), all the total energies of 11 decomposition fragments in $(2)^{(11)}$ are energetically higher 12than BNg_3F_3 for Ng = Kr and Xe, so we need not search for 13 any transition states in view of the thermodynamic stability 14 of BNg_3F_3 (Ng = Kr and Xe). Just like the decomposition of Ng 15 inserted molecules $(HNgY)^{2-8}$ to atoms of H + Ng + Y, the 16 channel (2) of BNg_3F_3 dissociating to B + 3Ng + 3F are 17endothermic largely by 30.24 and 134.14 kcal/mol for Ng = 18Kr and Xe, while exothermic by 40.11 kcal/mol for BAr_3F_3 . 19Channel (3) related to a radical precursor of BNg_2F_2 , whose 20 reverse reaction probably leads to BNg_3F_3 , just similar to the 21 reaction of H + Xe + OXeH leading to HXeOXeH.³⁶ Thus, 22 exothermicity of 3.39 and 53.74 kcal/mol for BKr₃F₃ and $23BXe_3F_3$ may be obtained experimentally easier than the 24endothermicity of 27.86 kcal/mol for BAr_3F_3 in channel (3). 25Unlike one or two Ng atoms inserted compounds, tri-Ng-26atom inserted compounds may have more precursors. 27Channel (4) and (5) are related to the possible radical 28precursors, i.e., BNgF can be in singlet or triplet states with 29the former more stable energetically with the calculated S-T 30gap at 6.82, 21.44 and 34.66 kcal/mol, respectively. Note 31that BNgF $(^{3}\Pi)$ radical in channel (5) with two unpaired 32 electrons can be deemed to be precursor of BNg_3F_3 , which 33can react with 2NgF to produce BKr_3F_3 and BXe_3F_3 with 34exothermicity of 23.89, 115.34 kcal/mol, but for BArF ($^{3}\Pi$) it 35 is an endothermic process of 46.90 kcal/mol to produce $36BAr_3F_3$. It should be noted that XeF radical is calculated to be 37 energetically below Xe + F largely by 12.66 kcal/mol while 38ArF and KrF are just 0.10 and 0.98 kcal/mol below Ar + F and 39Kr + F, respectively. Accordingly, XeF, as a reactant of reverse 40 reaction of channel (3), (4) and (5), can reduce the number 41 of reactant and thus increase the probability of effective 42 collision.

43	$BNg_3F_3 \rightarrow 3F^- + B^{3+} + 3Ng$
44	(6)
45	\rightarrow 3NgF ⁺ + B ³⁻
46	(7)
47	$\rightarrow BNg_3^{3+} + 3F^{-}$
48	(8)

48

49 Channel (6) \sim (8) corresponding to the decomposition of $50BNg_3F_3$ by channel (6) and (7) are endothermic in the range 51of 1057.92~1544.57 kcal/mol. The large decomposition 52 energies of channel (8) to BNg_3^{3+} and $3F^{-}$ from 762.18 to 53753.01 and 725.90 kcal/mol reveal $\mathsf{BNg}_3\mathsf{F}_3$ are not van der 54 waals complexes, and fluorine plays a vital role on the 55stability of BNg₃F₃. Therefore, there is large thermodynamic 56stability of BNg₃F₃ towards ionic decompositions. The 57 species in channel (8) can be best described by the Lewis

Journal Name

58structures of $(BNg_3^{3+})(F)_3$, with the B-Ng bonds in BNg_3^{3+} at 591.781, 1.944 and 2.144 Å at CCSD(T)/aug-cc-pVTZ/LJ18 level, 60which are shorter than that in BNg₃F₃ just like the shorter H-61Ng bond of HNg⁺ (Ng= He, Ar, Kr and Xe) than that in HNgF.

62	$BNg_3F_3 \rightarrow BNg^{+}(^{+}S) + F^{-} + 2Ng + F_2$	
63	or BNg ⁺ (³ P) + F ⁻ + 2Ng + F ₂	(9)
64	\rightarrow BNg ⁺ (¹ S) + F ⁻ + FNgNgF	
65	or BNg ⁺ (³ P) + F ⁻ + FNgNgF	(10)
66	\rightarrow BNg ⁺ (¹ S) + F ⁻ + NgF ₂ + Ng	

67

)) (11)

or $BNg^{+}(^{3}P) + F^{-} + NgF_{2} + Ng$

Note that F^- and BNg^+ (Ng=Ar, Kr and Xe) with two 68 69electronic configurations (¹S and ³P) are involved in channel 70(9)~(11). The endothermic processes of channel (9) 71[26.53~181.01 kcal/mol for BNg⁺ (¹S) and 103.19~238.87 72kcal/mol for BNg⁺ (³P)] indicate large thermodynamically 73stability of BNg₃F₃ in the presence of F₂. The similar 74endothermic process of channel (10) involves the reported 75 species of FNgNgF⁷¹ with short Ng-Ng bond and large kinetic 76stability. In channel (11) there are experimentally found 77molecules of NgF₂ (Ng=Kr, Xe), note that all NgF₂ (Ng=Ar-Xe) 78can be optimized at the M06-2X, MP2 and CCSD(T) levels, 79but there is an abnormal increase of Ar-F distance to 2.941 Å 80at CCSD(T) level compared with that of 1.756 and 1.862 Å at 81M06-2X and MP2 levels. Actually, ArF₂ was predicted to be 82unstable with negative three-body decomposition energies 83at CCSD(T)/CBS level⁴⁵ and has still not been synthesized. 84This reveals the more reliable calculations of CCSD(T) than 85that of M06-2X and MP2.

86 It is important to compare the thermodynamic and 87kinetic stabilities upon the insertion of Ng (Ng= Ar, Kr and 88Xe) atom into BF_3 gradually. From channel (1), it is clear that 89FBAr₂F₂ and FBKr₂F₂ are kinetically the most stable species of 90BNg_nF₃ (Ng=Ar and Kr, n=1, 2 and 3) with respective barriers 91at 9.72 and 15.70 kcal/mol, while F_2BXeF are kinetically more 92stable than $FBXe_2F_2$ and BXe_3F_3 . Among BNg_3F_3 , BKr_3F_3 and $93BXe_3F_3$ are energetically higher than $BF_3 + 3Ng$ and thus 94thermodynamically unstable in channel (1), however, they 95are kinetically stable in the decomposition via TS1 with 13.38 96and 17.99 kcal/mol, respectively, but BAr₃F₃ is both 97thermodynamically unstable in molecular and atomic 98 channels (1) \sim (5) and kinetically unstable in channel (1) with 99a small barrier of 5.70 kcal/mol. Therefore, BKr₃F₃ and $100BXe_3F_3$ are kinetically stable as metastable species. Note that 101even BKr₃F₃ has a large protecting barrier close to two-Ng-102inserted HXeOXeH and HXeOXeF.^{36,37} Thus, in view of the 103 successful synthesis of analogous $\mathsf{F}_2\mathsf{BXeF}$ by Xe and $\mathsf{O}_2\mathsf{BF}_4$ 104under 173K, $^{\rm 39}$ both BKr_3F_3 and BXe_3F_3 may be prepared in 105 low-temperature noble-gas matrixes using UV photolysis of a $106BF_3$ precursor and subsequent thermal mobilization of B 107 atoms.

