
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

www.rsc.org/pccp

PCCP

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Journal Name

The structure of liquid water beyond the first hydration
shell†

Andres Henao,a,b Sebastian Busch,c Elvira Guàrdia,b Josep Lluis Tamarit,a and
Luis Carlos Pardo∗a

There is to date a general consensus on the structure of the first coordination shells of liquid
water, namely a tetrahedral short range order of the molecules. In contrast, little is known about
the structure at longer distances and the influence of the tetrahedral molecular arrangement of the
first shells on the order at these length scales. An expansion of the distance dependent excess
entropy is used in this contribution to find out which molecular arrangements are important at
each distance range. This was done by splitting the excess entropy into two parts: one connected
to the relative position of two molecules, and the other one related to their relative orientation. A
transition between two previously unknown regimes in liquid water is identified at a distance of
about ∼6 Å: from a predominantly orientational order at shorter distances to a regime at larger
distances of up to ∼9 Å where the order is predominantly positional and molecules are distributed
with the same tetrahedral symmetry as the very first molecules.

1 Introduction
The relative position and orientation of molecules in liquid wa-
ter within the first hydration shell have been intensively studied
by many scientists. Some alternative visions of the structure of
liquid water seemed to diverge from the classical tetrahedral co-
ordination description1–6: some of them propose a chain and ring
structure7, others a two-state model for liquid water8–10, or the
existence of trigonal configurations in liquid water4,5. It appears
now that it is possible to conciliate some of these new descriptions
with the classical one. According to this unifying view, water is
tetrahedrally coordinated, but there is some asymmetry in the
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strength of hydrogen bonds due to the relative orientation of the
two neighbouring water molecules6,11.

Molecular ordering in liquid water at short distances is thus
affected by highly directional hydrogen bonding and steric repul-
sion. Both effects are important close to a given central molecule
of water, but it remains unclear how these two effects affect two
water molecules which are far away from each other. In other
words, little attention has been paid on how this particular ar-
rangement affects the structure of water molecules at distances
larger than a few molecular radii. The work of Liu et al.12 is an
exception. They found angular correlations persisting on a length
scale of ∼40 Å using Density Functional Theory. In that work it
seemed that the special molecular arrangements are not corre-
lated to the local density probed by the Oxygen-Oxygen partial
radial distribution function gOO(r). Higo et al. also found angular
correlations in bulk water13. They obtained a dipole chain order
for distances up to ∼10 Å.

In this contribution, the distance dependent excess entropy is
used in order to characterize the structure of liquid water at dis-
tances of up to ∼9 Å. The excess entropy of a liquid is a way to
quantify how different its structure is from the one of an ideal gas,
thus it is defined as Sexcess = Sliq−Sgas where Sliq and Sgas are the
entropies related to the liquid and the ideal gas. Since the ideal
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gas is more disordered than the liquid, this magnitude is always
negative. The calculation of the excess entropy involves the de-
termination of the N-body correlation function that specifies the
position of all the particles in the liquid.

It is possible to factorize this correlation function as a series
of correlation functions with increasing complexity, involving an
increasing number of particles. This factorization leads to an ex-
pression of the excess entropy that can be truncated at the two
body correlation function which contains the information of both
the relative position and orientation of two molecules (details can
be found in the literature14–19 and the ESI†). Even in the simple
case of two-body correlations there is still the need to calculate
the correlation function for 6 variables. It is therefore necessary
to factorize this 6-dimensional function19.

One way to do this factorization is to use an expansion in mu-
tual information terms20 which is based on the mutual infor-
mation expansion of an N-dimensional Probability Density Func-
tion21. This expansion was employed to characterize the molec-
ular ordering as a function of distance. The obtained distance-
dependent excess entropies give access to the long distance or-
dering in liquid water.

The paper is organized as follows: the molecular dynamics sim-
ulation is presented first with a brief description of the calculation
of the excess entropy. Details of this calculation can be found in
the ESI†. Then the orientational and positional contributions to
the excess entropy are described and their correlation with fea-
tures in the radial distribution function is discussed.

2 Methods

2.1 Molecular dynamics simulation

Molecular Dynamics (MD) simulations were analysed in order to
characterize the long range order in liquid water. The simulations
were carried out using Gromacs22 on the TIP4P/200523 force
field as in a previous publication on the structure of water11. This
particular model for water was chosen since it is known to be the
best available to describe the structural properties of liquid water
when compared with many other water models24–26. It is also the
best model to reproduce many other experimental quantities23

at ambient conditions such as density, isothermal compressibility,
thermal expansion coefficient, heat capacity at constant pressure,
heat of vaporization, static dielectric constant, self-diffusion coef-
ficient and the melting temperature.

