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Magnetic Properties with Multiwavelets and DFT: the
Complete Basis Set limit achieved

Stig Rune Jensen,∗a Tor Flå,a,b Dan Jonsson,c Rune Sørland Monstad,a Kenneth
Ruud,∗a and Luca Frediania

Multiwavelets are emerging as an attractive alternative to traditional basis sets such as Gaussian-
type orbitals and plane waves. One of their distinctive properties is the ability to reach the basis
set limit (often a chimera for traditional approaches) reliably and consistently by fixing the desired
precision ε. We present our multiwavelet implementation of the linear response formalism, applied
to static magnetic properties, at the self-consistent field level of theory (both for Hartree–Fock
and density functional theories). We demonstrate that the multiwavelets consistently improve the
accuracy of the results when increasing the desired precision, yielding results that have four to five
digits precision, thus providing a very useful benchmark which could otherwise only be estimated
by extrapolation methods. Our results show that magnetizabilities obtained with the augmented
quadruple-ζ basis (aug-cc-pCVQZ) are practically at the basis set limit, whereas absolute nuclear
magnetic resonance shielding tensors are more challenging: even by making use of a standard
extrapolation method, the accuracy is not substantially improved. In contrast, our results provide
a benchmark that: (1) confirms the validity of the extrapolation ansatz; (2) can be used as a
reference to achieve a property-specific extrapolation scheme, thus providing a means to obtain
much better extrapolated results; (3) allows us to separate functional-specific errors from basis-
set ones and thus to assess the level of cancellation between basis set and functional errors often
exploited in Density Functional Theory.

1 Introduction
Density Functional Theory (DFT) is nowadays the de facto stan-
dard for quantum chemistry applications.1,2 There are several
reasons for the success of DFT: it is conceptually simple, focussing
directly on the observable three-dimensional electron density; its
Kohn–Sham formulation3 allows the problem to be recast as the
optimization of a single-determinant wavefunction for the ficti-
tious Kohn–Sham system of independent particles, allowing the
tools quantum chemists have employed for decades in connection
with Hartree–Fock (HF) theory to be straightforwardly applied in
the optimization of the Kohn–Sham state. However, the apparent
simplicity also comes with a significant challenge: the definition
of the (unknown) exchange–correlation (XC) functional.4 To ad-
dress this shortcoming, a large library of functionals has over the
years been developed,5,6 allowing an XC functional to be chosen
which is best suited for the problem at hand. This last argument
is nevertheless unsatisfactory. Despite attempts at creating hi-
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erarchies of XC functionals which could be expected to perform
better as the complexity or information content of the functional
is increased,7,8 such a universal hierarchy remains elusive: on
one hand improving functionals to yield better results is legiti-
mate and necessary; on the other hand, such a wide choice of
XC functionals makes it often possible to achieve the desired re-
sult for a specific problem or substrate, though with little to no
predictive power when experimental reference data are not avail-
able. Avoiding pitfalls arising from spurious error cancellations is
not easy, also because scientific literature is often biased towards
positive outcomes†.

An important way of assessing and improving the quality of
currently available XC functionals is to benchmark their perfor-
mance for different applications.9,10 The development of most
current functionals has focused on energetic aspects through
thermochemical data.10–13 The molecular energy is by far the
most important quantity, superseding molecular structure, vibra-
tional properties, reactivity, and dynamics. Nevertheless, the in-
terest in molecular properties other than the energy has been

† Calculations yielding “good” results are more likely published, whereas negative
ones are often stopped along the process, either because the researchers themselves
do not find it worth to write about negative outcomes or because referees will not
let them through.
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steadily growing, both in connection with spectroscopic investi-
gations14–16 and with the development of materials with specific
properties.17,18 DFT is for instance often used in connection with
response theory to obtain a wide range of molecular properties.19

This asymmetry (functionals optimized/benchmarked with re-
spect to their energetic performance and employed for property
calculations) mandates a thorough assessment of the quality of
such functionals for molecular properties, and several such stud-
ies have already been presented in the literature, see for instance
the review by Laurent and Jacquemin of benchmark studies of
exchange–correlation functionals used in time-dependent DFT
studies and references therein.20

Another important aspect to be considered is the choice of basis
set, and for molecular calculations with DFT a linear combination
of atomic orbitals approach have almost exclusively been used.
When a given basis is employed, the error on the final result is
invariably a combination of a direct basis set error and a func-
tional error, that is, difference between the value obtained with
the given functional and the ideal exact one in the limit of a com-
plete basis set). To complicate matters further, most functionals
are parametrized against thermochemical data by making use of
a given basis set,9,12,13 thus introducing an “indirect” basis set
error. As a consequence, the definition and quality of a basis set
limit for molecular properties within DFT is still an open question.
In particular, in two recent studies, Lutnæs et al.21 and Teale et
al.22 have extensively addressed such issues for magnetizabilities
and Nuclear Magnetic Resonance (NMR) shielding constants of a
set of 28 small, closed-shell molecules.

Low-scaling DFT methods23 combined with modern high-
performance computer clusters, allow substrates with several
thousand atoms to be modelled: ideally, a large basis set should
be employed to guarantee convergence in the property value;
however, using large basis sets for large systems is challenging
due to numerical problems caused by near linear dependencies
that will arise in the basis set.24

Another potential problem is given by the integration grids em-
ployed in DFT: they are optimized to achieve the best compro-
mise between accuracy and efficiency for energy calculations, but
there is no guarantee that such grids will work equally well for
the functional derivatives required for the evaluation of molecu-
lar properties.

In recent years, real-space numerical methods have emerged as
an alternative to atom-centered basis functions,25,26 such as finite
difference methods,27,28 finite element methods,29,30 wavelet31

and multiwavelet methods.32–41 The first three groups have been
successfully applied in materials modeling, especially in combi-
nation with periodic boundary conditions and pseudopotentials.
However, for molecular all-electron calculations, the most promis-
ing approach so far seems to be the one using multiwavelets, pi-
oneered originally by Harrison and coworkers.32 Several prop-
erties make multiwavelets attractive compared to atom-centered
bases: they are by construction orthonormal, avoiding linear de-
pendencies; completeness in the basis is achieved by refinement,
with a rigorous, predefined error control; function representa-
tions can be refined adaptively, limiting the memory footprint; a
separated tensorial representation of integral convolution opera-

tors is employed,42 coupled with the non-standard form of oper-
ators,43 achieving narrow-banded, diagonally dominant matrices
that preserve the adaptive refinement.

The multiwavelet formalism provides therefore a reliable route
to compute molecular properties with guaranteed precision with
respect to the Complete Basis Set (CBS) limit. This has already
been illustrated for excitation energies35 and for electric polar-
izabilities.36,37 In this work, we consider magnetic properties,44

and in particular magnetizabilities and NMR shielding constants.
The rest of this paper is organized as follows: In Section 2

we briefly summarize the theoretical foundation for the calcula-
tion of molecular energies and magnetic response properties in
a multiwavelet basis. In Section 3 we present the evaluation of
second-order molecular magnetic response properties, with spe-
cial attention to the molecular magnetizability and nuclear mag-
netic shielding tensor. Section 4 details the computational proto-
col of our calculations. In Section 5 our results are presented and
discussed. We end the paper with a brief summary and outlook.

2 Static linear response equations
The multiwavelet (MW) formalism has been applied to the
ground-state energy32,33 and geometry,34 as well as dynamic po-
larizabilities36,37 and excitation energies35,38,39 in a linear re-
sponse formalism. In the present work, we further extend the MW
toolbox to include two important second-order magnetic proper-
ties: the magnetizability and NMR shielding tensors.44,45 In the
following we present the static linear response equations, as our
derivation differs slightly from the dynamic equations presented
previously in the literature.

In order to solve the self-consistent field (SCF) problem, the ac-
tion of the MW representation is required for only two operators,
which are of the same form:

Ĝ
[

f
]
=
(
∇

2−κ
2)−1 f =

∫ e−κ|r−r′|

4π|r− r′|
f (r′)dr′, (1)

where κ2 = 0 corresponds to the Poisson operator (used for elec-
trostatic potentials), and κ2 > 0 is the bound-state Helmholtz
(BSH) operator (used in the iterations of the SCF equations).
Our MW implementation for functions and operators has been
described previously,40,41 where the parallel performance as well
as the inherent linear scaling of the algorithms have been demon-
strated in the case of electrostatic Coulomb potentials. A deriva-
tive operator is also required for the kinetic energy operator,
density gradients for Generalized Gradient Approximation (GGA)
functionals, and angular momentum operators. We have imple-
mented a derivative operator following the work of Alpert et al.46

2.1 Unperturbed system

The ground-state SCF problem can be written in a general,
non-canonical form to allow for localized molecular orbitals
(MOs)47,48

F̂ |ϕi〉= ∑
j

Fi j |ϕ j〉 , (2)

where
Fi j = 〈ϕi| F̂ |ϕ j〉 , (3)
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is the Fock matrix, and F̂ = T̂ +V̂ the Fock operator. The potential
operator in Kohn-Sham DFT and HF theory can be written in a
general form as

V̂ = V̂nuc + Ĵ−λ K̂ +V̂xc, (4)

where 0≤ λ ≤ 1 gives the amount of exact exchange. The electron
interaction operators

Ĵ |ϕp〉=
∫

ρ(r′,r′)ϕp(r)
|r− r′|

dr′, (5)

K̂ |ϕp〉=
∫

ρ(r,r′)ϕp(r′)
|r− r′|

dr′, (6)

V̂xc |ϕp〉=
[

δExc

δρ

[
ρ(r,r)

]]
ϕp(r), (7)

are expressed in terms of the one-particle density matrix ρ(r,r′)
which is constructed from the occupied MOs

ρ(r,r′) =
occ

∑
i

ϕi(r)ϕ
†
i (r
′). (8)

The solution of the unperturbed SCF problem follows closely the
work of Harrison, Yanai and coworkers,32,33 where the SCF equa-
tions are rewritten in integral form49

|ϕi〉=−2Ĝi

[
V̂ |ϕi〉−∑

j 6=i
Fi j |ϕ j〉

]
, (9)

and iterated until convergence, including a Krylov subspace accel-
erated inexact Newton (KAIN) iterative accelerator.50 The BSH
operator Ĝ (Eq. 1) is the inverse of the kinetic energy opera-
tor, shifted by the diagonal element of the Fock matrix 2Ĝi =(
T̂ −Fii

)−1. The second term in the operator argument in Eq. (9)
corrects for the use of non-canonical (localized) orbitals, and van-
ishes if the Fock matrix is diagonalized.