$108\mbox{C}.$ Charge distribution and bonding nature

109To explore the bonding nature of BNg_3F_3 , we also calculated 110the charge distribution, WBIs, QTAIM,⁶⁵ and ELF.⁶⁶ From the 111calculated NPA charge of BNg_3F_3 species at the MP2/aug-cc-112pVTZ/SDD level, it is found that the charge on the B atom 113(qB) changes from 1.570 (BF₃) to 0.641, 0.245 and -0.267 e in 114BAr_{3}F_{3}, BKr_{3}F_{3} and $BXe_{3}F_{3}$ respectively, as summarized in

1Table 3, while those of F atom keep negative from -0.523 $2(BF_3)$ to -0.832, -0.826 and -0.844 e, due to its large 3electronegativity. Accordingly, the inserted Ng atom 4generally loses electron with positive charge at 0.619, 0.745 5 and 0.923 e for Ar, Kr and Xe, indicating the breaking of their 6closed-shell structures, and the participation to the chemical 7 bonds with the neighboring B and F atoms.

8 Now, it is of interest to compare the difference of NPA 9charge between BNg₃F₃ and F₃Ng₃BF⁻ as listed in Table 3. It is 10found that the charge (*q*F1) of the added F⁻ on C_{3v} axis are -110.518, -0.550 and -0.591 *e* for Ng= Ar, Kr and Xe in F₃Ng₃BF⁻, 12 which means BNg₃F₃ group in F₃Ng₃BF⁻ acquire -0.482, -0.450 13 and -0.409 *e* from F1 anion, respectively. At the same time, 14 the remaining *q*F of F₃Ng₃BF⁻ increases to -0.937, -0.919 and 15-0.911 *e*, and *q*B increases to 0.835, 0.541 and 0.171 *e*, 16 leading to more electrons on Ng atoms and thus with fewer 17 positive charges than original BNg₃F₃ (Ng=Ar, Kr and Xe).

18 The calculated Wiberg bond indices (WBIs) of for B-Ng 19bonds are 0.879, 0.945 to 1.037 in BAr₃F₃, BKr₃F₃ and BXe₃F₃, 20suggesting singly bonded B-Ng as listed in Table 5. At the 21same time, the small WBIs of 0.147, 0.166, and 0.168 for Ar-22F, Kr-F and Xe-F suggest that essentially weak Ng-F 23interactions. Note that the analogous D_{3h} symmetried anion 24with three Ng atoms, i.e., (NgO)₃F⁻ (Ng=He, Ar, and Kr) 25reported by Hu *et al.*⁷² indicate that the interaction between 26F⁻ and NgO are non-covalent with the large Ng-F bond 27lengths.

28 Following the works of Gerry and co-workers⁷³⁻⁷⁵ about 29the covalent and van der Waals limits, we conclude the 30covalent and van der Waals limits of B-Ng and Ng-F bond⁷⁶⁻⁷⁹ 31by comparing B-Ng and Ng-F bond lengths of F_2 BNgF, 32FBNg₂F₂, and BNg₃F₃ as listed in Table S3. Note that r(B-Ng) is 33closest of all to the covalent limit and much less than the van 34der Waals limit. Although r(Ng-F) exceeds the covalent limit 35(by ~0.452Å), it is still much less than the van der Waals limit. 36Therefore, B-Ng bonds are the covalent nature from the 37view of bond lengths.

The quantum chemistry theory of atoms-in-molecule. 38 39QTAIM,⁶⁵ is known as a powerful and universal utility in 40 investigating the bond critical point (BCP) properties of 41 unusual Ng bonding. In Table 4, we listed the detailed 42QTAIM information of BCP for F₂BNgF, FBNg₂F₂ and BNg₃F₃ 43(Ng=Ar, Kr and Xe) including electron density (p), Laplacian 44 electron density $(\nabla^2 \rho)$ (contour line diagrams in Figure 4), 45 energy density (H_r), potential energy density (V_r) and kinetic 46 energy density (G_r). From Table 1, it is clear that the B-Ng 47bond distances of BNg_3F_3 are close to their R_{cov} of 1.81, 2.02 48and 2.16 Å,⁸⁰ but Ng-F bond distances much longer than $49corresponding \ R_{cov}$ 1.68, 1.81 and 2.01 Å. 80 Thus, the best 50 discussion of the study by Boggs⁸¹ can be performed, i.e., the 51 chemical bonds can be defined to meet any criteria of the 52 following four bond types including A, B, C, and W^c:

53•Type A. $\nabla^2 \rho(r) < 0$, and $\rho(r)$ is large (with a threshold of 0.1 54au);

55•Type B. H(r) < 0, and $\rho(r)$ is large (with a threshold of 0.1 56au);

57•Type C. H(r) < 0 and $G(r)/\rho(r)<1$;

$58 \cdot W^{c}$. H(r)< 0 and G(r)/ ρ (r)> 1;

59 In general, type A can be looked on as a subset of type B 60and/or C, whereas H(r) < 0 and G(r)/ ρ (r)<1 indicating that 61the bonding is of partially covalent in nature under the 62 category of type C covalent bond. B-Ng interactions could be 63 classified as covalent bonds of type A, B and C, except for B-64Ar in F₂BArF of type B and C because of its positive Laplacian 65 electron density on BCP. In addition, the B-Ng bond property 66on BCP both reveals the local charge concentration area as 67 displayed in Figure 4. However, the Ng-F interactions could 68be in principle classified as weak bonding interaction with 69some covalent properties due to there are H(r) < 0 and 70G(r)/ ρ > 1 (W^c) with the positive values of $\nabla^2 \rho(r)$. Obviously, 71 the strength of B-Ng is consistent to area of $\nabla^2 \rho(\mathbf{r}) < 0$, that is 72B-Ar < B-Kr < B-Xe, which is also in agreement with the 73 calculated Wiberg bond indices of 0.879, 0.945 and 1.037 for 74B-Ar, B-Kr, and B-Xe.

