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Strange kinetics of bulk-mediated diffusion on lipid bi-
layers

Diego Krapf,∗a,b Grace Campagnola,c Kanti Nepal,b and Olve B. Peersenc

Diffusion at solid-liquid interfaces is crucial in many technological and biophysical processes.
Although its behavior seems deceivingly simple, recent studies showing passive superdiffusive
transport suggest diffusion on surfaces may hide rich complexities. In particular, bulk-mediated
diffusion occurs when molecules are transiently released from the surface to perform three-
dimensional excursions into the liquid bulk. This phenomenon bears the dichotomy where a
molecule always return to the surface but the mean jump length is infinite. Such behavior is
associated with a breakdown of the central limit theorem and weak ergodicity breaking. Here, we
use single-particle tracking to study the statistics of bulk-mediated diffusion on a supported lipid
bilayer. We find that the time-averaged mean square displacement (MSD) of individual trajec-
tories, the archetypal measure in diffusion processes, does not converge to the ensemble MSD
but it remains a random variable, even in the long observation-time limit. The distribution of time
averages is shown to agree with a Lévy flight model. Our results also unravel intriguing anomalies
in the statistics of displacements. The time averaged MSD is shown to depend on experimental
time and investigations of fractional moments show a scaling 〈|r(t)|q〉 ∼ tqν(q) with non-linear ex-
ponents, i.e. ν(q) 6= const. This type of behavior is termed strong anomalous diffusion and is rare
among experimental observations.

1 Introduction
Processes at solid-liquid interfaces play important roles across
multiple fields. In particular surface diffusion and diffusion-
controlled reactions have key functions in life sciences and
biomedical technologies1. For example, surface reactions are
of utmost importance in the development of implant biomate-
rials2,3, affinity chromatography methods4, and biosensors as
well as in blood-contacting devices5 such as heart valves and
hemodialysis membranes. In cell biology biomolecular recogni-
tion and reactions on surfaces are essential for a vast array of
physiological functions. The importance of molecular films in bi-
ology has been discussed for more than a century6. In fact, most
biochemical reactions in cells take place at interfaces instead of in
solution. Diffusion-controlled reactions often involve a search for
a reactive target with the goal of minimizing the search time7–9.

The random motion of a particle is usually characterized by the
mean squared displacement (MSD). In its simplest form, diffu-
sion processes can be described by Brownian motion, which in
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two dimensions (2D) manifests a linear MSD 〈r2(t)〉= 4Dt, where
D is the diffusion coefficient. However, diffusion at solid-liquid
interfaces can exhibit rich complexities10–14. Systems with a non-
linear MSD 〈r2(t)〉 = Kα tα display anomalous diffusion, where a
slower-than-linear growth, i.e α < 1, indicates subdiffusion; and
faster-than-linear growth, α > 1, indicates superdiffusion. Most
importantly, anomalous diffusion alters reaction kinetics because
the diffusion properties control the rate of molecular encoun-
ters15,16.

A widespread feature of molecules diffusing at the solid-liquid
interface involves the desorption of molecules from the surface
into the liquid phase. Molecules will diffuse in three dimensions
(3D) until they reach the interface again and readsorb. This in-
termittent process where molecules alternate between 2D and 3D
phases is known as bulk-mediated diffusion and has been previ-
ously analyzed in terms of scaling arguments17, simulations18,19,
and analytical approaches20. The first experimental study that
probed bulk-mediated diffusion involved the dynamics of adsor-
bate molecules in porous glass studied by field-cycling NMR relax-
ometry21. Recently bulk-mediated diffusion was experimentally
observed in systems of vastly different nature including organic
molecules at chemically coated interfaces12,22, polymer-surface
interactions23, and membrane-targeting domains on both sup-
ported lipid bilayers24,25 and the plasma membrane of living

Journal Name, [year], [vol.], 1–9 | 1

Page 1 of 9 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



cells26. Diffusion as measured on the surface is strongly influ-
enced by the statistics of excursion times. On each excursion a
random distance is covered on the surface, which scales in prob-
ability as the square root of the return time (〈r2(t)〉= 4Dbt). The
first return time to the surface has interesting properties27. The
most fundamental of these properties is the dichotomy between
mean first return time and probability of return. On one hand,
the mean first return time is infinite due to its heavy tail distri-
bution p(t) ∼ t−1.5. On the other hand, a particle always returns
to the surface, that is the probability of return is one. In terms of
probability theory one would say the particle returns to the sur-
face almost surely. To place the problem in real context, if we
consider a generic protein that alternates between a lipid bilayer
and a water-based solution, the probability that it returns to the
surface within less than 50 ms after it reached a 10-nm height is
99.75%25. Another interesting scenario is provided by a cylindri-
cal surface. In this case the MSD features a plateau, balancing
increasingly long jumps with a decreasing return probability.28.