2.2 Perturbed system

Adding a small static perturbation ĥ(1) to the unperturbed Hamil-
tonian ĥ(0)

ĥ = ĥ(0)+ ĥ(1), (10)

will lead to small changes in the orbitals, and the perturbation in
the density can be expressed in terms of the unperturbed {ϕ(0)}
and first-order perturbed {ϕ(1)} orbitals. Introducing the density
operator (the projector onto the occupied orbital space)

ρ̂ =
occ

∑
i
|ϕi〉〈ϕi| , (11)

and retaining terms up to first order, we get

ρ̂ = ρ̂
(0)+ ρ̂

(1) =
occ

∑
i
|ϕ(0)

i 〉〈ϕ
(0)
i |+

occ

∑
i

(
|ϕ(0)

i 〉〈ϕ
(1)
i |+ |ϕ

(1)
i 〉〈ϕ

(0)
i |
)
,

(12)
where ρ̂(0) is the ground-state density operator and ρ̂(1) the first-
order perturbed density. This change in electron density in turn
changes the potential operators in Eqs. (5-7), and to first order

we get

Ĵ(1) |ϕp〉=
∫

ρ(1)(r′,r′)ϕp(r)
|r− r′|

dr′, (13)

K̂(1) |ϕp〉=
∫

ρ(1)(r,r′)ϕp(r′)
|r− r′|

dr′, (14)

V̂ (1)
xc |ϕp〉=

[
δ 2Exc

δρ2

[
ρ
(0)(r,r)

]
∗ρ

(1)(r,r)
]

ϕp(r). (15)

Setting up the SCF problem for the perturbed system to first order
leads to the modified Sternheimer equations51

F̂(0) |ϕ(1)
i 〉+ F̂(1) |ϕ(0)

i 〉= ∑
j

F(0)
i j |ϕ

(1)
j 〉+∑

j
F(1)

i j |ϕ
(0)
j 〉 , (16)

where the perturbed Fock operator contains both the explicit per-
turbation and the induced perturbations in the potential opera-
tor (F̂(1) = ĥ(1)+ V̂ (1)). The perturbed Fock matrix elements are
obtained by expanding Eq. (3) and collecting all the first-order
terms:

F(1)
i j = 〈ϕ(1)

i |F̂
(0)|ϕ(0)

j 〉+ 〈ϕ
(0)
i |F̂

(1)|ϕ(0)
j 〉+ 〈ϕ

(0)
i |F̂

(0)|ϕ(1)
j 〉 . (17)

The orbitals satisfy the following weak orthogonality condition

〈ϕ(0)
i |ϕ

(1)
j 〉+ 〈ϕ

(1)
i |ϕ

(0)
j 〉= 0, (18)

which is equivalent to the idempotency condition on the density
operator ρ̂2 = ρ̂ to first order. However, in the diagonal terms
the orbital phase factors can be chosen arbitrarily, and the off-
diagonal terms do not contribute to the density to first-order.
Therefore one can in both cases impose the stronger orthogonal-
ity condition:

〈ϕ(0)
i |ϕ

(1)
j 〉= 〈ϕ

(1)
i |ϕ

(0)
j 〉= 0, (19)

which has been proposed as a way to speed up convergence.52

On the other hand, for larger systems, the orthogonalization pro-
cedure becomes prohibitively expensive, and it would be more ef-
ficient to ignore these redundant projections.53 Using the strong
orthogonality condition, the first and third terms in Eq. (17) will
vanish, and we get

F̂(1) |ϕ(0)
i 〉−∑

j
F(1)

i j |ϕ
(0)
j 〉=

(
1− ρ̂

(0))F̂(1) |ϕ(0)
i 〉 . (20)

The Sternheimer equation (Eq. 16) can now be written in integral
form, in the same way as the unperturbed SCF equation (Eq. 9):

|ϕ(1)
i 〉=−2Ĝi

[
V̂ (0) |ϕ(1)

i 〉−∑
j 6=i

F(0)
i j |ϕ

(1)
j 〉+

(
1− ρ̂

(0))F̂(1) |ϕ(0)
i 〉

]
.

(21)
The diagonal element of the unperturbed Fock matrix appears in
the BSH operator as 2Ĝi =

(
T̂ −F(0)

ii
)−1. We remark that Eq. (21)

defines a set of coupled equations which corresponds to the static
limit of the response equations of Sekino et al.36,37 and closely
resembles the working equations of Yanai et al.35,38 for excitation
energies in time-dependent HF/DFT. Kottmann et al.39 recently
used the same equations to compute excitation energies in the
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Configuration Interaction with Singles (CIS) approximation.

3 Magnetic properties
A general second-order magnetic property M can be expressed as
an energy derivative with respect to two parameters a and b44,45

M =
d2E
dbda

∣∣∣∣
a,b=0

. (22)

The property will have two contributions, one from a second-
order interaction operator ĥ(a,b), and one from a pair of first-
order interaction operators ĥ(a) and ĥ(b). The former is known as
the diamagnetic contribution, and is computed as an expectation
value of the second-order operator and the zeroth-order (unper-
turbed) density (r = r′ denotes the trace of the density matrix,
and will always be assumed in the following)

Mdia =
∫

r=r′
ρ̂
(0)ĥ(a,b) dr = ∑

i
〈ϕ(0)

i | ĥ
(a,b) |ϕ(0)

i 〉 . (23)

The latter is known as the paramagnetic contribution and is com-
puted by perturbing the system (i.e. solving the response equa-
tions) using one of the operators ĥ(a) to get the corresponding
perturbed orbitals ϕ(a) and density ρ̂(a), and computing the ex-
pectation value (tracing the density matrix) of the second opera-
tor ĥ(b)

Mpara =
∫

r=r′
ρ̂
(a)ĥ(b) dr = ∑

i
〈ϕ(0)

i | ĥ
(b) |ϕ(a)

i 〉+ 〈ϕ
(a)
i | ĥ

(b) |ϕ(0)
i 〉 .

(24)

3.1 Magnetizability and NMR shielding
The magnetizability tensor ξ and NMR shielding tensor σ are
second-order magnetic properties that can be identified as energy
derivatives with respect to the external magnetic field B and the
nuclear magnetic moment MK associated with nucleus K

ξ =− d2E
dB2

∣∣∣∣
B=0

, σK =
d2E

dMK dB

∣∣∣∣
B,MK=0

, (25)

and are thus computed from the following expressions

ξ µν =
∫

ρ̂
(0)ĥ

(B,B)
µν dr+

∫
ρ̂
(B)
µ ĥ

(B)
ν dr, (26)

[σK ]µν
=
∫

ρ̂
(0)ĥ

(B,MK)
µν dr+

∫
ρ̂
(B)
µ ĥ

(MK)
ν dr, (27)

where µ,ν = x,y,z are the components of the perturbing fields
and ρ̂

(B)
µ denotes the density perturbed by the µ component of

the ĥ
(B)

operator. The interaction operators are obtained by dif-
ferentiating the Hamiltonian with respect to B and/or MK and
evaluating at zero perturbational strength. For closed-shell sys-
tems we get‡ 44,45

ĥ
(B)

=
1
2

el

∑
j

l̂ jO, ĥ
(MK) = α

2
el

∑
j

l̂ jK

r3
jK
, (28)

‡ ĥ
(MK )

also contain triplet operators, but they do not contribute to these properties for
closed-shell systems

ĥ
(B,B)

=
el

∑
j
(r jO · r jO)1− r jOrT

jO, (29)

ĥ
(B,MK) =

α2

2

el

∑
j

(r jO · r jK)1− r jOrT
jK

r3
jK

, (30)

where l̂ jO = −ir jO×∇ j is the angular momentum operator, r jO

is the position of electron j relative to the gauge origin O, rK

is the position of nucleus K, and α ≈ 1/137 is the fine-structure
constant. The perturbed orbitals ϕ(B) are obtained by solving the
Sternheimer equations (Eq. 21) with the following perturbed Fock
operator (there is one for each component µ of the perturbing
field)

F̂(1) = ĥ
(B)

+ Ĵ(1)−λ K̂(1)+V̂ (1)
xc . (31)

Notice that the perturbed density (in real space) vanishes for pure
imaginary perturbations, so Ĵ(1) and V̂ (1)

xc (if there is no explicit
current dependence in the functional) can be omitted from this
Fock operator. This means that for non-hybrid DFT (λ = 0), we
do not get any two-electron contribution in the perturbed Fock
operator, which leads to decoupled response equations (at least
in the canonical case) that can be solved non-iteratively in a fixed
basis of virtual orbitals.54–56 In our case, however, we only have
the occupied orbitals, and the equations must still be solved iter-
atively to sample the (complete) virtual space by application of
the BSH Green’s function. Notice also that even if the perturbed
density vanishes, the paramagnetic expectation value (e.g. with

ĥ
(MK)) does not

ρ
(B)
µ (r,r)≡ 0,

∫
r=r′

ρ̂
(B)
µ ĥ

(MK)
ν dr 6= 0. (32)

The above expressions can be directly related to others, such as
Ramsey’s57 original sum-over-states expression for the shielding
tensor

[σK ]µν
= 〈0| ĥ(B,MK)

µν |0〉−2 ∑
nS 6=0

〈0| ĥ(B)µ |nS〉〈nS| ĥ
(MK)
ν |0〉

EnS −E0
, (33)

where |0〉 denotes the ground state and |nS〉 a singlet-excited
state. Whereas such expressions are usually not very useful as
they require explicit representations of the excited states of the
molecule, some applications are reported in literature, in par-
ticular in the case of uncoupled density functional theory.54,55

More commonly though, the molecular properties are expressed
in terms of the density matrix D in an atomic orbital (AO) basis

ξ µν = Tr[Dh(B,B)µν +D(B)
µ h(B)ν ], (34)

[σK ]µν
= Tr[Dh(B,MK)

µν +D(B)
µ h(MK)

ν ], (35)

where h(B), h(MK), h(B,B)and h(B,MK)now denote the corresponding
matrix representations in the chosen AO basis.

As a side note, we note that in the present formulation, due to
the interchange theorem,58,59 the order of the perturbations can
be swapped, so that in the case of NMR shielding constants, the

response equations are solved using ĥ
(MK)as perturbation opera-
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tor instead of ĥ
(B)

, i.e.∫
ρ̂
(B)
µ ĥ

(MK)
ν dr =

∫
ρ̂
(MK)
ν ĥ

(B)
µ dr. (36)

A situation where such a swapping of operators is useful is when
computing shielding tensors of selected nuclei in large molecules.