75 In addition, we also compared the bonding nature of $76F_2BNgF$, $FBNg_2F_2$ and BNg_3F_3 (Ng=Ar, Kr and Xe) with 77QTAIM⁶⁵ at MP2/aug-cc-pVTZ/LJ18 level as listed in Table 5. 78It is shown that the B-Ar bond has increasing covalent 79 composition from F_2BArF to $FBAr_2F_2$ and BAr_3F_3 , according to 80Laplacian electron density $[\nabla^2 \rho(\mathbf{r})]$ of +0.030, -0.144 and -810.154, and corresponding electron density $[\rho(r)]$ increased 82 from 0.123 to 0.130 and 0.146. At the same time, the B-Ar 83 covalent bond changes from types B and C to types A, B and 84C. Correspondingly, the Ar-F bond, as a W^{c} interaction, the 85 increased positive Laplacian electron density and electron 86density on BCP reveal the enhance of this interaction with 87 increasing number of inserted Ng atom, and reliably, the 88 increased WBI of Ar-F bonds from 0.082 to 0.121 and 0.147 89 of F_2BArF , $FBAr_2F_2$ and BAr_3F_3 . Hence, more inserted Ar or Kr 90atoms will benefit the strength of B-Ar and Ar-F as well as B-91Kr and Kr-F bonds. But this effect isn't distinct, and more Xe 92atoms inserted to BF3 will make B-Xe and Xe-F bonds weaker 93 from the QTAIM data that the electron density of BCP in B-94Xe bond changes from 0.129 in F₂BXeF to 0.125 in FBXe₂F₂, 95and to 0.126 in BXe₃F₃. Although the strength of B-Xe was 96not increased with the increasing number of inserted Ng 97atoms, it is no doubt that B-Xe are all covalent bonding in $98F_2BXeF$, $FBXe_2F_2$, and BXe_3F_3 due to the negative Laplacian 99electron density.

100 To confirm the above analysis of bonding nature, we also 101calculated the Electron Localized Function (ELF).⁶⁶ Generally, 102ELF diagram can provide a faithful visualization of valence 103shell electron pair repulsion theory (VSEPR).⁸² As the plotted 104ELF diagrams of BNg_3F_3 , $FBNg_2F_2$, and F_2BNgF_3 in Figure 5 105and S1, note that the red areas with the largest ELF values 106(yellow area) between Ng and B atoms denote the low local 107kinetic energy densities owing to relatively low Pauli 108 repulsion, indicating the covalent interactions of B-Ng 109bonding. On the other hand, the yellow area doesn't appear 110between Ng and F, F basins are relatively independent, 111which indicates that Ng-F bonding are rather ionic, or non-112 covalent. After careful analysis, it is shown that the low-ELF 113 areas between Ng and F atoms are of increasing covalent 114bond tendency of Ng-F bonds from Ar to Kr and Xe.

1 Now, it's interesting to compare the B-Ng bonding with 2that in other noble gas compounds, such as the B-Ng 3bonding in BNg_3F_3 , B-Ng bonds in OBNgF,⁴¹ FNgBS⁴², FNgBN⁻ 4,⁴³ and FBNgNH⁴⁵ (Ng=Ar, Kr, Xe) are dominant in covalent 5character from the negative Laplacian electron density of 6BCP, but the BCP values of B-Ng bond in HNgBF⁺ (Ng=He, Ar, 7Kr, Xe)⁸³ indicate that ion-dipole interaction play a major role 8in the B-Ng bonding with a strong ionic character.

9 Note that the B-Ng bonds are covalent and Ng-F bonds 10are W^c interaction in BNg_3F_3 , which is totally different from 11the bonding nature of HXeOXeH, where the corresponding 12O-Xe bonds are mostly ionic with a substantial covalent 13contribution while Xe-H bond is predominantly covalent. 14This can be rationalized from the analysis of atomic 15electronegativity, i.e., the electronegativity of 3.44 for O, 163.98 for F are much larger than that of Ng, while those of 172.20 for H, 2.04 for B are close to that of Ng atoms from 18Pauling electronegativity scale.⁸⁴ The calculated QTAIM⁶⁵ 19data for BXe₃H₃ well confirm the above points as listed in 20Table 4, clearly showing that H-Xe bond is covalent from 21 negative $\nabla^2 \rho$, -0.0214, and relatively ionic of B-Xe with $\nabla^2 \rho$ of 22-0.0072, more apparently from WBI, H-Xe bond is 0.515 as 23 half bonded, and B-Xe bond is very weak just at 0.025. The 24Laplacian electron density and ELF^{66} diagrams of BXe_3H_3 as 25plotted in Figure S2 and S3 (Support Information) are 26 consistent with the QTAIM results.

27D. Vibrational frequencies

28The calculated harmonic vibrational frequencies and 29intensities for F₂BNgF, FBNg₂F₂, and BNg₃F₃ are listed in Table 306 and S4, respectively. It is shown that the calculated 31frequencies at M06-2X and MP2 levels are in reasonable 32agreement, and herein we just take the MP2 calculations as 33an example. It is found that the harmonic frequencies of v(B-34Ng) of one-Ng-inserted F₂BNgF are generally smaller than 35that of two or three Ng-inserted FBNg₂F₂ and BNg₃F₃. This is 36consistent with that the B-Ng bond lengths of BNg₃F₃ and 37FBNg₂F₂ are generally shorter than that of F₂BNgF, and 38further confirm that the covalent character of B-Ng bond in 39BNg₃F₃ and FBNg₂F₂ are relatively higher than those of in 40F₂BNgF.