A diffusion process where long jumps with a heavy-tail distri-
bution occur is known as Lévy walk29. In such a random walk,
jumps are performed at a velocity that might depend on the jump
distance30,31. If the long jumps take place instantaneously, the
process is known as Lévy flight32. Lévy walks have traditionally
received more attention than flights because instantaneous jumps
are not realistic. However, in the limit where bulk diffusion is
orders of magnitude faster than surface diffusion, Db >> Ds, a
Lévy walk can be approximated as a Lévy flight, at least within
short time scales. This regime is found to be the most relevant for
experimental observations of bulk-mediated diffusion.

Both Lévy flights and walks are superdiffusive when the proba-
bility density of jump distances scales as p(r)∼ r−(1+β ) with β ≤ 2.
We recently reported that the motion of membrane-targeting do-
mains on lipid bilayers is superdiffusive due to bulk excursions25.
In these experiments, the MSD grows faster-than-linear when it
is measured over an ensemble of molecules, that is the average is
performed by employing a single displacement for each trajectory
at any given time. Nevertheless, when the average is performed
over time, i.e. by averaging all the displacements observed along
a trajectory, the MSD is linear in lag time. This observation con-
tradicts the ergodic hypothesis, one of the cornerstones of statis-
tical mechanics, which states that ensemble averages and long-
time averages of individual trajectories are equivalent. A similar
behavior is found in subdiffusive continuous time random walks
(CTRWs), where the ensemble-averaged MSD follows a power
law tα , but the time-averaged MSD is linear33,34. In the CTRW,
the non-ergodic property is rooted in the system not being station-
ary. Alike, molecular crowding conditions were predicted to in-
troduce long-tailed distributions in both the unbinding times from
the surface to the bulk and the rebinding times, which cause weak
ergodicity breaking35. Such strange kinetics where the random
walk exhibits different scaling properties depending on whether it
is averaged over time or over an ensemble poses intriguing ques-
tions regarding its statistics. Beyond the MSD, the distribution of
displacements also deviates from “normal” diffusion. The central
limit theorem (CLT) warrants that the displacements of Brownian
motion have a Gaussian distribution. However, in some types of

anomalous diffusion models, the CLT breaks down and the dis-
tribution of displacements is no longer Gaussian. For example,
in a CTRW or when a particle diffuses in a fractal structure, the
increments are not independent and thus the CLT does not hold.
In a Lévy flight the CLT breaks down because the increments can
have infinite variance17,20.

Here we investigate the kinetics of membrane-targeting C2 do-
mains on lipid bilayers using single-particle tracking. This system
exhibits superdiffusive behavior in the ensemble-averaged MSD
but normal scaling in the time-averaged MSD. Weak ergodicity
breaking predicts large fluctuations in the time-averaged MSD of
individual trajectories. Thus we examine the fluctuations in the
MSD and find that it remains a random variable even in the long
time limit. In contrast to the CTRW model, the increments of
bulk-mediated diffusion are shown to be stationary, but the statis-
tics of the motion still depend on experimental time. It is found
that when the MSD is averaged over both time and ensemble, it
does not converge to a finite value, but it increases with exper-
imental time. Thus, if the diffusion coefficient were estimated
using the MSD slope, it would increase as the experimental time
increases. The experimental results for bulk-mediated diffusion
are found to agree with a Lévy flight model using both analyti-
cal approaches and numerical simulations. Interestingly we also
find the system exhibits strong anomalous diffusion36, i.e., the
fractional moments are not characterized by a linear scaling ex-
ponent as in most diffusion processes.

2 Materials and methods

2.1 Preparation of supported lipid bilayers

Lipid bilayers were prepared as described elsewhere25. In brief,
chloroform-suspended 18:1 (∆9-Cis) PC (DOPC) and 18:1 PS
(DOPS) were mixed at a ratio of 3:1. The phospholipid mix-
ture was vacuum dried overnight and resuspended in imaging
buffer (50 mM HEPES, 75 mM NaCl, 1 mM MgCl2, 2 mM tris(2-
carboxyethyl)phosphine (TCEP), 200 µM CaCl2) to a final con-
centration of 3 mM followed by probe sonication to form soni-
cated unilamellar vesicles (SUVs)37. A solution of SUVs (1.5-mM
lipid) in 0.5 M NaCl and imaging buffer was introduced into a
perfusion chamber (CoverWell, Grace Bio-Labs model PC8R-1.0)
and incubated for one hour at 4◦C. The surface was then rinsed
with imaging buffer multiple times prior to addition of protein
sample.