Whereas ĥ
(B)

is a global operator affecting the entire molecule

(plus any explicit solvent molecules), the operator ĥ
(MK)is local-

ized around nucleus K (decays as r−2 following Biot-Savart’s law
for induced magnetic fields), leading to localized perturbations
that can be treated much more efficiently than the global pertur-

bations arising from ĥ
(B)

. This approach can also be used in AO-
based formulations in combination with gauge-including atomic
orbitals (GIAO), however, when the swap is employed to achieve
linear scaling,60 it requires the implementation of a number of
new contributions. By combining this with other linear-scaling
techniques for the Coulomb and exchange computations, Ochsen-
feld and coworkers have been able to compute NMR shieldings
of impressively large molecules.60–62 However, one has to keep
in mind that the number of response equations to be solved in-
creases with the number of selected nuclei, and it eventually be-
comes beneficial to instead perturb the system with the global

ĥ
(B)

operator, which requires the solution of only three response
equations for all nuclei.

4 Computational details
All Gaussian-Type Orbital (GTO) calculations were performed
with the Dalton program,63 using Dunning’s correlation-
consistent (cc-pVXZ64) and Jensen’s polarization-consistent (pcS-
n65) basis sets. The latter was specifically optimized for comput-
ing NMR shielding constants using DFT. The calculations were
performed using GIAOs unless otherwise specified.

The MW calculations were performed with a development
version of the MRChem program package.66 The exchange-
correlation functionals and their derivatives to arbitrary order are
provided by the XCFun library.67 In the results presented, k de-
notes the polynomial order of the basis, ε is the overall numeri-
cal accuracy used in the calculation (the internal threshold used
for truncating the MW representations of all functions and oper-
ators) and ∆φ is the convergence threshold in the orbital resid-
uals (both ground-state and response). As starting guess for the
ground-state calculations we used converged wave functions in
small GTO basis sets (e.g. cc-pVDZ). A zero initial guess was
used for the response functions, and the convergence was a bit
slower than the corresponding ground-state calculation (for the
ground state, typically 2-4 iterations are needed to gain one or-
der of magnitude in accuracy, for the response equations one or
two iterations more, but with a larger KAIN iterative history).

5 Results
This section is divided in two parts. In the first we calibrate and
benchmark MRChem both for the convergence towards the CBS
limit and the origin dependence, through some test calculations
of magnetizabilities and NMR shielding constants of the second-
row hydrides (geometries given in Table 1). Then we show the

Table 1 Geometries (bohr) of the second-row hydrides used in the
benchmark calculations.

Atom x y z

C 0.000 000 0.000 000 0.000 000
H 1.184 860 -1.184 860 -1.184 860
H -1.184 860 1.184 860 -1.184 860
H -1.184 860 -1.184 860 1.184 860
H 1.184 860 1.184 860 1.184 860

N 0.000 000 -0.125 000 0.000 000
H 1.771 618 0.594 986 0.000 000
H -0.885 809 0.594 986 1.534 269
H -0.885 809 0.594 986 -1.534 269

O 0.000 000 0.000 000 -0.125 000
H 1.437 500 0.000 000 1.025 000
H -1.437 500 0.000 000 1.025 000

F 0.000 000 0.000 000 0.087 300
H 0.000 000 0.000 000 -1.645 500

MRChem performance on the challenging case of magnesium ox-
ide, which has been shown to "display pathological behaviors with
respect to basis set convergence".65 In the second part, we per-
form a statistical analysis of a larger set of molecules, originally
considered by Lutnæs et al.21 for magnetizabilities and later by
Teale et al.22 for shieldings. We will here assess the quality of the
density functionals and basis sets that are typically being used for
such calculations.

5.1 Basis set convergence and parametrization
5.1.1 Magnetizabilities

Table 2 shows the Hartree-Fock magnetizability of the water
molecule computed at two different gauge origins using MW and
GTO basis sets of different quality. The MW calculations are
grouped in three different overall numerical accuracies with a fac-
tor of 100 between them (ε = 10−3,10−5,10−7), and for each of
these we look at the convergence of the property with respect
to the norm of the orbital residuals (∆φ). The overall precision
ε should give the maximum relative accuracy that we are able
to obtain as the orbitals converge, which is reflected in the total
energies when we compare with the reference value of Yanai et
al.33 Even though the convergence of the energy is quadratic in
the convergence of the orbitals, the final error in the converged
energy will be given by the overall accuracy of the MW calcula-
tion.

For magnetizability calculations with a gauge origin within the
molecular geometry (rO = (0,0,0), close to the center of mass),
the error in the diamagnetic contribution is expected to be linear
in the error of the ground-state orbitals (∆φ) and limited by the
overall accuracy (ε) of the calculation. This can be seen from the
numbers in Table 2, and the error in the last (most accurate) MW
value is expected to be around 10−6 atomic units. The param-
agnetic contribution depends on both the ground-state and per-
turbed orbitals, and the absolute error is similar to the error in
the corresponding diamagnetic contribution, which means that
we get a consistent accuracy in the total magnetizability of the
molecule (that is, around 10−6 a.u.). For comparison we see that
the cc-pV6Z basis set (including GIAOs) only yields 10−2 a.u. pre-
cision for the water magnetizability, while augmenting the basis
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set with extra diffuse functions increases the accuracy by two or-
ders of magnitude.

5.1.2 Gauge origin dependence

It is well known that the (arbitrary) placement of the gauge ori-
gin will affect the quality of the result whenever an incomplete
basis set is used in the calculation of magnetic properties. Sev-
eral solutions to the problem have been proposed. Nowadays,
the most common approach is to use Gauge-Including Atomic Or-
bitals (GIAOs), first introduced by London in 1937.68 The method
was further developed by Ditchfield in the 1970s,69 but was not
made efficiently applicable until 1990, with the work of Wolin-
ski, Hinton and Pulay.70 In the London orbital approach, each AO
is made explicitly dependent on the external magnetic field, and
a local gauge origin is defined at the center of each AO. In this
way, the magnetic properties become gauge-origin independent
by construction, though not gauge invariant and current conserv-
ing.71,72

The MW basis is in principle complete up to the predefined
truncation threshold. Therefore, we expect a much less severe
gauge dependence in the computed magnetic properties (effec-
tive gauge origin independence as well as gauge invariance to
within the accuracy threshold), and very high accuracy is attain-
able for small molecules by choosing a common gauge origin
within the molecular geometry (e.g. center of mass). However, as
the accuracy in the response property is relative to the absolute
value of the paramagnetic contribution (the diamagnetic contri-
bution is more accurate because it only depends on the unper-
turbed system), we also expect that it becomes progressively more
difficult to attain the same accuracy when the origin is moved out
of the molecular framework, as both the diamagnetic and param-
agnetic contributions to the magnetizability will increase in mag-
nitude.

Table 2 shows also the same magnetizability computed with a
displaced gauge origin (rO = (5,5,5)). For the MW calculations,
we see that the diamagnetic part is computed with the the same
absolute accuracy as before (comparing ε = 10−5, ∆φ = 10−5 re-
sults with ε = 10−7, ∆φ = 10−7 the variations are on the sixth
decimal place in both cases), but for the paramagnetic part, only
the relative accuracy is maintained (variations in the fourth digit
after the comma). This means that two digits are lost in the total
magnetizability in this case, as the magnitude of the paramagnetic
part is increased from ∼1 to ∼100. The MW basis still provide re-
liable and systematically improvable results, but this shows that
the origin should not be chosen arbitrarily (and preferably some-
where within the framework of the molecular structure).

For comparison, traditional GTOs are dependent on the GIAO
parametrization to yield reasonable results. Whereas the GIAO
results would be independent of the choice of gauge origin up
to the same numerical issues as observed for the multiwavelet
basis,73 without GIAOs, if the gauge origin is moved away from
the center of the Gaussians, even the largest basis sets are unable
to yield a correct result. This is clearly shown in Table 2, where
the magnetizability value for water is correct to ∼ 10−4 a.u. for
the aug-cc-pV6Z basis when London orbitals are employed, but
becomes 30% larger with a displaced gauge origin (rO = (5,5,5))

without London orbitals.

5.1.3 NMR shielding constants

Table 3 shows the NMR shielding constants of the second-row
hydrides computed using the B3LYP74 functional and MW and
GTO basis sets of different quality. As for the magnetizability, the
MW calculations are grouped in three different overall accuracies
(ε) and we present the convergence of the total NMR shielding
constant with respect to the orbital residuals (∆φ). The gauge
origin is chosen close to the center of mass of each molecule
(rO = (0,0,0) relative to the geometries given in Table 1), whereas
the GTO calculations are performed using GIAOs. The final MW
shielding constants are expected to be accurate to at least 10−3

ppm for the second row elements, and 10−4 ppm for the hydro-
gen atoms. For comparison, shielding constants computed with
the largest non-augmented Gaussian basis set (pcS-4) are correct
to ∼0.1 and ∼0.01 ppm, respectively, but augmenting with extra
diffuse functions does not significantly improve the results. The
performance of the pcS-n basis sets are thus, as expected, quite
good, because they are specifically optimized for NMR shielding
calculations.

5.1.4 Magnesium Oxide

A molecule which has proven difficult to handle with traditional
basis sets is magnesium oxide. In the calibration of the pcS-n ba-
sis sets, Jensen decided to remove a handful of molecules from
the original test set, as their errors were so large that they would
have ruined the statistics.65 The worst of these systems was MgO,
and Table 4 shows the shielding constants of this molecule com-
puted with three different functionals (B3LYP, Becke’s half-and-
half75 functional and Hartree-Fock), using both MW and GTO
bases. Whereas B3LYP starts out with a massive overestimation
of the shielding constant for the smallest pcS-0 basis set, we do
observe a systematic improvement and monotonic convergence
for this functional when we increase the cardinal number of the
basis. This was also observed and analyzed by Jensen.65 For the
BHandH functional, however, the convergence is less systematic
and we have to go to the pcS-2 basis and beyond in order to get
qualitative agreement between the numbers, and the situation
gets even worse for Hartree-Fock, where anything less than pcS-3
gives completely erratic results, and even the biggest basis is only
converged to one digit. Again, the augmented basis sets show
only slight improvements over the standard pcS-n.

In the MW basis, on the other hand, we see a systematic con-
vergence for all functionals, although a bit slower than for the
second-row hydrides presented above. The final MW shielding
constants should be accurate to within 1 ppm, except for the
Hartree-Fock oxygen value, where the error is in the order of 10
ppm.