41 For BNg₃F₃, there are totally fifteen vibration modes 42 including six stretching, five bending and four torsions 43(including an out-of-plane mode). Note that the vibrational 44 frequencies of TS1-TS3 are also calculated as listed in Table 45S5-S7 (Support Information). There are five degenerated 46 modes including δ (Ng-B-Ng), F-Ng-Ng-F torsion, δ (B-Ng-F), $47v_{as}(Ng-F)$ and $v_{as}(B-Ng)$ due to the high D_{3h} symmetry of 48BNg₃F₃. The frequencies of v_{as} (Ng-F) of BNg₃F₃ (Ng=Ar, Kr and 49Xe) modes located at high frequencies zones are larger than 50400 cm⁻¹, i.e., 445.0, 443.2 and 439.8 cm⁻¹ corresponding to 51large intensities of 796.60, 564.97 and 517.70 km/mol, 52 which should be the characteristic peaks for the 53 experimental observation. But note that the experimentally 54 observed frequencies for HArF,⁴ and HXeOXeH³⁶ suggest that 55the theoretical values for the vibrational frequencies are 56 larger by about 10 %,⁸⁵ because anharmonic effects can't be 57 ignored. Here, we calculated the anharmonic vibrational

58 frequencies of BNg₃F₃ by MP2/CC-VSCF method⁶⁰⁻⁶³ as listed 59 in Table 6. The frequencies of the characteristic peak, v_{as} (Ng-60F), decrease to 435.2, 394.0 and 382.5 cm⁻¹, which 61 certified the large influence of anharmonic effect for BNg₃F₃. 62 The intense stretching vibrations of v(B-Ng) and v_{as} (Ng-F) 63 further confirm that the Ng inserted compounds based on 64 BF₃ including F₂BNgF, FBNg₂F₂ and BNg₃F₃ are stiff and not 65 van der waals molecules.

66Conclusion

67Following the study of HXeOXeH³⁶ and HXeCCXeH,³⁴ that is, $68H_2O$ and C_2H_2 inserted with two Ng atoms experimentally 69and theoretically. the species of tri-Ng-atom inserted in BF₃, 70i.e., neutral mono-centric compounds (BNg₃F₃, Ng=Ar, Kr, 71Xe), is firstly investigated at the DFT/M06-2X and ab initio 72 calculations within the framework of MP2, CCSD(T) and 73CASSCF levels of theory. It is shown that BNg_3F_3 (Ng=Ar, Kr 74and Xe) are all identified as local minima with D_{3h} symmetry 75 with B-Ng bonds lengths at 1.966, 2.027 and 2.214 Å at the 76CCSD(T)/aug-cc-pVTZ/LJ18 level, which are close to their 77 covalent radii. Moreover, when an F ion (F1) is added on 78boron atom in BNg_3F_3 , the geometries of F_3Ng_3BF are still 79very tight. From the plotted PESs, it is found that BNg₃F₃ 80(Ng=Kr and Xe) are metastable species with large kinetic 81 stability towards BF_3 + 3Ng with decomposition barriers of 8213.38 and 17.99 kcal/mol, respectively, while that of BAr_3F_3 83 is just 5.70 kcal/mol and cannot be identified as metastable 84 status. Specially, BKr_3F_3 , as tri-Kr-inserted compound, even 85has large dissociation barrier comparable with two-Xe-86inserted HXeOXeH and HXeOXeF.³⁷ From the bonding nature 87 analysis, it is found that B-Ng in BNg_3F_3 are mainly singly 88 covalent bond supported by negative Laplacian electron 89density of BCP with WBI at 0.879, 0.945 and 1.037 for Ng=Ar, 90Kr and Xe, while Ng-F are dominantly weak bonding 91interaction with some covalent properties according to 92Boggs's⁷⁹ criteria. Finally, the calculated anharmonic 93vibrational frequencies reveal that BNg₃F₃ are stiff molecules 94 with the characteristic asymmetric stretching at 435.0, 394.0 95and 382.5 cm⁻¹ for Ar-F, Kr-F and Xe-F bonds, respectively. 96The large kinetic stabilities of the BKr₃F₃ and BXe₃F₃ 97 molecules suggest that they should be very likely candidates 98 for experimental detection. Following the synthesis of one-99Ng-inserted FXeBF2 and two-Ng-inserted HXeOXeH, we hope 100that the present theoretical study may provide important 101evidence for experimental synthesis of BNg₃F₃ such as matrix 102photochemistry at low temperature in future.

103Acknowledgment

104This work was supported by the National Natural 105Science Foundations of China (Nos. 21173095, 10621203094, and 21373112). In addition, we owe a 107debt of gratitude to Miss Min-min Ma's help in 108polishing the English.

1**Reference**

- 21 N. Bartlett, Proc. Chem. Soc., 1962, 218.
- 32 M. Pettersson, J. Lundell and M. Räsänen, J. Chem. 4 Phys., 1995, 102, 6423-6431.
- 53 M. Pettersson, J. Lundell and M. Räsänen, J. Chem. 6 Phys., 1995, 103, 205-210.
- 74 L. Khriachtchev, M. Pettersson, N. Runeberg, J. Lundell
- 8 and M. Räsänen, Nature (London), 2000, 406, 874-876.
- 95 M. Pettersson, J. Lundell, L. Khriachtchev and M.
- 10 Räsänen, J. Chem. Phys., 1998, 109, 618-625.
- 116 M. Pettersson, J. Lundell, L. Khriachtchev, E. Isoniemi,
- 12 and M. Räsänen, J. Am. Chem. Soc., 1998, 120, 7979-13 7980.
- 147 E. Isoniemi, M. Pettersson, L. Khriachtchev, J. Lundell
- 15 and M. Räsänen, J. Phys. Chem. A, 1999, 103, 679-685.
- 168 M. Pettersson, L. Khriachtchev, J. Lundell and M.
- 17 Räsänen. J. Am. Chem. Soc., 1999, 121, 11904-11905.
- 189 G. Liu, Y. Yang and W. Zhang, Struct. Chem., 2010, 21, 19 197-202.
- 2010 A. Cohen, J. Lundell and R. B. Gerber, J. Chem. Phys., 21 2003, 119, 6415-6417.
- 2211 B. R. Wilson, K. Shi and A. K. Wilson, Chem. Phys. Lett., 23 2012, 537, 6-10.
- 2412 T. Jayasekharan and T. K. Ghanty, J. Chem. Phys., 2008, 25 **128**, 144314.
- 2613 C. Y. Peng, C. Y. Yang, Y. L. Sun and W. P. Hu, J. Chem. 27 Phys., 2012, 137, 194303.
- 2814 S. Pan, A. Gupta, S. Mandal, D. Moreno, G, Merino and
- 29 P. K. Chattaraj, Phys. Chem. Chem. Phys., 2015, 17, 972-30 982.
- 3115 T. H. Li, C. H. Mou, H. R. Chen and W. P. Hu, J. Am. 32 Chem. Soc., 2005, 127, 9241-9245.
- 3316 S. Borocci, N. Bronzolino and F. Grandinetti, Chem. 34 Phys. Lett. 2008, 458, 48-53.
- 3517 S. Borocci, M. Giordani and F. Grandinetti, J. Phys. 36 Chem. A, 2014, 118, 3326-3334.
- 3718 T. Jayasekharan and T. K. Ghanty, J. Chem. Phys., 2007, 38 **127**, 114314.
- 3919 M. Gronowski, M. Turowski and R. Kołos, J. Phys. Chem. 40 A, 2015, 119, 2672-2682.
- 4120 L. Khriachtchev, A. Lignell, H. Tanskanen, J. Lundell, H.
- 42 Kiljunen and M. Räsänen, J. Phys. Chem. A, 2006, 110, 43 11876-11885.
- 4421 K. Gao and L. Sheng, J. Chem. Phys., 2015, 142, 144301.
- 4522 A. Sirohiwal, D. Manna, A. Ghosh, T. Jayasekharan and
- 46 T. K. Ghanty, J. Phys. Chem. A 2013, 117, 10772-10782
- 4723 H. Tanskanen, L. Khriachtchev, J. Lundell, H. Kiljunen 48 and M. Räsänen, J. Am. Chem. Soc., 2003, 125, 16361-49 16366.
- 5024 L. Khriachtchev, A. Domanskaya, J. Lundell, A. Akimov,
- 51 M. Räsänen and E. Misochko, J. Phys. Chem. A, 2010,
- 52 **114**, 4181–4187.
- 5325 A. Ghosh, D. Manna and T. K. Ghanty, J. Chem. Phys.,
- 54 2013, 138, 194308.