2.2 Protein expression, purification, and labeling

An expression plasmid containing the ybbr-Synaptotagmin 7
(Syt7) C2A gene38 was transformed into Escherichia coli BL21-
CodonPlus(DE3) competent cells. Cells were grown at 37◦C to
an OD600 of 0.6 and then induced to express protein with 0.5 mM
IPTG for 6 hours at room temperature. The harvested cells were
lysed at 18,000 lb/in2 in a microfluidizer in a buffer containing 50
mM Tris, pH 7.5, 400 mM NaCl and centrifuged at 17,000 rpm.
The clarified lysate was loaded onto a 5-ml GSTrap FF column
(GE Healthcare LifeSciences, Pittsburgh, PA) followed by gradi-
ent elution with 50 mM Tris, pH 8.0, 100 mM NaCl, and 10 mM
glutathione. Fractions containing protein were pooled and di-
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luted to reduce the salt to less than 0.1 M prior to loading onto
a HiTrap Q HP column (GE Healthcare LifeSciences, Pittsburgh,
PA) and eluting with a linear gradient to 1 M NaCl in 25 mM Tris,
pH 8.5, 20%(vol/vol) glycerol, and 0.02%(wt/vol) NaN3. A por-
tion of the purified protein was subjected to thrombin cleavage
to remove the GST tag and then separated using a Superdex 200
gel filtration column (GE Healthcare LifeSciences, Pittsburgh, PA)
equilibrated in 50 mM Tris, pH 7.5 and 100 mM NaCl.

20 mM CoASH (New England Biolabs, Ipswich, MA) in 400 mM
Tris, pH 7.5 was mixed with 20 mM Atto-565 maleimide (ATTO-
TEC, Siegen, Germany) in dimethylformamide and incubated at
30◦C overnight to form Atto-565 CoA, then diluted 10 fold with
5 mM DTT, 10 mM Tris pH 7.5 to quench the reaction. ybbr-
Syt7 C2A was labeled with the Atto-565 via SFP synthase (4′-
phosphopantetheinyl transferase). Samples were dialyzed against
1 L of 50 mM HEPES, pH 7.0, 75 mM NaCl, 4 mM MgCl2 and 5%
glycerol overnight at 4◦C, and then concentrated to 10 µM.

2.3 Imaging and single-particle tracking

Proteins were added to the imaging buffer to a final concentra-
tion of 75 pM. Then, the perfusion chamber was filled with the
solution. The perfusion chambers were 9 mm in diameter and
0.9-mm deep, holding a volume of ≈ 60 µl. Imaging was per-
formed at room temperature without replacing the solution, so
that there was always protein present in the bulk solution and
the surface concentration could reach a steady state.

All images were acquired using an objective-type total internal
reflection fluorescence microscope (TIRFM) as described previ-
ously10,39. A 561 nm laser line was used as excitation source. A
back-illuminated electron-multiplied charge coupled device (EM-
CCD) camera (Andor iXon DU-888) liquid-cooled to -85◦C, with
an electronic gain of 300 was used. In order to maintain constant
focus during the whole imaging time we employed an autofo-
cus system (CRISP, Applied Scientific Instrumentation, Eugene,
OR) in combination with a piezoelectric stage (Z-100, Mad City
Labs, Madison, WI). Videos were acquired at a frame rate of 20
frames/s using Andor IQ 2.3 software and saved as 16-bit tiff files.
The images were filtered using a Gaussian kernel with a standard
deviation of 1.0 pixel in ImageJ. Single-particle tracking of Atto-
C2 was performed in MATLAB using the u-track algorithm devel-
oped by Jaqaman et al.40.

3 Experimental Results

3.1 Fluctuations in time-averaged MSD

We tracked the motion of membrane-targeting C2A domains25,
fluorescently labeled with Atto-565, on a supported lipid bilayer.
Imaging was done in a home-built total internal reflection (TIRF)
microscope under continuous illumination at 20 frames/s. Single-
particle tracking is performed under conditions where the surface
density is low enough to enable connections of long jumps while
avoiding misconnections due to crossover between trajectories.
Figure 1 shows an example of single-molecule trajectories during
10 seconds. As a first step, we characterize the diffusion by an-
alyzing the MSD as a function of lag time. For each individual

Fig. 1 Single particle tracking of membrane-targeting C2 domains.
Individual trajectories are collected during 10 seconds in a 50×50 µm2

window. Scale bar 5 µm.

trajectory, the time-averaged MSD (TA-MSD) is calculated as

δ 2(∆) =
1

t−∆

∫ t−∆

0
[r(τ +∆)− r(τ)]2dτ, (1)

where ∆ is the lag time, t the experimental time, and r the two-
dimensional position of a particle. Across the manuscript we em-
ploy brackets to denote the ensemble average of an observable 〈·〉
and an overline to denote time averages ·. Figure 2(a) shows that,
within experimental error, the TA-MSD of individual trajectories
is linear in lag-time, resembling pure Brownian motion. In two
dimensions, the MSD of a Brownian particle is determined by the
diffusion coefficient D via the relation δ 2(∆) = 4D∆, but Fig. 2(a)
shows that the TA-MSD exhibits broad fluctuations. In ergodic
systems, the time-averaged MSD converges to the ensemble aver-
age. In other words the time-averaged MSD can be used to consis-
tently estimate the diffusion coefficient of a molecule. However,
the large scattering seen Fig. 2(a) indicates the time-averaged
diffusion coefficient of individual molecules is a random variable,
with no apparent convergence. This observation suggests weak
ergodicity is broken in the sense that time and ensemble averages
do not converge to the same values34.