5.2 Benchmarking HF and DFT with CBS results

In two recent works, Lutnæs et al.21 and Teale et al.22 inves-
tigated the performance of a number of density functionals to
assess their ability to reproduce magnetizabilities and shieldings,
respectively. In these studies, 28 molecules were considered, com-
paring the DFT results with coupled cluster results and with ex-
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Table 2 Hartree-Fock magnetizability (a.u.) of water computed using two different gauge origins rO, relative to the molecular geometry given in Tab 1.
GTO: (0,0,0) computed using GIAOs, (5,5,5) computed without GIAOs, number of contracted functions in parenthesis. See Section 4 for
computational details.

rO = (0,0,0) rO = (5,5,5)
k ε ∆φ Etot ξ dia ξ para ξ tot ξ dia ξ para ξ tot

5 10−3 10−1 -76.058 602 -3.260 207 0.218 164 -3.042 043 -127.820 595 124.974 478 -2.846 118
10−2 -76.058 116 -3.269 608 0.325 099 -2.944 509 -127.840 649 124.906 519 -2.934 131
10−3 -76.058 113 -3.269 318 0.320 564 -2.948 754 -127.849 347 124.896 921 -2.952 425

7 10−5 10−3 -76.065 610 -3.269 279 0.323 568 -2.945 712 -127.844 963 124.889 299 -2.955 665
10−4 -76.065 610 -3.269 110 0.322 356 -2.946 754 -127.846 582 124.900 435 -2.946 147
10−5 -76.065 609 -3.269 109 0.322 365 -2.946 744 -127.846 562 124.900 189 -2.946 373

9 10−7 10−5 -76.065 595 -3.269 109 0.322 362 -2.946 747 -127.846 571 124.899 875 -2.946 696
10−6 -76.065 595 -3.269 110 0.322 364 -2.946 746 -127.846 564 124.899 854 -2.946 710
10−7 -76.065 595 -3.269 110 0.322 364 -2.946 746 -127.846 564 124.899 855 -2.946 709

MADNESS† -76.065 595

aug-cc-pV6Z (443) -76.065 569 -3.2691 0.3224 -2.9468 -127.8466 123.7548 -4.0918
aug-cc-pVQZ (172) -76.064 122 -3.2701 0.3223 -2.9479 -127.8476 120.5026 -7.3450
aug-cc-pVDZ (41) -76.039 804 -3.2824 0.3251 -2.9573 -127.8713 98.7552 -29.1161

cc-pV6Z (322) -76.065 513 -3.2659 0.3230 -2.9429 -127.8505 123.0783 -4.7722
cc-pVQZ (115) -76.062 951 -3.2353 0.3267 -2.9087 -127.8299 118.0656 -9.7643
cc-pVDZ (24) -76.025 444 -3.1473 0.3571 -2.7902 -127.7744 79.4328 -48.3416

†Reference energy from Yanai et al. 33.

Table 3 B3LYP nuclear shielding constants (ppm) of second-row hydrides. Geometries given in Table 1. See Section 4 for computational details.

CH4 NH3 H2O HF
k ε ∆φ σ(C) σ(H) σ(N) σ(H) σ(O) σ(H) σ(F) σ(H)

5 10−3 10−1 249.8536 31.2215 321.4904 31.4804 398.8322 29.0981 478.5381 25.9203
10−2 189.3407 31.3926 258.5232 31.8928 328.1023 30.8344 415.1414 30.2118
10−3 186.9510 31.3978 256.0271 31.8912 314.9383 30.8911 413.8677 30.1005

7 10−5 10−3 188.2145 31.4860 259.0541 31.6347 318.9669 30.4986 411.1672 29.3182
10−4 188.1449 31.4863 259.1961 31.6325 317.4436 30.4973 411.1805 29.3043
10−5 188.0891 31.4869 259.1520 31.6326 317.4374 30.4959 411.1565 29.3057

9 10−7 10−5 188.0877 31.4879 259.1620 31.6317 317.4556 30.4962 411.1777 29.3053
10−6 188.0862 31.4879 259.1618 31.6317 317.4707 30.4959 411.1836 29.3053
10−7 188.0852 31.4879 259.1619 31.6317 317.4710 30.4959 411.1835 29.3052

aug-pcS-4 188.0912 31.4891 259.1699 31.6337 317.4761 30.4994 411.1899 29.3113
aug-pcS-3 188.0779 31.4901 259.1504 31.6359 317.4721 30.5032 411.1675 29.3169
aug-pcS-2 188.1631 31.5072 260.0631 31.6842 319.1405 30.5832 413.0720 29.4299
aug-pcS-1 189.8481 31.4323 259.1238 31.6023 316.7613 30.5556 412.8214 29.4505
aug-pcS-0 195.0982 32.3357 259.4777 32.7576 307.5149 31.7324 403.2127 30.7204

pcS-4 188.0906 31.4891 259.1780 31.6344 317.4558 30.4995 411.1456 29.3125
pcS-3 188.0804 31.4916 259.1914 31.6426 317.3621 30.5060 410.9353 29.3237
pcS-2 188.8855 31.5061 261.0480 31.7470 319.4452 30.5726 412.1234 29.3614
pcS-1 188.9008 31.4148 268.5308 31.9186 329.2888 30.6828 412.1724 29.4284
pcS-0 192.7857 32.4843 269.1474 33.4027 332.1143 31.9300 407.2365 30.6812
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Table 4 Nuclear shielding constants (ppm) of MgO (r = 3.2986a0) using Hartree-Fock and the B3LYP and Becke half-and-half density functionals.
Number of contracted basis functions in parenthesis. See Section 4 for computational details.

B3LYP BHandH RHF
k ε ∆φ σ(Mg) σ(O) σ(Mg) σ(O) σ(Mg) σ(O)

5 10−3 10−2 964.0904 -2051.0527 1116.6897 -4734.2058 1041.2017 -6738.2185
6 10−4 10−3 1002.5959 -2454.5817 1018.8386 -3545.7921 1538.9211 -16726.3490
7 10−5 10−4 1006.2229 -2484.3481 1021.8519 -3575.4505 1584.1109 -17466.4867
8 10−6 10−5 1007.0809 -2492.0231 1024.4490 -3603.0833 1578.7322 -17358.6849
9 10−7 10−6 1007.1533 -2491.8762 1024.6440 -3604.9389 1579.4610 -17375.4221

aug-pcS-4 (260) 1007.7858 -2498.9207 1026.3744 -3627.0785 1605.7661 -17904.0731
aug-pcS-3 (162) 1012.7812 -2525.8940 1035.6182 -3707.6253 1719.9701 -20055.5992
aug-pcS-2 (86) 1039.0774 -2723.3712 1088.7973 -4244.2865 4282.4997 -69183.9283
aug-pcS-1 (46) 1080.0457 -3018.9200 1185.1959 -5267.7093 -1173.7349 10814.1557
aug-pcS-0 (27) 1061.6947 -3068.0177 1302.9612 -7285.5996 254.9829 36289.8265

pcS-4 (199) 1007.6675 -2498.7484 1027.6229 -3641.5105 1617.5056 -18143.8405
pcS-3 (121) 1013.9465 -2536.7996 1039.3089 -3749.0539 1757.7204 -20822.5428
pcS-2 (61) 1047.5216 -2799.5298 1130.5457 -4694.1604 -19388.2423 386900.5044
pcS-1 (33) 1513.5862 -6292.7417 3100.8099 -24758.3030 94.4529 11293.4315
pcS-0 (19) 8890.4390 -63570.3234 3.6303 7411.0254 448.6993 4880.3077

perimental data.
In order to minimize basis set errors, they used large basis sets

(the largest basis set used was the correlation-consistent, core-
valence aug-cc-pCVQZ basis set of Woon and Dunning.76) They
also made use of an extrapolation method with a two-point ex-
ponential parametrization for HF and a polynomial extrapolation
for the correlation part. We report here the extrapolation formula
for the HF part:

P(HF)
∞ =

P(HF)
X eαX −P(HF)

Y eαY

eαX − eαY . (37)

In particular, for the exponential extrapolation of the HF values,
they used the same parametrization (α = 1.63) that is employed
for the molecular energy.77 This choice was justified by the fact
that second-order molecular properties are energy derivatives.

With a MW approach, it is possible to provide very accurate
benchmark results that can be employed to check the quality of
the GTO results, both for HF and for the available density func-
tionals. Additionally, we can determine whether the exponential
extrapolation procedure leads to an improvement in the results,
as well as investigate to what extent it predicts the correct basis-
set limit.

We have therefore considered the same set of molecules and
performed calculations at increasing precision (ε = 10−η ,η =

3,4,5,6), to compare our MW results with the results obtained
using GTOs. We will here summarize our main findings.

Based on the initial test calculations on the first-row hydrides,
we will in all the following MW calculations converge the orbitals
(both ground-state and perturbed) to 10ε. The reason for this
is twofold: firstly, the property is usually converged within the
expected error bars at this point, and secondly the convergence
might be affected by numerical noise when we approach the limit
of the guaranteed accuracy of the computation.

5.2.1 Magnetizabilities

The HF magnetizabilities computed with MRChem are reported
in Table 5, together with the reference values of Lutnæs et al.21

The progression of the MW results clearly show how the results

gain consistently in accuracy when η is increased, and our most
accurate results are converged to the fifth digit. In more detail,
the MW3 results have 1-2 correct digits, MW4 have about three
and MW5 four correct digits. The only notable exception is ozone
for MW3, which is also qualitatively wrong.

The comparison with the best GTO results shows a very good
agreement with differences of about 0.1-0.2·10−30 J T−2. Ozone
proves to be a challenging system for GTOs with a deviation of
1.4·10−30 J T−2. We can therefore conclude that the aug-cc-
pCVQZ basis is able to attain very good accuracy for magnetiz-
abilities, yielding results that are comparable to our MW5 values.

A very similar picture is obtained for the density functionals
examined, with aug-cc-pCVQZ performing on par with MW5. Our
MW6 results are reported in Table 6 together with the aug-cc-
pCVQZ results from Lutnæs et al.21

A detailed error analysis, and the accuracy of the extrapolation
formula are not discussed because of the agreement down to the
last available digit in the GTO results, and rounding effects would
therefore play a major role.

5.2.2 NMR shielding constants

The NMR shielding constants computed with different basis sets
for Hartree-Fock and DFT are presented in Tables 7 and 8, respec-
tively, and the statistical basis set errors of the different methods
are reported in Table 9, taking the MW6 values as reference. We
begin by considering the progression along the series of MW cal-
culations for Hartree-Fock. The MW3 results yield errors of a few
tens of ppm, whereas MW4 are accurate to within 1-2 ppm and
MW5 results are on average 0.1-0.2 ppm away from the MW6 val-
ues. We can therefore conclude that our best MW results are accu-
rate to within 0.1 ppm or better. It is interesting that ozone, which
is completely wrong at MW3, becomes in line with the other cases
when MW5 and MW6 are compared. This is a clear indication of
the systematic nature of the MW basis, which is able to provide
the flexibility required to achieve the CBS result throughout the
series.

We can now compare MW6 results to the GTO values. In
particular, the best aug-cc-pCVQZ results are accurate to within
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Table 6 Magnetizabilities (10−30J T−2) computed using a range of density functionals with the aug-cc-pCVQZ basis set and the MW basis at precision
ε = 10−6. All GTO calculations are taken from the Supporting Information of Ref. 21.