- 5526 T. Takayanagi, T. Asakura, K. Takahashi, Y. Taketsugu, T. 56 Taketsugu and T. Noro, Chem. Phys. Lett., 2007, 446, 57
 - 14-19.
- 5827 M. Pettersson, L. Khriachtchev, J. Lundell and M. 59 Räsänen, J. Am. Chem. Soc., 1999, 121, 11904-11905
- 6028 M. Pettersson, J. Lundell, L. Khriachtchev, E. Isoniemi 61 and M. Räsänen. J. Am. Chem. Soc., 1998, 120, 7979-62 7980
- 6329 M. Zhang and L. Sheng, J. Chem. Phys., 2013, 138, 64 114301.
- 6530 T. Jayasekharan and T. K. Ghanty, J. Chem. Phys., 2012, 66 136, 164312.
- 6731 M. Zhang and L. Sheng, Phys. Chem. Chem. Phys., 2014, 68 16, 196-203.
- 6932 D. Manna, A. Ghosh and T. K. Ghanty, Chem. Eur. J. 70 2015, 21, 8290-8296.
- 7133 A. Ghosh, D. Manna and T. K. Ghanty, J. Phys. Chem. A, 72 2014, 119, 2233-2243.
- 7334 L. Khriachtchev, H. Tanskanen, J. Lundell, M. 74 Pettersson, H. Kiljunen and M. Räsänen, J. Am. Chem. 75 Soc., 2003, 125, 4696-4697.
- 7635 S. Yockel, E. Gawlik and A. K. Wilson, J. Phys. Chem. A, 77 2007, 111, 11261-11268.
- 7836 L. Khriachtchev, K. Isokoski, A. Cohen, M. Räsänen and 79 R. B. Gerber, J. Am. Chem. Soc., 2008, 130, 6114-6118.
- 8037 A. Avramopoulos, J. Li, N. Holzmann, G. Frenking and 81 M. G. Papadopoulos, J. Phys. Chem. A, 2011, 115, 82 10226-10236.
- 8338 J. Lundell, A. Cohen and R. B. Gerber, J. Phys. Chem. A, 84 2002, 106, 11950-11955.
- C. T. Goetschel and K. R. Loos, J. Am. Chem. Soc, 1972, 8539 86 94, 3018-3021.
- 8740 T. Jayasekharan and T. K. Ghanty, J. Chem. Phys., 2006, 88 125, 234106.
- 8941 T. Y. Lin, J. B. Hsu and W. P. Hu, Chem. Phys. Lett., 2005, 90 402, 514-518.
- 9142 A. Ghosh, S. Dey, D. Manna and T. K. Ghanty, J. Phys. 92 Chem. A, 2015, 119, 5732-5741.
- 9343 P, Antoniotti, S. Borocci, N. Bronzolino, P. Cecchi and F. 94 Grandinetti, J. Phys. Chem. A, 2007, 111, 10144-10151.
- 9544 Z. Lv, G. H. Chen, D. Li, D. Wu, X. C. Huang, Z. R. Li and 96 W. G. Liu, J. Chem. Phys., 2011, 134, 154302.
- 9745 J. L. Chen, C. Y. Yang, H. J. Lin and W. P. Hu, Phys. Chem. 98 Chem. Phys., 2013, 15, 9701-9709.
- 9946 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, 100 M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. 101 Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X, 102 Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. 103 L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. 104 Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, 105 O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. 106 Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, 107 K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, 108 K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. 109 Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. 110 Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. 111 Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.
- This journal is © The Royal Society of Chemistry 20xx