Fig. 2 Scattering of the estimated diffusion coefficients of individual
trajectories. (a) The time-averaged MSD of individual trajectories, δ 2(∆),
displays large fluctuations indicating that the MSD does not self average.
40 randomly selected trajectories are presented in a log-log plot. The
dashed lines are guides to the eye with δ 2(∆)∼ ∆. The experimental
time of all trajectories is 1.3 s. (b) Distribution of the MSD slopes for C2
domains. The apparent diffusion coefficient can be calculated from the
MSD slope, MSD/∆ = 4D. The thick red line shows the prediction by a
bulk-mediated diffusion model as explained in the text.
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Fig. 3 Temporal properties of the MSD of membrane-targeting C2
domains. (a) 10-quantile lines of 50-ms increments of the C2 domain
trajectories. Nine lines are shown for the fractions k = 0.1, 0.2, ..., 0.9,
indicating the values that divide the increments into 10
equally-populated subsets, each subset comprising a 10th of the data
points. The quantile lines are parallel, indicating the increments are
stationary. (b) Time-averaged ensemble-averaged MSD (TA-EA-MSD)
as a function of observation time for a 50-ms lag time. In order to
compute the TA-EA MSD, all the displacements of all trajectories up to
time t are averaged. Discrete jumps are observed, which increase the
MSD with experimental time.

Given that the TA-MSD is linear in lag time, one is tempted
to find the diffusion coefficient of individual molecules from lin-
ear regression of the MSD trace. Figure 2(b) shows the distri-
bution of the slope of the TA-MSD, i.e. δ 2/∆, obtained from
5,187 trajectories. The distribution shows two different popula-
tions. A peak with very low diffusivities is apparent (sample mean
〈δ 2/∆〉= 0.006 µm2/s). This population has a narrow distribution
and it is attributed to particles that are immobilized and do not
exhibit any motion. A second population with high diffusivities
has the characteristic large variations noted in Fig. 2(a), with a
mode at 2.7±0.1 µm2/s but a sample mean 〈δ 2/∆〉= 7.3 µm2/s.
When particles perform long jumps, a trajectory can be truncated
and traces with higher diffusivities are lost. It is thus expected
that the true distribution of MSDs is even broader because exper-
imental tracking is biased towards lower diffusivities.

3.2 Stationarity and dependence on experimental time
It is important to establish whether the diffusion process evolves
with time. Further, ergodicity is defined only for stationarity pro-
cesses and thus we test whether the non-ergodic motion is rooted
in the increments not being stationary. One way to check station-
arity of the increments is to compute the quantiles as a function
of time. If the quantile lines are parallel then we can infer that the
process is stationary41. Figure 3(a) shows the 10-quantile lines of
the increments for lag times of 50 ms. The quantile lines appear
to be parallel, suggesting the distribution of increments does not
change over time. Therefore we can conclude that the process is
stationary.

Even though the increments are stationary, the statistics of the
diffusion process depends on experimental time. This effect is ob-
served in the average of the time-averaged MSD, i.e., the time-
and ensemble-averaged MSD (TA-EA-MSD, 〈δ 2〉). The TA-EA-
MSD is simply the cumulative moving average of the square dis-
placements, over different trajectories and for all times up to the
experimental time. Figure 3(b) shows the TA-EA-MSD for ∆ = 50
ms as a function of experimental time measured for 3,130 tra-

jectories. The MSD does not appear to converge to any given
value; instead it exhibits random jumps, so that it experiences an
overall increase with experimental time. In ergodic systems, the
TA-EA-MSD exhibits fluctuations around the mean, which become
smaller as the available experimental time becomes longer due to
better statistics. That type of noise is different from the behavior
observed here because ergodicity would warrant the TA-EA-MSD
converges to a finite value. The observed MSD increase is not
monotonic and it decreases smoothly between jumps. Neverthe-
less, the rate of decrease of the MSD is much smaller than the
average rate of increase due to the discrete jumps and thus, in
probability, the MSD increases with time. As a consequence, if
the ensemble-averaged MSD were employed to estimate a diffu-
sion coefficient, then the coefficient would not be constant, but it
would increase with experimental time.