LDA BLYP PBE B3LYP PBE0
Q MW6 Q MW6 Q MW6 Q MW6 Q MW6

HF −181.1 −181.06 −181.0 −180.99 −180.1 −180.09 −178.5 −178.48 −177.1 −177.05
CO −206.6 −206.58 −209.1 −209.11 −205.6 −205.54 −206.8 −206.75 −202.9 −202.91
N2 −201.0 −200.95 −203.6 −203.53 −199.7 −199.63 −202.1 −201.99 −198.1 −198.02

H2O −241.0 −240.99 −239.5 −239.48 −238.5 −238.52 −236.9 −236.89 −235.3 −235.29
HCN −265.1 −265.06 −268.7 −268.65 −264.4 −264.41 −269.6 −269.58 −266.0 −265.94
HOF −228.9 −228.90 −226.6 −226.60 −227.4 −227.33 −231.1 −231.08 −232.8 −232.74

O3 195.4 196.05 180.3 180.85 183.7 184.17 238.8 239.45 258.0 258.60
NH3 −298.2 −298.26 −293.4 −293.48 −293.1 −293.20 −291.5 −291.54 −290.5 −290.54

CH2O −95.8 −95.73 −109.3 −109.20 −104.9 −104.84 −114.9 −114.74 −112.8 −112.69
CH4 −329.5 −329.59 −318.2 −318.26 −320.4 −320.42 −317.4 −317.40 −318.5 −318.54

C2H4 −331.1 −331.10 −333.4 −333.45 −330.8 −330.82 −336.9 −336.95 −335.3 −335.36
AlF −396.0 −395.86 −399.4 −399.26 −397.1 −396.98 −397.0 −396.92 −394.5 −394.39

CH3F −315.4 −315.44 −309.6 −309.57 −311.3 −311.26 −312.5 −312.44 −314.4 −314.41
C3H4 −464.4 −464.53 −458.4 −458.54 −459.5 −459.65 −463.1 −463.29 −465.1 −465.20
FCCH −438.6 −438.68 −438.5 −438.58 −437.6 −437.67 −440.2 −440.30 −439.9 −439.93

FCN −365.3 −365.31 −366.4 −366.39 −365.0 −364.97 −367.6 −367.58 −366.6 −366.61
H2S −466.1 −466.22 −457.2 −457.25 −458.8 −458.84 −455.6 −455.70 −456.4 −456.43
HCP −477.5 −477.48 −485.6 −485.63 −479.2 −479.27 −487.8 −487.81 −482.7 −482.74

HFCO −296.9 −296.84 −299.4 −299.32 −296.9 −296.81 −300.7 −300.62 −298.7 −298.68
H2C2O −427.7 −427.75 −420.7 −420.73 −421.9 −421.90 −422.4 −422.39 −423.7 −423.67

LiF −196.4 −196.32 −196.4 −196.30 −196.2 −196.15 −194.9 −194.83 −194.2 −194.13
LiH −135.9 −135.91 −136.6 −136.59 −135.2 −135.15 −131.2 −131.19 −129.1 −129.08

N2O −334.5 −334.41 −332.2 −332.14 −332.0 −331.92 −334.0 −333.97 −334.3 −334.20
OCS −576.7 −576.64 −576.2 −576.14 −574.8 −574.83 −579.9 −579.89 −579.7 −579.63
OF2 −220.1 −220.01 −220.5 −220.40 −221.4 −221.30 −233.9 −233.86 −238.1 −237.97

H4C2O −529.8 −529.97 −520.4 −520.52 −523.9 −524.02 −527.0 −527.19 −531.5 −531.63
PN −284.2 −284.06 −292.1 −291.99 −283.9 −283.84 −292.2 −292.07 −284.6 −284.50

SO2 −294.6 −294.38 −298.0 −297.77 −293.3 −293.10 −295.9 −295.65 −291.0 −290.77

Table 5 Hartree-Fock magnetizabilities (10−30J T−2) computed with
GTO basis sets (aug-cc-pCVXZ, X = T,Q) and MW methods at
increasing precision (ε = 10−η ,η = 3,4,5,6). All GTO calculations are
taken from the Supporting Information of Ref. 21.

T Q MW3 MW4 MW5 MW6
HF −172.9 −172.7 −171.63 −172.61 −172.61 −172.62
CO −204.9 −204.5 −200.26 −204.61 −204.45 −204.44
N2 −203.3 −202.8 −196.06 −202.56 −202.73 −202.74

H2O −231.4 −231.3 −231.08 −231.27 −231.30 −231.30
HCN −280.5 −280.1 −251.60 −280.04 −280.09 −280.08
HOF −244.9 −244.6 −246.15 −244.36 −244.55 −244.50

O3 580.1 580.5 −85.51 585.06 581.98 581.94
NH3 −287.6 −287.4 −288.33 −287.42 −287.53 −287.54

CH2O −139.8 −139.5 −107.71 −139.40 −139.39 −139.37
CH4 −314.1 −313.7 −314.13 −313.77 −313.72 −313.75

C2H4 −355.1 −354.7 −348.05 −354.53 −354.74 −354.78
AlF −400.4 −399.4 −395.34 −399.16 −399.20 −399.21

CH3F −318.6 −318.0 −315.81 −317.87 −317.98 −317.97
C3H4 −478.4 −478.0 −411.91 −477.96 −478.16 −478.17
FCCH −453.0 −452.2 −449.10 −452.17 −452.23 −452.24

FCN −378.6 −378.0 −370.80 −377.93 −378.02 −378.00
H2S −454.0 −452.8 −458.85 −453.35 −452.86 −452.84
HCP −512.2 −511.5 −460.27 −511.53 −511.57 −511.57

HFCO −312.2 −311.5 −297.30 −311.31 −311.38 −311.42
H2C2O −433.1 −432.6 −435.55 −432.73 −432.45 −432.63

LiF −191.0 −190.9 −191.30 −190.80 −190.74 −190.74
LiH −125.6 −125.3 −128.08 −125.28 −125.27 −125.26

N2O −343.3 −342.8 −338.38 −342.70 −342.73 −342.73
OCS −598.4 −597.5 −657.92 −597.35 −597.47 −597.45
OF2 −272.0 −271.6 −281.22 −271.76 −271.58 −271.43

H4C2O −545.2 −544.8 −555.68 −544.90 −545.09 −545.05
PN −304.0 −303.8 −305.97 −303.00 −303.80 −303.80

SO2 −303.3 −301.8 −215.00 −301.57 −301.50 −301.50

1-2 ppm (MAE=1.8/1.2 with/without O3), e.i. comparable to
MW4. The extrapolated values (α = 1.63) show an improve-
ment over the aug-cc-pCVQZ ones, and the error is reduced
(MAE=1.1/0.7), although not substantially. However, if we
change the parametrization to α = 1.05, a much closer agreement
is achieved (MAE=0.38/0.25 with/without O3). Other measures
for the error yield a similar picture. This result suggests that the
extrapolation procedure, which is originally justified because the
shielding is a second derivative of the energy, is a reasonable way
to estimate CBS results. However, making use of the same expo-
nent as the molecular energy, is improving over the aug-cc-pCVQZ
values only slightly. If the exponent is set to 1.05 (larger correc-
tions than α = 1.63) the improvement is substantial. Considering
that α is the only adjustable parameter for 72 shielding values,
this result is a confirmation of the validity of the two-point expo-
nential parametrization.

We now turn our attention to DFT, where for clarity we present
the raw data only for quadruple-ζ and MW6 for the chosen func-
tionals in Table 8, while the statistical errors are given for all basis
sets in Table 9. The sequence of MW calculations at increasing
precision paints a similar picture to that seen for HF: MW3 yields
results that are several ppm away from the MW6 values and also
worse than triple-ζ quality numbers, MW4 is a huge leap forward,
outperforming the quadruple-ζ results. MW5 yields results that
are in most cases 0.1-0.2 ppm away from the MW6 values. This
progression is again an indication that the error in the MW6 val-
ues can be considered well below 0.1 ppm from CBS results, and
MW6 values can in practice be taken as a reference.

The MW6 reference values, enable us to apply to DFT the same
extrapolation procedure used for HF. With α = 1.63, we observe
a reduction of the errors (e.g. for B3LYP the MAE goes from 1.59
to 0.9). With α = 1.05 the reduction is more marked (for B3LYP
MAE=0.28/0.24 with/without O3). Slightly better results could
be achieved if the parameter α was optimized for each functional
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separately, e.g. using α = 0.9 leads to a further substantial re-
duction in the standard deviation in the Hartree-Fock results, but
we observe the opposite effect for all DFT functionals. The main
point is, however, that neither for HF nor for DFT is α = 1.63 the
optimal value, and our results indicate that a lower value, yield-
ing a larger correction, performs much better for HF and DFT
alike.

5.2.3 Computation times

In Table 9, we also report the average timings for the GTO as
well as the MW calculations. All timings include the ground-state
SCF optimization (to obtain ρ̂(0)) followed by three response cal-
culations (to obtain ρ̂

(B)
µ for µ = x,y,z). The magnetizability and

NMR shielding tensors of all nuclei in the molecule are then com-
puted simultaneously according to Eqs. (26-27). The timings are
given in minutes wall-time on a single compute node with 16
CPUs (2.6 GHz Intel E5-2670) using a shared memory paralleliza-
tion strategy. For the GTO calculations, the timings are obtained
from Dalton, on the same computer architecture and also using
16 processors.

Whereas the MW code is far from optimized for production
calculations, we can draw some interesting conclusions from the
numbers. First of all, there is an order of magnitude difference in
computation time between pure and hybrid density functionals:
for HF, PBE0 and B3LYP, the exact-exchange is a clear bottleneck,
especially in the magnetic response solver because the pure func-
tionals do not contribute to the perturbed Fock operator (Eq. 31),
but also in the ground-state calculation as the exact exchange
scales quadratically with the number of orbitals. Although the
current implementation fully supports orbital localization, which
should have an effect on the exact exchange, no particular at-
tempt have yet been made in exploiting localization to achieve
linear scaling algorithms. The systems treated in the current work
are anyway too small for this to have any appreciable effect.

Along the series of MW calculations, we observe that the com-
putational costs roughly doubles at each ten-fold increase of the
requested precision.

Concerning the comparison between MWs and GTOs, and lim-
iting the comparison to pure functionals (hybrid functionals and
HF are affected by the exchange bottleneck), we notice how TZ-
quality results are quite cheap to achieve, being ten times faster
than MW3 results. However MW4 results, which are comparable
to the extrapolated [TQ]Z values, are only three times more ex-
pensive than QZ values: along the GTO series, the computational
cost increases ten times at each step (aug-cc-pCV5Z confirmed the
trend, for the 24 molecules where this basis set is available).