- 1 Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K.
- 2 Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J.
- J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J.
- 4 B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox,
- 5 *GAUSSIAN09, Revision A02,* Gaussian, Inc., Wallingford, 6 CT, 2009.
- 747 G. Karlström, R. Lindh, P. Å. Malmqvist, B. O. Roos, U.
- 8 Ryde, V. Veryazov and L. Seijo, *Comput. Mater. Sci.*9 2003, 28, 222-239.
- 1048 R. A. Kendall, T. H. Jr. Dunning and R. J. Harrison, J.
 11 *Chem. Phys.*, 1992, **96**, 6796-6806.
- 1249 D. E. Woon and T. H. Jr. Dunning, J. Chem. Phys., 1993,
 13 98, 1358-1371.
- 1450 A. K. Wilson, D. E. Woon, K. A. Peterson and T. H. Jr.
 15 Dunning, *J. Chem. Phys.*, 1999, **110**, 7667-7676.
- 1651 L. A. LaJohn, P. A. Christiansen, R. B. Ross, T. Atashroo
- 17 and W. C. Ermler, J. Chem. Phys., 1987, 87, 2812-2824.
- 1852 K. A. Peterson, D. Figgen, E. Goll, H. Stoll and M. Dolg, J.
- 19 *Chem. Phys.*, 2003, **119**, 11113-11123.
- 2053 A. Nicklass, M. Dolg, H. Stoll and H. Preuss, J. Chem.
 21 Phys., 1995, 102, 8942-8952.
- 2254 Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**,23 215.
- 2455 M. J. Frisch, M. Head-Gordon and J. A. Pople, *Chem.*25 *Phys. Lett.*, 1990, **166**, 275-280.
- 2656 K. Raghavachari, G. W. Trucks and J. A. Pople, *Chem.*27 *Phys. Lett.*, 1989, **157**, 479.
- 2857 G. E. Scuseria, Chem. Phys. Lett., 1991, 176, 27-35.
- 2958 T. Y. Lai, C. Y. Yang, H. J. Lin, C. Y. Yang and W. P. Hu, J.
 30 *Chem. Phys.*, 2011, **134**, 244110.
- 3159 T. J. Lee and P. R. Taylor, *Int. J. Quantum Chem.*, 1989,
 32 36, 199-207.
- 3360 J. O. Jung and R. B. Gerber, J. Chem. Phys., 1996, 105,
 34 10332-10348.
- 3561 G. M. Chaban, J. O. Jung and R. B. Gerber, *J. Chem.*36 *Phys.*, 1999, **111**, 1823-1829.
- 3762 G. M. Chaban, J. O. Jung and R. B. Gerber, *J. Phys.*38 *Chem. A*, 2000, **104**, 2772-2279.
- 3963 J. O. Jung and R. B. Gerber, J. Chem. Phys., 1996, 105,
 40 10682-10690.
- 4164 M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P.
- 42 Straatsma, H. J. J. van Dam, D. Wang, J. Nieplocha, E.

- 43 Apra, T. L. Windus, W. A. de Jong, *Comput. Phys.* 44 *Commu.*, 2010, **181**, 1477-1489.
- 4565 R. F. W. Bader, 22nd International Series of Monographs 46 on Chemistry, Oxford University Press, Oxford, U.K.,
- 47 1990.
- 4866 B. Silvi and A. Savin, *Nature*, 1994, **371**, 683-686.
- 4967 T. Lu and F. Chen, J. Comp. Chem., 2012, **33**, 580-592.
- 5068 C. Ó. C. Jiménez-Halla, I. Fernández and G. Frenking, 51 *Angew. Chem. Int. Ed.*, 2009, **48**, 366-369.
- 5269 A. Bondi. J. Phys. Chem., 1964, 68, 441-451.
- 5370 A. Lignell, L. Khriachtchev, J. Lundell, H. Tanskanen and
 54 M. Räsänen, J. Chem. Phys., 2006, 125, 184514.
- 5571 I. Fernández and G. Frenking, *Phys. Chem. Chem. Phys.*56 2012, 14, 14869-14877.
- 5772 Y. L. Liu, Y. H. Chang, T. H. Li, H. R. Chen and W. P. Hu,
 58 *Chem. Phys. Lett.*, 2007, 439, 14-17.
- 5973 S. A. Cooke and M. C. L. Geery, J. Am. Chem. Soc., 2004,
 60 126, 17000-17008.
- 6174 J. M. Michaud, S. A. Cooke and M. C. L. Gerry, *Inorg.*62 *Chem.*, 2004, 43, 3871-3881.
- 6375 J. M. Thomas, N. R. Walker, S. A. Cooke and M. C.
 64 Gerry, J. Am. Chem. Soc., 2004, 126, 1235-1246.
- 6576 B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J.
 66 Echeverría, E. Cremades and S. Alvarez, *Dalton Trans.*,
 67 2008, 2832-2838.
- 6877 S. Alvarez, Dalton Trans., 2013, 42, 8617-8636.
- 6978J. Vogt and S. Alvarez, Inorg. Chem., 2014, 53, 9260-709266.
- 7179 L. Pauling, J. Am. Chem. Soc. 1927, **49**, 765-790.
- 7280 P. Pyykkö and M. Atsumi, *Chem.-Eur. J.*, 2009, **15**, 186-73 197.
- 7481 W. Zou, D. Nori-Shargh and J. E. Boggs, *J. Phys. Chem.*75 A, 2012, **117**, 207-212.
- 7682 R. J. Gillespie, J. Chem. Educ. 1963, 40, 295.
- 7783 A. Sirohiwal, D. Manna, A. Ghosh, T. Jayasekharan and
- 78 T. K. Ghanty, J. Phys. Chem. A, 2013, **117**, 10772-10782.
- 7984 L. Pauling, *The Nature of the Chemical Bond*. Vol. 3,80 Cornell university press. Ithaca, NY, 1960, pp. 175.
- 8185 M. Pettersson, L. Khriachtchev, A. Lignell, M. Räsänen
 82 and R. B. Gerber, *J. Chem. Phys.* 2002, **116**, 2508-2515.

Table 1 Optimized geometrical parameters of $F_2BNgF(C_{2\nu})$, $FBNg_2F_2(C_{2\nu})$ and $BNg_3F_3(D_{3h})$ (Ng=Ar, Kr, Xe) at the M06-2X, MP2, CCSD(T) and CASSCF levels, respectively. Note that bond lengths are in Å and angles in degrees.

		F ₂ BArF			F ₂ BKrF			F ₂ BXeF ^b	
methods	L(Ng-B)	L(Ng-F)	L(Ng-Ng)	L(Ng-B)	L(Ng-F)	L(Ng-Ng)	L(Ng-B)	L(Ng-F)	L(Ng-Ng)
M06-2X	1.841	2.082		2.008	2.096		2.222/2.212/ 2.218	2.148/2.150/ 2.137	
MP2	1.835	2.075		1.991	2.098		2.203/ <i>2.196</i> / 2.180	2.172/2.158/ 2.149	
MP2 ^a	1.853	2.089		1.994	2.104		2.435	2.186	
		$FBAr_2F_2$			FBKr ₂ F ₂			FBXe ₂ F ₂	
M06-2X	1.846	2.000	3.199	2.016	2.059	3.523	2.239/2.228/ 2.231	2.134/2.135/ 2.128	3.857/ <i>3.852</i> / 3.089
MP2	1.863	1.991	3.203	2.009	2.052	3.482	2.221/2.212/ 2.198	2.153/2.140/ 2.136	3.881/ <i>3.867</i> / 3.873
		BAr_3F_3			BKr_3F_3			BXe ₃ F ₃	
M06-2X	1.842	1.961	3.190	2.004	2.029	3.471	2.217/ <i>2.208</i> / 2.209	2.118/2.118/ 2.112	3.840/ <i>3.824</i> / 3.826
MP2	1.878	1.944	3.253	2.006	2.027	3.474	2.206/2.194/ 2.188	2.137/2.121/ 2.122	3.821/ <i>3.800</i> / 3.791
CCSD(T)	1.936	1.998	3.353	2.027	2.037	3.511	2.222/ 2.193	2.137/ 2.124	3.849/ 3.798
CASSCF(18,15)	1.796	1.993	3.111	1.997	2.049	3.459	2.264	2.134	3.921

^aFrom ref 15, ^b values in Roman, italic and bold are corresponding to ECP of SDD, aug-cc-pVTZ-pp and LJ18 on xenon.