3.3 Strong anomalous diffusion

So far, we have characterized the dynamics of molecules using
the MSD and observed that the TA-MSD δ 2 does not converge to
the ensemble-averaged MSD 〈r2(t)〉. However, one may desire to
characterize the motion beyond the second moment. In particu-
lar, the fractional moments 〈|r(t)|q〉 with q > 0 provide useful in-
sight. For Brownian motion as well as many anomalous diffusion
processes 〈|r(t)|q〉 ∼ tqν . As long as ν is a constant, all moments
are described by a scaling exponent linear in the order q and the
process is scale invariant such that the propagator at different
times is P(x, t) = t−ν f (x/tν )36. For example, in Brownian motion
ν = 1/2 and f (·) is a Gaussian function.

The process is said to exhibit strong anomalous diffusion when
ν is not constant13,36,

〈|r(t)|q〉 ∼ tqν(q). (2)

Strong anomalous diffusion has been shown theoretically and via
numerical simulations in a variety of systems including the mo-
tion of tracer particles in a running sandpile model42, the occupa-
tion times of renewal processes43, and flow fields36 among oth-
ers44–46. In these processes, a piecewise linear scaling is found
for qν(q). Experimental observation of strong anomalous diffu-
sion has remained rather elusive. To the best of our knowledge,
so far it has only been observed in the superdiffusive transport
of polymer particles inside living cancer cells47. Figure 4(a-d)
shows ensemble-averaged moments of the two-dimensional dis-
placements of C2 domains, which are computed by averaging
over all available trajectories 〈|r(t)−r(0)|q〉. Two regimes are visi-
ble in all the moments. At short times, the fractional moments ex-
hibit the behavior expected for Brownian motion, 〈|r(t)|q〉 ∼ tq/2,
but at long times the moments “misbehave”. Two solid lines
are shown in each panel of Fig. 4(a-d): a shallow line with
〈|r(t)|q〉 ∼ tq/2 and a steeper line with 〈|r(t)|q〉 ∼ tq. For short times
the agreement with a Brownian motion model (qν(q) = q/2) is
evident. However, this is not the case for the long-time regime.
In this regime, as the order q increases, the logarithmic slopes
of the moments also increase. Figure 5 shows ν(q) as a func-
tion of q for both the short and long times. We see that the scal-
ing exponent at short times does not show significant deviations
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Fig. 4 Ensemble-averaged qth moment of membrane-targeting C2 domains. (a-d) Moments are computed for q = 0.2,1,1.5,2. The solid lines provide
guides to the eye to 〈|r(t)|q〉 ∼ tq/2 and 〈|r(t)|q〉 ∼ tq, i.e. ν = 1/2 (Brownian motion) and ν = 1 (superdiffusion). (e-h) The same fractional moments are
computed when the 3% longest displacements are excluded from the data analysis.

Fig. 5 The scaling exponent qν(q) exhibits piecewise behavior at long
times. At short times (lower black squares) ν(q)≈ 0.5, but at long times
(upper red circles) the behavior is very different and ν(q) is not constant.
Instead ν(q) increases with the order q when q > 1. The gray lines
indicate the expected ν(q) behavior of the fractional order exponent for
Brownian motion and the Lévy flight model in the regime 0 < q < 1.

from qν(q) = q/2 but in the long-time regime ν(q) is not constant.
In this time regime, qν(q) = q for the lower order moments and
ν(q)> 1 for the higher orders, which indicates strong anomalous
diffusion. In our measurements, strong anomalous diffusion is
caused by rare long jumps, i.e., by bulk excursions. When the
large displacements are excluded from the analysis, the fractional
moments display normal behavior. Figure 4(e-h) shows the frac-
tional moments when only the displacements below a 97% cutoff
are considered. We observe that in this case 〈|r(t)|q〉 ∼ tq/2, that
is, the fractional moments without the long jumps scale with time
as expected from Brownian motion.

4 Theoretical model
4.1 Fluctuations in the time averages
We have previously shown25 that membrane-targeting domains
can transiently dissociate from the lipid bilayer to perform bulk

excursions. During these excursions, a molecule undergoes three-
dimensional diffusion until it readsorbs on the surface. Within
the bulk phase, the height z is modeled as a one-dimensional
random walk and thus the first return time distribution satisfies
p(tb) ∼ t−1.5

b , where the first return time tb represents the time
the particle spends in the bulk during a single jump. A sketch of
the model is shown in Fig. 6. A simple derivation27 leads to a
one-sided Lévy distribution of index 1/2, also known as a Lévy-
Smirnov distribution,

p(tb) = z0

(
4πDbt3

b

)−1/2
exp
(
−z2

0/4Dbtb
)
, (3)

where Db is the diffusion coefficient in the bulk, and z0 is a scaling
constant with units of length. Then, the distances on the surface
covered during bulk excursions are two-dimensional Cauchy ran-
dom variables17,20,25

p(r) =
γ

2π
(
r2 + γ2

)3/2
, (4)

where γ is a constant with units of length. Interestingly, the ex-
pected values of both the first return time and the displacement
diverge. Therefore, we expect that the time-averaged MSD is gov-
erned by extreme values. Namely, because the TA-MSD is deter-
mined by individual long jumps, it remains a random variable,
even though observation times may be long.