In conclusion, GTOs come from decades of developments,
where a large effort has been poured into improving the under-
lying algorithms and fine-tuning the basis set compositions. This
explains why a moderate basis set, such as TZ, is able to give
reasonable results with good performance. But when the preci-
sion requirements are increased, a MW basis becomes eventually
superior.

5.2.4 Comparison with coupled cluster and experiment

With the proper CBS limits established for the different DFT func-
tionals, we can assess their ability to reproduce the theoretical
limit: Full Configuration Interaction (FCI) in a CBS. In practice
Coupled Cluster with Singles, Doubles and perturbative Triples
(CCSD(T)) including basis set extrapolation has been taken as a
reference.22 Additionally, experimental data including zero-point
vibrational correction (ZPVC) have been considered. Several in-
vestigations of this type have been conducted in the past,22,78–81

and our observations agree with the current consensus regarding
the CBS limit. It is well known that the employed density func-
tionals systematically underestimate the shielding constant: this
has been attributed to a too small HOMO-LUMO gap.78 Some at-
tempts have also been made to fix the problem by simple level
shifting of the virtual orbital energies,78,82,83 although the theo-
retical justification is questionable.

We present in Table 10 the statistical errors with respect to Cou-
pled Cluster (CC) and the empirical equilibrium (experimental
values including ZPVC). In the comparison to CCSD(T), O3 is
omitted, because it is an extreme outlier with errors in the or-
der of 1000 ppm. In the comparison to experiments, around one
fourth of the data set is instead omitted because accurate exper-
imental data is lacking. The same data set as Teale et al.22 has
been used, and details about the excluded systems can be found
in their paper. All GTO calculations, as well as all experimental
numbers, are taken from the work of Teale et al.22

Focusing first on the CBS limit, represented here by the MW6
numbers, we observe an underestimation of 20-30 ppm, without
significant variations throughout the set of functionals employed.
The magnitude of the Medium Error (ME) and the Medium Abso-
lute Error (MAE) is about the same, indicating that the errors are
systematic in sign. It is interesting to note that the cancellation
between functional error and basis set error is rather systematic:
a more or less uniform improvement of the results, compared to
both CCSD(T) and experiment is obtained when a poorer basis set
is employed. In particular, the aug-cc-pCVDZ basis set displays an
improvement of around 10-15 ppm in the MAE, compared to the
CBS limit, accompanied by a significant reduction in the Standard
Deviation (SD). This trend has been already reported by Kupka
and coworkers,79–81 and has also been recommended to NMR
spectroscopists.84

Finally, taking experimental values without ZPVC as reference
(not shown in the tables), the errors for GGA and hybrid func-
tionals with the double-ζ basis are further reduced to around 8
and 20 ppm for the MAE and SD, respectively. The combination
of several errors eventually gives the right answer in the case of
NMR shielding calculations with DFT. This demonstrates the chal-
lenges of optimizing functionals explicitly for a specific property,
as for instance done for the Keal–Tozer functionals for magnetic
properties.85

6 Conclusions and outlook
We have presented a new real-space implementation of a static
linear response solver in a multiwavelet framework. We have
applied the formalism to compute magnetizabilities and NMR
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Table 7 Hartree-Fock shielding constant (ppm) computed with GTOs basis sets (aug-cc-pCVXZ, X = T,Q), extrapolation methods (aug-cc-pCV[TQ]Z
with α = 1.63 and α = 1.05) and MW methods at increasing precision (ε = 10−η ,η = 3,4,5,6). All GTO calculations are taken from the Supporting
Information of Ref. 22.

T Q [T Q1.63] [T Q1.05] MW3 MW4 MW5 MW6
HF H 28.40 28.20 28.15 28.09 29.04 28.20 28.13 28.12

F 415.00 414.70 414.63 414.54 420.63 414.26 414.59 414.56
CO C −23.30 −26.60 −27.40 −28.38 −23.18 −27.59 −28.43 −28.41

O −83.50 −89.40 −90.84 −92.58 −94.40 −95.77 −92.70 −92.83
N2 N −108.30 −113.20 −114.39 −115.84 −144.94 −116.04 −116.06 −116.07

H2O O 328.80 328.10 327.93 327.72 333.39 326.59 327.83 327.78
H 30.80 30.60 30.55 30.49 31.08 30.50 30.50 30.51

HCN H 29.30 29.20 29.18 29.15 31.10 29.22 29.22 29.22
C 72.90 70.60 70.04 69.36 68.84 69.80 69.40 69.40
N −46.70 −51.10 −52.17 −53.47 −111.50 −53.47 −53.60 −53.55

HOF O −130.60 −136.00 −137.32 −138.91 −111.30 −139.71 −138.79 −139.31
H 19.30 19.10 19.05 18.99 19.87 19.01 19.01 19.00
F 291.60 288.90 288.24 287.45 288.14 285.09 287.53 287.65

O3 Omidt −2669.80 −2706.40 −2715.32 −2726.10 38.16 −2739.83 −2729.98 −2730.94
Oterm −2739.80 −2775.60 −2784.32 −2794.87 −62.57 −2808.35 −2801.00 −2800.06

NH3 N 263.40 262.60 262.41 262.17 268.20 262.02 262.23 262.23
H 31.80 31.70 31.68 31.65 31.56 31.60 31.59 31.59

H2CO O −431.50 −441.60 −444.06 −447.04 −673.90 −446.42 −447.59 −447.52
C −5.00 −7.90 −8.61 −9.46 −22.53 −8.94 −9.27 −9.34
H 22.50 22.50 22.50 22.50 21.80 22.48 22.48 22.48

CH4 C 196.10 195.00 194.73 194.41 192.60 195.02 194.61 194.61
H 31.60 31.60 31.60 31.60 31.45 31.55 31.55 31.55

C2H6 C 61.50 59.20 58.64 57.96 59.88 58.05 58.09 57.97
H 26.30 26.20 26.18 26.15 25.86 26.19 26.19 26.18

AlF Al 580.40 580.20 580.15 580.09 583.44 579.61 579.61 580.03
F 233.40 229.00 227.93 226.63 219.18 226.06 227.15 227.37

CH3F C 126.80 125.00 124.56 124.03 131.76 124.42 124.32 124.29
F 486.90 486.70 486.65 486.59 471.85 486.07 487.02 486.93
H 28.00 27.90 27.88 27.85 27.83 27.92 27.90 27.90

C3H4 C 194.40 193.30 193.03 192.71 197.60 193.25 193.03 192.97
Cdb 73.00 70.80 70.26 69.62 −21.52 69.84 69.61 69.65
Hdb 24.20 24.10 24.08 24.05 24.92 24.07 24.05 24.05

H 31.00 30.90 30.88 30.85 29.39 30.93 30.92 30.92
HCCF C(H) 177.70 176.50 176.21 175.85 183.55 175.50 175.98 175.96

C(F) 102.80 100.80 100.31 99.72 108.91 100.45 99.91 99.89
H 30.60 30.50 30.48 30.45 30.35 30.52 30.50 30.51
F 428.90 428.30 428.15 427.98 415.85 427.70 428.23 428.10

FCN F 378.70 377.70 377.46 377.16 360.67 378.00 377.18 377.19
C 77.70 75.30 74.72 74.01 81.39 74.51 74.19 74.11
N 94.70 91.80 91.09 90.24 85.39 90.29 90.45 90.32

H2S S 715.00 711.30 710.40 709.31 727.11 728.03 710.99 711.26
H 30.60 30.60 30.60 30.60 32.44 30.91 30.53 30.53

HCP H 30.10 30.10 30.10 30.10 31.30 30.13 30.08 30.11
C 15.80 13.30 12.69 11.95 −15.94 11.78 12.05 11.87
P 338.80 339.70 339.92 340.18 123.31 339.08 339.68 339.38

HFCO O −123.20 −129.50 −131.04 −132.89 −193.91 −135.04 −133.50 −133.20
C 36.10 33.40 32.74 31.95 41.58 32.31 32.13 32.09
F 191.00 187.90 187.14 186.23 146.78 188.28 186.59 186.13
H 24.50 24.40 24.38 24.35 24.89 24.39 24.38 24.38

H2C2O C(O) 190.50 189.30 189.01 188.65 193.64 188.97 188.88 188.89
C(H) −11.70 −14.90 −15.68 −16.62 −24.45 −16.47 −16.57 −16.54

O −22.30 −27.40 −28.64 −30.15 2.46 −29.86 −30.14 −30.41
H 29.50 29.40 29.38 29.35 29.49 29.34 29.33 29.33

LiF Li 90.90 90.60 90.53 90.44 90.49 90.47 90.46 90.46
F 392.10 390.80 390.48 390.10 395.36 390.28 390.16 390.17

LiH H 26.60 26.60 26.60 26.60 26.51 26.61 26.61 26.61
Li 89.80 89.50 89.43 89.34 90.64 89.51 89.50 89.50

N2O Nmidt 65.70 62.70 61.97 61.09 59.78 61.40 60.92 61.04
N −29.40 −33.40 −34.37 −35.55 −35.66 −34.15 −35.39 −35.73
O 177.30 174.80 174.19 173.45 172.73 173.76 173.50 173.41

OCS O 80.10 76.60 75.75 74.72 59.07 72.89 74.30 74.46
C 10.40 7.30 6.54 5.63 0.82 5.89 5.91 5.82
S 788.80 787.60 787.31 786.95 730.46 790.81 787.98 787.70

OF2 O −435.40 −443.80 −445.85 −448.32 −419.25 −448.90 −448.36 −449.10
F 27.80 22.40 21.08 19.49 32.32 22.88 20.07 19.38

H4C2O O 379.10 378.80 378.73 378.64 364.09 377.84 378.82 378.80
C 156.90 155.40 155.03 154.59 162.13 155.17 154.91 154.87
H 29.80 29.70 29.68 29.65 29.34 29.71 29.70 29.70

PN N −498.00 −506.50 −508.57 −511.08 −553.60 −514.49 −511.69 −511.80
P −110.90 −108.40 −107.79 −107.05 −167.61 −113.29 −108.04 −109.37

SO2 S −393.40 −395.20 −395.64 −396.17 −724.14 −397.98 −395.02 −396.57
O −330.50 −335.60 −336.84 −338.35 −595.92 −341.03 −340.30 −340.38
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Table 8 Shielding constants (ppm) computed using a range of density functionals with the aug-cc-pCVQZ basis set and the MW basis at precision
ε = 10−6. All GTO calculations are taken from the Supporting Information of Ref. 22.