Journal Name

Table 2. Optimized geometrical parameters of F ₃ Ng ₃ BF ⁻ (Ng=Ar, Kr, Xe) at the M06-2X and MP2 levels. I	Note that bond
lengths are in angstroms and bond angles in degrees.	

0	0 0	0					
species	methods/basis sets	L(Ng-B)	L(Ng-F)	L(Ng-Ng)	L(B-F1)	Θ(Ng-B-Ng)	Θ(Ng-B-F1)
$F_3Ar_3BF^-$	M06-2X/aug-cc-pVTZ	1.907	2.155	3.067	1.304	107.0	111.9
	MP2/aug-cc-pVTZ	1.902	2.147	3.053	1.314	106.8	112.0
$F_3Kr_3BF^-$	M06-2X/aug-cc-pVTZ	2.087	2.212	3.370	1.319	107.6	111.3
	MP2/ aug-cc-pVTZ	2.069	2.199	3.342	1.332	107.7	111.2
F ₃ Xe ₃ BF ⁻	M06-2X/aug-cc-pVTZ/SDD	2.315	2.274	3.763	1.335	108.8	110.1
	M06-2X/aug-cc-pVTZ/LJ18	2.309	2.271	3.757	1.341	108.9	110.0
	MP2/aug-cc-pVTZ/SDD	2.294	2.288	3.727	1.350	108.6	110.3
	MP2/aug-cc-pVTZ/LJ18	2.266	2.272	3.702	1.361	109.6	109.4

		•				
Atoms	BAr_3F_3	F ₃ Ar ₃ BF	BKr ₃ F ₃	F ₃ Kr ₃ BF [−]	BXe_3F_3	F ₃ Xe ₃ BF
qВ	0.641	0.835	0.245	0.541	-0.267	0.171
qNg	0.619	0.498	0.745	0.589	0.932	0.717
qF	-0.832	-0.937	-0.826	-0.919	-0.844	-0.911
q F1 a		-0.518		-0.550		-0.591

Table 3. The calculated NPA charges of $BNg_3F_3(D_{3h})$ and $F_3Ng_3BF^-(C_{3v})$ (Ng =Ar, Kr and Xe) at the MP2/aug-cc-pVTZ/SDD level.

^{*a*}F1 atom bonded to B along with C_3 axis in F_3Ng_3BF .

Journal Name

Table 4 The calculated relative energies (in kcal/mol) of the various dissociated species with respect to the BNg_3F_3 (Ng=Ar, Kr and Xe) at the CCSD(T)//M06-2X/aug-cc-pVTZ/LJ18 level with ZPVE.

species	Ng=Ar	Ng=Kr	Ng=Xe	species	Ng=Ar	Ng=Kr	Ng=Xe
BNg ₃ F ₃	0.00	0.00	0.00	BNgF(¹ Σ)+2Ng+2F	-51.79	4.29	81.60
TS1	(5.70)	(13.38)	(17.99)	BNgF(¹ Σ)+2NgF	-51.55	3.46	70.94
BNg ₂ F ₃ +Ng	-173.42	-145.29	-109.50	BNgF(³ Π)+2Ng+2F	-46.90	23.89	115.34
TS2	-163.70	-129.59	-87.83	BNgF(³ Π)+2NgF	-46.65	23.20	104.69
	(9.72)	(15.70)	(21.67)	3F ⁻ +B ³⁺ +3Ng	1370.32	1440.67	1544.57
BNgF ₃ +2Ng	-341.39	-288.65	-217.88	B ³⁻ +3NgF ⁺	1153.89	1116.32	1057.92
TS3	-334.25	-273.62	-192.90	BNg ₃ ³⁺ +3F [−]	762.18	753.01	725.90
	(7.14)	(15.03)	(24.98)	BNg ⁺ (¹ S)+F ⁻ +2Ng+F ₂	26.53	92.29	181.01
BF ₃ +3Ng	-498.79	-427.55	-323.47	BNg ⁺ (³ P)+F ⁻ +2Ng+F ₂	103.19	162.92	238.87
B+3Ng+3F	-40.11	30.24	134.14	BNg ⁺ (¹ S)+F ⁻ +FNgNgF	103.91	161.36	212.55
B+3NgF	-46.56	23.27	112.41	BNg ⁺ (³ P)+F ⁻ +FNgNgF	180.57	230.89	270.40
BNg ₂ F ₂ +Ng+F	-27.86	3.39	53.74	BNg ⁺ (¹ S)+F ⁻ +NgF ₂ +Ng	74.95	107.18	146.57
BNg ₂ F ₂ +NgF	-27.74	3.05	48.42	BNg ⁺ (³ P)+F ⁻ +NgF ₂ +Ng	151.60	176.72	204.42

^{*a*}The values in parentheses are the barrier heights of corresponding transition states.

Table 5 The calculated electron density (ρ), Laplacian electron density ($\nabla^2 \rho$), energy density (H_r), potential energy density (V_r) and kinetic energy density (G_r) at BCP, as well as Wiberg bond indices (WBI) for F_2BNgF , $FBNg_2F_2$ and BNg_3F_3 (Ng = Ar, Kr and Xe) at the MP2/aug-cc-pVTZ/LJ18 level.