Let us first derive the distribution of time averages from in-
tuitive scaling arguments. Given that one individual long jump
determines the TA-MSD of an individual trajectory, each TA-MSD
scales as the longest displacement within the trajectory,

δ 2 ∼ 1
t

max
{

r2
i

}
, (5)

where ri are the individual measured displacements. From
Eq. (4), we can calculate the probability density of squared dis-
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Fig. 6 Sketch of the bulk-mediated diffusion model. A molecule
alternates between periods of 2D and 3D diffusion. The excursions into
the bulk are considered as surface jumps with a heavy-tail distribution
p(r)∼ r−3. In theory, the sojourn time in the bulk phase are
asymptotically power-law distributed, p(t)∼ t−1.5, but in practice jumps
are observed to take place faster than the frame rate.

placements and that of TA-MSD. Defining s = r2, we obtain the
distribution p(s) = 0.5γ(s+γ2)−3/2. Then, we find the distribution
of δ 2 from the cumulative distribution function of the squared

displacements FS(s). Namely, FMSD

(
δ 2
)
=
[
FS(tδ 2)

]t
because the

displacements are independent and identically distributed. Thus

p
(

δ 2
)
∼ t2

1− γ√
tδ 2 + γ2

t−1
0.5γ(

tδ 2 + γ2
)3/2

, (6)

where for the sake of simplicity we take time t as the number of
time intervals, i.e. the number of measured displacements. In the
limit of large MSDs we have tδ 2� γ2 and Eq. (6) simplifies to

p
(

δ 2
)
∼ 0.5t1/2

γ

(
δ 2
)−3/2

. (7)

These simple scaling arguments yield a distribution of TA-MSD
that has a power law tail with an exponent 3/2.

Now, we follow the derivation by Froemberg and Barkai to find
the whole distribution of TA-MSDs48. In order to simplify the
analysis we focus on a one-dimensional Lévy flight but the ex-
tension to two dimensions is straightforward. Again the displace-
ments are Cauchy distributed (Eq. 4), albeit in one dimension,

p(xi) =
γ

π
(
x2

i + γ2
) , (8)

and the square displacements y = x2 are distributed according to

p(y) =
γ

π
(
y+ γ2

)√
y
∼ y−3/2. (9)

where y≥ 0. The displacements after time ∆ are x∆ = ∑
∆
i xi, with a

characteristic function φ(k)= exp(−γ∆|x|). Thus p(x∆)= γt[π(x2
∆
+

γ2t2)]−1, also a Cauchy distribution with a scale parameter γ∆.
This behavior is due to the fact that the Cauchy distribution is
stable, namely a symmetric Lévy stable distribution of index 1.
Therefore, we can solve for ∆ = 1 and our results are still valid for
any lag time after rescaling γ → γ∆.

As in Eq. 1, the TA-MSD at a lag time ∆, measured over a time

t, is48

δ 2(∆) =
1

t−∆

t−∆

∑
i=1

(xi+∆− xi)
2

d≈ ∆

t

t

∑
i=1

x2
i , (10)

where the approximation holds for t � 1. We next define the

variable ζ = tδ 2/∆
d≈∑

t
i=1 x2

i , which is a sum of independent and
identically distributed (i.i.d.) random variables yi. Given that the
variance of yi diverges, the central limit theorem breaks down and
the distribution of ζ is found using the generalized central limit
theorem49. The Laplace transform of the distribution of y = x2

(see Eq. 9) is

p
(
uy
)

= exp
(

γ
2uy

)
erfc

(
γ
√

uy
)

≈ 1− 2γ√
π

√
uy +O(uy)

≈ exp
(
− 2γ√

π

√
uy

)
, (11)

where erfc(·) is the complementary error function. We are con-
cerned with large values of y and therefore we only keep the first
term in the series expansion in Eq. (11), that is we only consider
the small uy limit in Laplace domain. The distribution of ζ in the
large t limit is found in Laplace domain

p(uζ ) = exp
(
− 2γt√

π

√
uζ

)
. (12)

The inverse Laplace transform yields

p(ζ ) =
π

2(γt)2 L1/2,1

[
π

2(γt)2 ζ

]

=

(
1

2πc2ζ 3

)1/2
exp
(
− 1

2c2ζ

)
, (13)

where L1/2,1(ξ ) is again the Lévy-Smirnov distribution and we in-
troduced the constant c =