LDA BLYP PBE B3LYP PBE0
Q MW6 Q MW6 Q MW6 Q MW6 Q MW6

HF H 29.20 29.13 29.90 29.82 29.90 29.78 29.50 29.35 29.40 29.26
F 416.00 415.78 410.50 410.25 412.00 411.69 412.00 411.75 413.40 413.13

CO C −23.30 −25.09 −17.70 −19.51 −15.90 −17.58 −21.50 −23.27 −20.00 −21.70
O −91.70 −95.18 −81.30 −84.69 −82.40 −85.70 −85.50 −88.90 −86.80 −90.21

N2 N −94.10 −96.95 −87.20 −90.02 −85.80 −88.58 −94.40 −97.28 −94.20 −96.98
H2O O 334.30 333.95 326.10 325.70 328.80 328.45 327.10 326.74 329.50 329.16

H 30.80 30.74 31.40 31.31 31.30 31.24 31.20 31.06 31.10 30.99
HCN H 28.90 28.92 29.40 29.32 29.20 29.16 29.30 29.29 29.20 29.16

C 63.70 62.48 68.90 67.63 70.20 69.02 67.90 66.63 69.40 68.20
N −59.10 −61.65 −48.80 −51.26 −46.60 −48.97 −51.70 −54.23 −49.30 −51.75

HOF O −143.40 −146.91 −138.40 −141.89 −128.50 −131.84 −137.30 −140.66 −125.70 −129.05
H 18.40 18.32 19.40 19.25 19.30 19.21 19.30 19.21 19.30 19.26
F 160.10 157.98 145.70 143.47 150.90 148.60 175.10 173.10 185.70 183.69

O3 Omidt −920.70 −930.40 −902.50 −911.95 −884.60 −893.97 −1123.90 −1135.21 −1164.80 −1176.33
Oterm −1519.30 −1533.59 −1461.80 −1475.42 −1450.80 −1464.28 −1676.80 −1692.22 −1719.90 −1735.43

NH3 N 266.90 266.53 259.00 258.57 262.40 261.99 260.20 259.81 263.30 262.96
H 31.50 31.40 31.90 31.85 31.80 31.78 31.80 31.74 31.70 31.67

H2CO O −499.20 −505.66 −449.80 −455.91 −452.40 −458.45 −457.80 −463.93 −458.20 −464.28
C −42.10 −43.84 −29.30 −30.99 −27.90 −29.56 −26.30 −27.94 −23.30 −24.94
H 20.10 20.11 21.10 21.07 20.80 20.77 21.40 21.36 21.20 21.21

CH4 C 193.00 192.62 186.30 185.84 190.30 189.93 188.70 188.21 192.70 192.25
H 31.20 31.15 31.60 31.57 31.50 31.46 31.50 31.51 31.50 31.42

C2H6 C 40.30 38.84 44.60 43.21 47.50 46.12 46.70 45.31 50.30 49.00
H 25.10 25.04 25.90 25.89 25.60 25.60 25.90 25.88 25.70 25.65

AlF Al 532.90 532.78 540.90 540.73 542.80 542.90 550.10 549.88 554.40 554.48
F 138.40 136.16 152.70 150.60 150.50 148.34 171.90 169.89 175.60 173.63

CH3F C 103.10 102.18 100.60 99.69 105.20 104.27 106.30 105.44 111.90 111.05
F 474.10 474.33 458.20 458.26 462.10 462.23 466.50 466.62 471.00 471.10
H 26.60 26.57 27.20 27.21 27.10 27.07 27.40 27.34 27.30 27.29

C3H4 C 177.30 176.83 173.30 172.86 176.80 176.35 178.00 177.57 182.10 181.70
Cdb 56.30 55.03 58.40 57.14 62.10 60.95 60.40 59.22 64.80 63.62
Hdb 23.70 23.64 24.40 24.31 24.20 24.14 24.20 24.19 24.10 24.05

H 30.20 30.18 30.70 30.70 30.60 30.55 30.70 30.70 30.60 30.60
HCCF C(H) 165.30 164.75 169.00 168.42 170.10 169.60 169.40 168.80 170.90 170.39

C(F) 76.80 75.69 78.30 77.21 82.20 81.17 82.80 81.76 87.70 86.50
H 30.60 30.57 31.10 31.10 31.00 30.94 30.90 30.90 30.80 30.74
F 392.10 391.72 392.50 392.11 389.10 388.70 400.40 400.07 398.80 398.41

FCN F 343.50 342.86 343.00 342.39 338.70 338.09 351.10 350.53 348.60 348.01
C 63.20 61.82 64.50 63.23 68.50 67.29 65.80 64.60 70.10 68.66
N 89.60 88.04 96.70 95.20 99.40 97.89 92.40 90.78 94.70 93.20

H2S S 724.00 723.97 690.30 690.21 713.70 713.53 697.00 696.91 719.00 718.94
H 30.40 30.33 31.10 31.03 30.80 30.79 30.90 30.84 30.60 30.61

HCP H 29.40 29.39 29.80 29.81 29.60 29.60 29.90 29.87 29.70 29.71
C 4.80 3.28 10.20 8.66 13.10 11.67 8.80 7.29 11.90 10.48
P 285.90 285.56 320.20 319.94 325.60 325.34 316.80 316.45 323.80 323.52

HFCO O −143.90 −147.68 −131.00 −134.84 −127.70 −131.40 −137.00 −140.77 −133.80 −137.57
C 15.10 13.56 17.40 15.95 20.90 19.49 19.60 18.13 23.60 22.25
F 80.60 78.03 93.30 90.79 91.40 88.88 115.50 113.15 119.70 117.39
H 22.90 22.84 23.40 23.39 23.30 23.23 23.60 23.58 23.60 23.52

H2C2O C(O) 186.00 185.49 182.50 181.99 185.40 184.88 183.80 183.29 186.70 186.24
C(H) −23.30 −25.06 −24.90 −26.70 −18.70 −20.46 −24.40 −26.15 −18.20 −19.96

O −26.30 −29.35 −26.50 −29.54 −22.40 −25.35 −30.10 −33.19 −26.60 −29.59
H 28.90 28.88 29.60 29.52 29.40 29.33 29.40 29.39 29.30 29.23

LiF Li 85.30 85.19 86.50 86.33 86.60 86.46 87.50 87.41 88.00 87.84
F 340.90 340.02 336.30 335.41 343.60 342.75 351.90 351.05 362.20 361.46

LiH H 25.80 25.79 26.50 26.53 26.30 26.34 26.60 26.58 26.40 26.44
Li 86.40 86.30 88.40 88.33 88.20 88.12 88.30 88.21 88.30 88.26

N2O Nmidt 86.40 84.65 86.80 85.26 90.70 89.13 80.60 79.02 83.10 81.57
N −3.80 −5.63 −5.50 −7.23 0.80 −0.85 −12.30 −14.54 −7.80 −9.92
O 178.50 177.11 173.80 172.38 175.60 174.24 172.90 171.44 174.20 172.79

OCS O 68.40 66.24 69.50 67.24 70.20 68.01 70.20 68.03 71.30 69.06
C 17.80 16.27 17.30 15.79 22.40 20.99 13.80 12.18 18.10 16.69
S 754.00 754.14 755.50 755.55 762.60 762.58 760.60 760.84 768.90 768.99

OF2 O −672.30 −679.48 −641.50 −648.23 −629.50 −636.19 −588.80 −595.24 −562.10 −568.38
F −98.50 −102.35 −102.30 −106.30 −91.40 −95.35 −73.80 −77.52 −56.60 −60.18

H4C2O O 338.00 337.73 329.80 329.40 333.30 332.96 340.00 339.70 345.10 344.82
C 136.00 135.28 133.20 132.46 137.50 136.81 138.30 137.63 143.50 142.83
H 28.60 28.57 29.20 29.20 29.10 29.05 29.30 29.28 29.20 29.20

PN N −429.30 −434.32 −421.20 −426.14 −415.00 −419.79 −443.30 −448.35 −441.60 −446.56
P −86.70 −88.28 −47.80 −49.40 −45.80 −47.05 −69.70 −71.30 −70.50 −71.87

SO2 S −300.50 −301.70 −276.30 −277.60 −259.70 −260.95 −312.20 −313.51 −303.10 −304.33
O −322.70 −327.49 −315.60 −320.33 −311.70 −316.47 −327.70 −332.57 −326.40 −331.24
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Table 9 Statistical basis set errors of all computed shielding constants (including O3) for the different methods employed in the paper, MW calculations
at ε = 10−6 are taken as reference. For each combination of basis/functional the following errors are reported: medium error, medium absolute error,
medium relative error, medium absolute relative error, standard deviation and maximum error. Average timings in minutes on 16 CPUs.

aug-cc-pCVTZ HF LDA BLYP PBE B3LYP PBE0
ME 4.79 4.72 4.49 4.36 4.54 4.40
MAE 4.85 4.72 4.49 4.36 4.54 4.40
MRE 0.57 0.51 −0.72 −9.24 0.00 −1.03
MARE 6.10 8.12 6.40 13.91 5.93 5.69
SD 11.21 8.01 7.50 7.28 7.97 7.84
MaxE 61.14 38.89 35.82 34.88 40.12 40.13
Time 0.69 0.76 0.74 0.71 0.83 0.87

aug-cc-pCVQZ HF LDA BLYP PBE B3LYP PBE0
ME 1.79 1.57 1.55 1.51 1.58 1.56
MAE 1.80 1.58 1.55 1.51 1.59 1.57
MRE 0.11 0.14 −0.28 −2.86 −0.07 −0.43
MARE 2.12 2.63 2.15 4.41 2.04 1.98
SD 4.46 2.84 2.75 2.71 2.96 2.96
MaxE 24.54 14.29 13.62 13.48 15.42 15.53
Time 8.0 6.6 6.8 6.9 7.9 7.8

aug-cc-pCV[T Q]Z HF LDA BLYP PBE B3LYP PBE0
α = 1.63 ME 1.06 0.80 0.83 0.81 0.86 0.86

MAE 1.11 0.87 0.88 0.87 0.92 0.92
MRE 0.00 0.05 −0.17 −1.30 −0.09 −0.29
MARE 1.18 1.31 1.14 2.10 1.11 1.10
SD 2.83 1.61 1.62 1.62 1.77 1.79
MaxE 15.73 8.29 8.22 8.26 9.41 9.54

aug-cc-pCV[T Q]Z HF LDA BLYP PBE B3LYP PBE0
α = 1.05 ME 0.18 −0.13 −0.04 −0.03 −0.01 0.03

MAE 0.38 0.27 0.27 0.27 0.28 0.28
MRE −0.13 −0.06 −0.04 0.58 −0.10 −0.11
MARE 0.26 0.42 0.31 0.86 0.23 0.21
SD 0.97 0.52 0.51 0.52 0.54 0.54
MaxE 5.19 2.40 1.96 2.14 2.13 2.29