species	bond	WBI	ρ(r)	∇²ρ(r)	G(r)	V(r)	G(r)/ρ(r)	-G(r)/V(r)	H(r)	type
F ₂ BArF	B-Ar	0.771	0.1227	0.0299	0.1198	-0.2323	0.9764	0.5158	-0.1124	B,C
	Ar-F	0.082	0.0734	0.3461	0.0922	-0.0979	1.2561	0.9418	-0.0057	W ^c
$FBAr_2F_2$	B-Ar	0.802	0.1303	-0.1441	0.0925	-0.2210	0.7099	0.4186	-0.1285	A,B,C
	Ar-F	0.121	0.0921	0.3762	0.1101	-0.1262	1.1954	0.8724	-0.0161	W ^c
BAr_3F_3	B-Ar	0.879	0.1361	-0.2426	0.0815	-0.2310	0.5988	0.3528	-0.1458	A,B,C
	Ar-F	0.147	0.1067	0.3499	0.1192	-0.1509	1.1172	0.7899	-0.0317	W ^c
F ₂ BKrF	B-Kr	0.864	0.1278	-0.2250	0.0705	-0.1973	0.5516	0.3573	-0.1268	A,B,C
	Kr-F	0.111	0.0812	0.3059	0.0905	-0.1045	1.1145	0.8660	-0.0140	W ^c
FBKr ₂ F	B-Kr	0.893	0.1316	-0.3206	0.0467	-0.1735	0.3549	0.2692	-0.1268	A,B,C
	Kr-F	0.144	0.0916	0.3081	0.0986	-0.1202	1.0764	0.8203	-0.0216	W ^c
BKr_3F_3	B-Kr	0.945	0.1355	-0.3474	0.0379	-0.1626	0.2797	0.2331	-0.1247	A,B,C
	Kr-F	0.166	0.0980	0.3052	0.1032	-0.1300	1.0531	0.7938	-0.0269	W ^c
F ₂ BXeF	B-Xe	0.956	0.1295	-0.2679	0.0207	-0.1083	0.1598	0.1911	-0.0887	A,B,C
	Xe-F	0.123	0.0856	0.2829	0.0896	-0.1085	1.0467	0.8258	-0.0243	W ^c
FBXe ₂ F ₂	B-Xe	0.987	0.1254	-0.2194	0.0231	-0.1010	0.1842	0.2287	-0.0792	A,B,C
	Xe-F	0.152	0.0886	0.2834	0.0916	-0.1123	1.0339	0.8157	-0.0267	W ^c
BXe_3F_3	B-Xe	1.037	0.1263	-0.1999	0.0263	-0.1027	0.2082	0.2561	-0.0777	A,B,C
	Xe-F	0.168	0.0915	0.2878	0.0942	-0.1164	1.0295	0.8093	-0.0290	W ^c

Journal Name

Table 6 The calculated harmonic vibrational frequencies (cm⁻¹) and intensities (km/mol) of BNg₃F₃ (Ng=Ar, Kr and Xe) (D_{3h}) minima at the MP2 and M06-2X levels with aug-cc-pVTZ/LJ18 basis set, and MP2/CC-VSCF calculated anharmonic frequencies.

normal modes			Ng=Ar			Ng=Kr			Ng=Xe	
	S-D ^a	MP2	CC-VSCF	M06-2X	MP2	CC-VSCF	M06-2X	MP2	CC-VSCF	M06-2X
δ(Ng-B-Ng)	E -2	62.7(26)	54.1(8)	68.0(21)	51.2(14)	60.1(18)	42.0(15)	48.6(9)	54.8(12)	40.7(9)
Ng-B-Ng-F torsion	A ₂ "-1	55.7(84)	45.2(85)	82.0(71)	47.2(48)	64.7(70)	46.6(53)	54.3(41)	67.4(53)	56.5(40)
Ng-B-Ng-F torsion	Е [″] -2	132.1(0)	141.9(0)	144.3(0)	107.9(0)	123.9(0)	106.0(0)	97.4(0)	111.1(0)	106.8(0)
δ(B-Ng-F)	A ₂ -1	164.7(0)	165.0(0)	174.2(0)	135.1(0)	139.3(0)	125.3(0)	121.1(0)	126.3(0)	119.5(0)
v _s (B-Ng)	A [′] -1	228.9(0)	310.4(0)	204.2(0)	156.5(0)	206.2(0)	168.3(0)	145.0(0)	148.0(0)	141.7(0)
δ(B-Ng-F)	E [´] -2	248.5(0)	232(2)	240.2(2)	179.0(1)	183.2(5)	176.0(2)	156.6(6)	156.4(0)	154.2(6)
$v_{as}(Ng-F)$	E [′] -2	445.0(795)	435.2(896)	457.7(621)	442.2(565)	394.0(732)	418.1(566)	439.8(518)	382.5(671)	435.2(560)
Ng-Ng-Ng-B out ^b	A ₂ ["] -1	514.4(8)	525.0(9)	476.6(3)	459.8(1)	483.7(3)	448.6(1)	441.1(6)	431.9(0)	420.9(4)
v _s (Ng-F)	A ₁ ['] -1	547.5(0)	497.6(0)	552.1(0)	495.0(0)	465.9(0)	479.1(0)	476.2(0)	458.6(0)	479.1(0)
v _{as} (B-Ng)	E [′] -2	775.0(6)	693.5(2)	729.0(16)	672.8(2)	701.4(8)	695.7(1)	678.2(1)	677.2(7)	668.2(6)

^a S-D represents Symmetry-Degeneracy, ^bout-of-plane torsion mode.

Figure Captions

Figure 1 Rational frames of geometrical structures.

Figure 2 The schematic potential energy surface (PES) of BNg₃F₃ dissociated to BF₃+3Ng (Ng=Ar, Kr and Xe).

Figure 3 Contour line diagrams showing the Laplacian electron density, $\nabla^2 \rho$, for F_2BNgF (a-c), $FBNg_2F_2$ (d-f) and BNg_3F_3 (g-i) (Ng=Ar, Kr and Xe) calculated at the MP2/aug-cc-pVTZ/SDD level. The green lines indicate regions of charge depletion ($\nabla^2 \rho$ >0), and bule lines indicate regions of charge concentration ($\nabla^2 \rho$ <0). Bond critical points (BCP) (3,-1) are shown in blue and nuclear critical points (NCP) (3,-3) in brown. Red lines connecting critical points are the bond paths, and the black lines crossing the bond paths indicate the zero-flux surfaces in the molecular plane.

Figure 4 Color-scale plot of the electron localization function (ELF) for BNg₃F₃ (Ng=Ar, Kr and Xe) at the MP2/aug-cc-pVTZ/pp level.

16 | J. Name., 2012, 00, 1-3

J. Name., 2013, **00**, 1-3 | **17**

ARTICLE

Fig. 3

Fig. 4

Journal Name ARTICLE

This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, 00, 1-3 | 19

Table of Content

KEYWORDS quantum chemistry calculations • boron trifluoride • insertion • noble gases • Mono-centric