√
(π/2)/γt. We can then change vari-

ables to obtain the distribution of the slope of the TA-MSD. By
defining ξ = ζ/t = δ 2/∆, Eq. 13 simplifies to

p(ξ ) =
(

γ2t
π2ξ 3

)1/2

exp
(
− γ2t

πξ

)
. (14)

Thus we find that the probability density function of the TA-
MSD is a Lévy-Smirnov distribution with scale parameter 2γ2t/π.
Recall that we derived this distribution for t and ∆ in number
of frames. In agreement with the scaling arguments discussed
above, p(ξ ) ∼ ξ−3/2. Importantly, the moments of this distribu-
tion diverge, causing large variations in the TA-MSD measure-
ments as observed in Fig. 2(a).
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4.2 Fractional moments

Our Lévy flight model involves a tail in the distribution of dis-
placements that scales as p(r)∼ r−3 at long distances. Therefore,
the qth moment diverges for q≥ 1. Explicitly,

〈|r(t)|q〉 ∼
{

tq, q < 1
∞, q≥ 1.

(15)

Of course this result is not realistic. The problem arises in the
approximation that bulk excursions take place instantaneously.
While the approximation is good within our experimental times,
it does not hold for very long jumps, thus placing a bound on the
higher order moments. In fact, for bulk-mediated surface diffu-
sion the Cauchy distribution (Eq. 4) has a natural Gaussian cutoff
that emerges at longer times than those probed in our study20.
Precise mathematical analysis that includes the time incurred by
a bulk mediated jump would lead to the correct higher order mo-
ments13,50. However, a simple model leading to Eq. (15) yield
some useful insights. In particular, we can see that there is a crit-
ical order qc = 1 below which ν(q) = 1. Furthermore, for values
q < qc, the fractional moments yield superdiffusive behavior, i.e
ν(q) > 1/2 as would be determined by Brownian motion. Above
this critical value, the fractional moments increase above 1. The
piecewise behavior is the fingerprint of strong anomalous diffu-
sion as observed in Fig. 5.

5 Numerical Simulations
We test the predictions of our model using numerical simulations
and compare them to the experimental data. Our simulations
intend to model a process where molecules diffuse on a two di-
mensional surface and undergo dissociation into the bulk phase.
Dissociation is considered as a Poisson process and the particle
goes through 3D diffusion in the bulk until it finds its way back
to the surface. 5000 realizations were simulated off-lattice where
tracers perform a random walk with Gaussian displacements in
two dimensions, and at random times the tracer performs bulk
excursions25. The sojourn times within the surface are exponen-
tially distributed with a mean of 10 and the surface diffusion co-
efficient is taken to be Ds = 0.5. The return times from bulk excur-
sions are drawn from a distribution ψ(tb)= (4πt3

b )
−1/2exp(−1/4tb)

(see Eq. 3). Then the jump distances are Gaussian with variance
σ2

b = 2tb.

Similar to the experiments on lipid bilayers, the TA-MSD of the
simulations exhibit a broad scattering. Figure 7(a) shows the dis-
tribution of TA-MSDs for the individual realizations. Overlaid on
this distribution in Fig. 7(a), equation 14 shows good agreement
with the MSD distribution.

In our derivation of the distribution of the TA-MSDs, we have
employed the Cauchy distribution (Eq. 4) for the displacements.
This equation ignores the Gaussian component in the distribution
of displacements that arises due to the diffusive motion on the
surface25. As seen in Fig. 7(a), this approximation does not alter
the distribution, at least in the long measurement time limit. The
reason is that, as discussed above, the MSD is governed by the
large displacements, i.e., the tail of the distributions. Further, we
would achieve the same results (Eq. 14) if we only consider the

Fig. 7 Model where a tracer diffuses on a plane and is allowed to
dissociate to performed bulk excursions until readsorbing to the surface.
(a) Probability density function of the distribution of TA-MSD slopes
obtained from 5,000 realizations, where each realization includes 500
displacements. The predicted Levy distribution for the MSD is also
shown as a solid red line. (b) 10-quantiles of the increments of the
realizations. The quantile lines are parallel, indicating that the process is
stationary as expected 41. (c) The ensemble average of the TA-MSD
exhibits jump discontinuities increasing the MSD when the realization
time increases.

power law tail of the propagator, p(r)∼ |r|−3 and find the Laplace
transform using the Tauberian theorem49,51.

6 Discussion
In a similar fashion to the numerical simulations of bulk-mediated
diffusion, Eq. 14 is used to model the experimental results for
membrane-targeting C2 domains (red solid line in Fig. 2(b)).
Even though the agreement between our bulk-mediated diffusion
model and the experimental results is satisfactory, the tail in the
MSD distribution of C2 domains decreases faster than predicted
by the model. This effect is caused by an artificial truncation
of the distribution of displacements caused by the tracking algo-
rithm25. Namely, if a particle experiences a very long jump, it is
not possible to make frame-to-frame connections with reasonable
confidence and thus trajectories are cropped missing the long dis-
placements and in turn the large diffusivities.