MW3 HF LDA BLYP PBE B3LYP PBE0
ME 57.17 −15.99 −8.04 −10.13 −24.63 28.41
MAE 101.93 25.02 22.51 24.48 32.52 59.18
MRE −1.87 −11.19 4.01 −6.74 −4.62 1.38
MARE 24.68 33.50 18.98 27.53 21.31 20.75
SD 463.45 57.43 43.87 48.69 91.44 245.76
MaxE 2769.10 270.47 164.35 198.66 562.56 1697.14
Time 92.8 6.0 6.0 6.0 87.2 86.7

MW4 HF LDA BLYP PBE B3LYP PBE0
ME −0.08 −0.14 −0.41 −0.25 −0.02 0.14
MAE 1.08 0.68 0.85 0.85 0.79 0.98
MRE 0.27 0.03 0.21 −0.32 −0.21 −0.63
MARE 0.83 0.80 0.80 1.23 1.03 1.22
SD 2.67 1.14 1.64 1.65 1.39 1.98
MaxE 16.77 3.87 10.08 9.36 5.76 9.76
Time 215.8 14.5 14.6 15.7 221.5 248.2

MW5 HF LDA BLYP PBE B3LYP PBE0
ME 0.09 0.07 0.05 0.06 0.07 0.06
MAE 0.17 0.15 0.14 0.14 0.16 0.16
MRE 0.04 −0.08 −0.07 −0.53 −0.07 −0.08
MARE 0.20 0.30 0.20 0.61 0.22 0.22
SD 0.34 0.35 0.33 0.32 0.36 0.33
MaxE 1.55 2.10 2.01 2.00 1.72 1.53
Time 301.5 24.6 24.4 26.4 383.3 307.3
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Table 10 Statistical errors of shielding constants with respect to extrapolated CCSD(T) and empirical equilibrium (experiment minus zero point
vibrational corrections) results for the different methods employed in the paper. We report the basis set convergence of aug-cc-pCVXZ (X=D,T,Q) as
well as MW6, which can be considered converged to the CBS limit. For the CCSD(T) comparison O3 is omitted, while only the molecules where good
experimental values are available were included in the comparison with empirical equilibrium (see text for details). All GTO calculations, as well as all
experimental numbers, are taken from Ref. 22. For each combination of basis/functional the following errors are reported: medium error, medium
absolute error, medium relative error, medium absolute relative error, standard deviation and maximum error.

Extrapolated CCSD(T) Empirical equilibrium
D T Q MW6 D T Q MW6

RHF ME −6,83 −13,68 −15,73 −16,87 −1,96 −9,13 −10,87 −11,85
MAE 20,30 22,93 23,97 24,68 17,55 20,28 20,86 21,27
MRE −13,50 −26,74 −29,62 −31,01 −16,10 −24,30 −26,23 −27,28
MARE 40,31 59,74 68,18 72,84 36,61 56,06 62,64 66,25
SD 42,75 43,74 44,95 45,94 36,62 40,16 40,86 41,58
MaxE 211,40 190,00 191,80 193,17 161,30 170,80 168,30 169,27

LDA ME −16,76 −27,39 −30,04 −31,31 −13,56 −23,34 −25,62 −26,74
MAE 19,21 28,72 31,36 32,62 14,39 23,45 25,70 26,82
MRE −33,50 −49,04 −52,92 −54,49 −19,88 −29,72 −32,25 −33,33
MARE 51,45 90,37 102,03 107,61 35,90 71,58 80,88 85,31
SD 36,09 46,61 49,82 51,53 34,37 44,44 47,21 48,75
MaxE 180,50 212,70 225,20 232,38 178,40 210,60 223,10 230,28

BLYP ME −14,34 −24,53 −27,01 −28,27 −11,83 −21,32 −23,48 −24,60
MAE 16,53 26,02 28,48 29,72 12,96 21,60 23,73 24,83
MRE −18,25 −33,53 −36,84 −38,37 −10,35 −19,89 −22,07 −23,13
MARE 33,18 72,29 83,02 88,54 23,94 59,09 67,66 72,02
SD 29,36 39,23 42,27 43,93 27,50 37,41 40,19 41,74
MaxE 149,10 182,30 194,40 201,13 147,00 180,20 192,30 199,03

PBE ME −12,81 −21,87 −24,27 −26,71 −10,52 −18,98 −21,09 −22,32
MAE 15,23 23,30 25,69 28,12 12,00 19,21 21,29 22,53
MRE −18,92 −33,04 −36,23 −38,58 −10,99 −19,83 −22,01 −25,57
MARE 33,69 64,54 74,82 88,57 24,43 51,92 60,12 72,52
SD 28,22 36,23 39,15 41,75 26,58 34,65 37,36 37,66
MaxE 145,10 170,60 182,40 148,14 143,00 168,50 180,30 146,04

B3LYP ME −13,40 −23,04 −25,46 −25,50 −9,99 −19,12 −21,22 −22,17
MAE 15,02 24,49 26,89 26,90 10,98 19,39 21,45 22,36
MRE −18,74 −33,68 −37,07 −37,66 −12,88 −22,26 −24,48 −22,96
MARE 30,84 72,33 83,10 80,14 24,51 59,58 68,17 64,33
SD 27,99 37,23 40,12 40,78 23,71 33,67 36,18 38,86
MaxE 101,10 130,40 141,70 189,09 106,80 128,80 139,60 186,99

PBE0 ME −11,43 −19,85 −22,15 −23,37 −8,09 −16,17 −18,17 −19,23
MAE 13,64 21,26 23,54 24,74 9,72 16,60 18,40 19,44
MRE −18,48 −32,24 −35,37 −36,84 −13,38 −22,05 −24,20 −25,21
MARE 29,51 63,29 73,37 78,74 23,17 51,82 59,76 64,00
SD 26,58 33,76 36,43 38,00 22,47 30,42 32,71 34,09
MaxE 103,60 119,70 121,10 122,47 112,90 129,00 130,40 131,77
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shielding constants of small closed-shell molecules using HF and
Kohn-Sham DFT. We have shown that the MW basis provides re-
liable numerical results for a wide range of molecular systems,
including challenging cases such as MgO and O3. The accuracy
of the MW basis depends only on a single input parameter: the
overall relative precision ε. By tightening ε, the CBS values can be
attained reliably and consistently. While high accuracy is attain-
able also with traditional GTO bases, they rely on a careful pre-
optimization of the parameters, and a wide variety of customized
basis set families are available for different molecular properties,
and it is the users responsibility to choose a basis set that is suited
for the problem at hand.

We have shown that the MW basis provides magnetic response
properties that are gauge invariant within the chosen relative pre-
cision, which means that the method does not rely on a GIAO
parametrization using field-dependent phase factors for each AO
(which complicates the implementation enormously) in order to
provide high-accuracy results for small molecules. For larger sys-
tems, however, we expect a reduction of the overall accuracy, as
the size of both the paramagnetic and diamagnetic contribution
will grow faster than the total property, affecting the relative pre-
cision that can be achieved. In order to treat larger systems in
the future, we plan to implement a local-origin method, such as
the IGLO method of Kutzelnigg86 or the LORG method of Hansen
and Bouman.87 As in the London orbital approach, these meth-
ods also use different origins for different orbitals, but at the
MO rather than AO level, placing the origin at the centroid of
charge of each (localized) orbital. While these methods also lead
to gauge-origin independent results, they rely on orbital localiza-
tion, and in a GTO calculation also on the use of resolution-of-
the-identity to simplify certain complicated integrals.The GIAO
approach has therefore dominated the calculation of magnetic
properties during the past two decades. However, some of these
problems should not be present in the MW framework because
the exact placement of the origin does not affect the quality of the
results, as long as it keeps the size of the paramagnetic contribu-
tion as low as possible, and the MW basis satisfies the resolution-
of-the-identity condition to within the selected precision. By em-
ploying local origin methods, the paramagnetic part can be de-
composed into orbital contributions of much smaller magnitude
(as the origin is chosen individually for each localized orbital),
leading to good accuracy also for larger molecules.

We have employed our method to probe the CBS limit of HF
and DFT for a large test set of small molecules, initially proposed
by Lutnæs et al.21 for magnetizabilities and later Teale et al.22

for NMR shielding constants. We found that the aug-cc-pCVXZ
basis sets performed very well for magnetizabilities, yielding typ-
ical errors of ∼ 0.1% for quadruple-ζ compared to the MW basis-
set limit results. As expected, the NMR shielding constants were
more challenging for GTOs, with an average error of 1-2 ppm
(around 2-3%) for the largest aug-cc-pCVQZ basis. In order to im-
prove on these numbers, a two-point exponential basis set extrap-
olation formula was employed. We found that the parametriza-
tion that is commonly used for total energies does not transfer
directly to properties, and a significantly lower exponent (close
to 1.0 rather than 1.63) should be used for the estimation of

the basis-set limit for the shielding constants. Although the op-
timal value might differ somewhat between different functionals,
a common exponent of 1.05 was able to reduce the errors by al-
most an order of magnitude for all functionals that were consid-
ered, compared to the quadruple-ζ value.

Finally, we performed a comparison between the CBS limit for
HF and DFT and accurate CC and experimental values for the
shielding constants. We found that the original study by Teale et
al.22 using GTO basis sets were close enough to the CBS limit for
their conclusions with respect to CC and experiment to hold. We
found, however, that there is a significant systematic – yet for-
tuitous – cancellation of errors between the functionals and the
basis set: with respect to raw experimental values (not zero-point
vibrational energy corrected), surprisingly accurate shielding con-
stants can be achieved with a moderate aug-cc-pCVDZ basis set.

The current implementation is limited to SCF levels of theory,
and since correlated wave function methods rely on at least six-
dimensional numerical representations, they are extremely ex-
pensive in a MW framework. However, developments in these
directions have been presented by Bischoff and Valeev.88–90

The performance of our MW approach, compared to GTO cal-
culations, gives a mixed picture. At moderate accuracy, GTOs
deliver reasonable values with limited effort (aug-cc-pCVTZ),
whereas our MW3 values are not as accurate and computation-
ally more expensive. The picture changes dramatically if higher
accuracy is demanded: increasing the accuracy with GTOs im-
plies a 10-fold increase in the computational cost, whereas MW
calculations are only twice as expensive at each step along the
MWX (X = 3,4,5,6) series. As a result aug-cc-pCVQZ calculations
are only 2-3 times faster but less accurate than MW4. Some pre-
liminary tests show that MW5 is indeed less expensive than the
aug-cc-pCV5Z basis. The main performance bottleneck in the cur-
rent MW implementation is clearly the exact HF exchange, which
yields a 10-fold increase in the timings compared to pure func-
tionals.
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