The increments in the motion of C2 domains on a lipid bilayer
are shown to be stationary but the MSD depends on the experi-
mental time (Fig. 3). This behavior is also observed in our numer-
ical simulations. The increments in the simulations are stationary
(Fig. 7(b)) as the displacements are simulated with the same
time-independent stochastic process. However, the TA-EA-MSD
of the numerical simulations also shows a strong dependence on
realization time (Fig. 7(c)). In agreement with the C2 data, the
simulations MSD show discrete jumps in the time series. Also
here, the MSD average increases in probability with realization
time.

The discontinuities in the MSD as a function of experimental
time can be conceptually understood in terms of the same mech-
anism that causes weak ergodicity breaking. As discussed before,
the estimated diffusivities of individual trajectories are governed
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by extreme displacements. Recall that the reason for the lack of
self-averaging is the existence of one displacement in the trajec-
tory that is likely much larger than all others and thus the MSD
depends on this individual displacement. In the same way, at a
given time t, a jump may occur among all the molecules such that
it is much larger than all the displacements observed thus far.
When such an event takes place the TA-EA-MSD increases sharply
due to the contribution of one long jump. After a very large jump
occurs, the relative weight of that individual long jump dimin-
ishes because more data points become available. Thus, following
a jump discontinuity the MSD decreases with experimental time.
The MSD continues to decrease until the next jump discontinuity
takes place.

We observed that, in probability, the sample mean of the TA-
MSD increases with experimental time. This is also observed in
the theoretical distribution of the TA-MSD (Eq. 14), which in-
volves a scale parameter that explicitly depends on the experi-
mental time. Even though the expected value of the TA-MSD di-
verges we can estimate how the MSD increases with experimen-
tal time by evaluating other measures of central tendency, such as
the theoretical mode and median. Both of these measures scale
linearly with time, namely.

modeξ =
2γ2

3π
t (16)

and

medianξ =
γ2

π

[
erfc−1(1/2)

] t (17)

where erfc−1(·) is the inverse complementary error function.
Thus we expect the average of the TA-MSD to increase in proba-
bility linearly with experimental time as observed in Fig. 3(b).

In this manuscript we employed the fractional moments and
showed that the system exhibits strong anomalous diffusion. The
fractional moments are only rarely used in the diffusion literature.
Nevertheless, these moments can be very useful in the analysis
of bulk mediated diffusion. When the trajectories are modeled
as Lévy flights the theoretical MSD diverges and its use in the
analysis of motion challenging. This is not the case for fractional
moments with q < 1, where the theoretical moment is finite and
no discontinuities are observed. Thus low order moments become
a useful tool to study phenomena such as superdiffusion.

Our data shows that the common practice of finding diffu-
sivities from time averaged MSD in membranes should be ap-
proached with care. We find that weak ergodicity is broken and
as a consequence the MSD of individual trajectories are random
variables even in the long time limit. In other words, the MSD
from individual trajectories are not reproducible. Furthermore,
the ensemble mean of the time-averages is not a reliable measure
because it depends on experimental time. Careful analysis indi-
cates that as the available measurement time becomes longer, the
apparent diffusion coefficient increases. In order to deal with this
subtlety we propose that, when bulk excursions are evident in
the data, parameters are extracted from the distributions instead
of using either time or ensemble averages. We have previously
shown that it is feasible to obtain both the surface diffusion co-

efficient and the scale parameter γ from the distribution of dis-
placements when the data sample is large enough25.

7 Conclusions

We have shown that bulk-mediated diffusion can be accurately
modeled as a Lévy flight. The Lévy flight concept yields superdif-
fusive dynamics with complex strange kinetics, in particular be-
cause the time averaged MSD does not converge to the ensemble
average. Thus the process exhibits weak ergodicity breaking. The
time-averaged MSD of individual trajectories is governed by in-
dividual long jumps and, as a consequence, it remains a random
variable. We have shown that the MSD also depends on experi-
mental time and thus it does not provide a consistent estimator
of the diffusion coefficient. The long time asymptotic of the dis-
placement fractional moments has the signature of superdiffusive
behavior both for low and high orders. Moreover, the Lévy flight
model predicts strong anomalous diffusion, a phenomenon that
deals with non-linear scaling exponents of the fractional displace-
ment moments. We have experimentally observed this anoma-
lous behavior in the motion of membrane-targeting domains on
supported lipid bilayers using single-particle tracking. Future
work will explore the effects of temperature and macromolecular
crowding on bulk-mediated dynamics. Given the broad applica-
bility of bulk mediated diffusion, we foresee these anomalies can
be observed in many complex systems.
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