The time step was chosen as 1 fs since it is a rigid model, con-
straining the angles and bonds with the LINCS algorithm27. The
simulation was run on 432 molecules in an NPT ensemble at the
thermodynamic conditions of liquid water, T=298 K and P=1 bar
using a Nose-Hoover28 thermostat and an isotropic Parrinello-
Rahman29 barostat with coupling relaxation times of 2 ps. The
cut-off was set to 9.0 Å for the van der Waals and 8.5 Å for the
short-range electrostatic interactions; the particle mesh Ewald

method was used beyond the electrostatic cut-off for the recip-
rocal space summation. 5000 snapshots of the simulation were
saved for further analysis with a spacing of one picosecond.

2.2 Structure characterization by excess entropy calculation

A complete description of a liquid is possible with the N-body
correlation function g(N)(r(N),ω(N)), where the position of each
of the N particles is described by its vector r and its orienta-
tion by three angles ω. Although this correlation function de-
scribes the structure, it is of little practical use. An alternative
approach to grasp the meaning of this correlation function is to
describe the molecular ordering by the use of a series of hier-
archical correlation functions including an increasing number of
particles g(2)(r(2),ω(2)), g(3)(r(3),ω(3)) and so on. Three body cor-
relation functions are thus regarded as corrections to two-body
interactions, and this can be done for an increasing number of
particles.

It is known that the two-body correlations account not only for
85%–95% of the excess entropy of simple systems (such as hard
spheres or Lennard-Jones fluids) but are also able to reproduce
the experimentally measured value of the excess entropy of water
very well, even though water is of course not a simple Lennard-
Jones liquid.24,30 The present contribution will therefore concen-
trate on the two-body correlation functions g(2)(r(2),ω(2)), which
will be referred to as g(r,Ω) in the following to simplify notation
as detailed in the following.

Within this approximated description of the local ordering of
the liquid by the pair correlation function g(r,Ω), this quantity
depends on the distance r between two particles and on five an-
gles Ω that describe their relative position and orientation. At
a given distance r between particles, a new correlation function
g(Ω|r) shows the probability to find a second molecule at a cer-
tain position (spherical coordinates θpos, φpos) and in a certain
relative orientation (Euler angles θori, φori and ψori). All these
correlation functions at a given distance are normalized so that∫

g(Ω|r)dΩ =
∫

dΩ, following previous works.30

Figure 1 shows the definition of the angles that were used to
analyse the MD trajectories: θpos and φpos describe the position of
the second molecule with respect to the first in spherical coordi-
nates when choosing the dipolar axis of water as z axis and the x
axis perpendicular to the plane of the molecule. The Euler angles
θori and φori describe the orientation of the dipolar axis of the sec-
ond molecule with respect to the central one, and ψori describes
the rotation of the second water molecule around that axis.

A measure to quantify how much the correlation functions of a
liquid deviate from the completely random state (the ideal gas) at
a given distance is the excess entropy. Excess entropy can be split
into four different parts, one related to density (Strans(r)), and
three related to angular correlation functions that participate in
the calculation of Sang(r). These contributions are the following:
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Fig. 1 (color online). Definition of axes used to calculate the positional
g
(
θpos,φpos|r

)
and orientational g(θori,φori,ψori|r) correlation functions.

1. a term associated with the molecular density at a given dis-
tance gOO(r) with the corresponding excess entropy ,

2. a term associated with the relative position of two molecules
at a given distance g

(
θpos,φpos|r

)
with the corresponding ex-

cess entropy Spos(θpos,φpos|r),

3. a term associated with the relative orientation of two
molecules at a given distance g(θori,φori,ψori|r) with the cor-
responding excess entropy Sori(θori,φori,ψori|r), and finally

4. a term containing the cross-terms of positional and orienta-
tional angular variables with the corresponding excess en-
tropy Spos?ori.

In the following, the formulae used to calculate each of the ex-
cess entropy terms in the program ANGULA31 are summarized, a
more detailed account is given in the ESI†.

The translational component Strans is related to the deviation
of the microscopic molecular density at a given distance r from
the macroscopic one, encoded in the partial radial distribution
function gOO(r):

Strans(r) :=− [gOO(r) ln(gOO(r))−gOO(r)+1]4πr2 (1)

The remaining three angular components Sang contains infor-
mation about how the distributions of the five angles describing
the relative position and orientation of two molecules differ from
the ideal gas case, and it can be calculated as (see the ESI† for
details):

Sang(r) :=− 1
Ω

∫
g(Ω|r) ln(g(Ω|r)) dΩ (2)

where Ω is the integral over all five angles defining the relative
position and orientation of two molecules in space. The angular
excess entropy can be calculated from the 5-dimensional distribu-
tion function g(Ω|r), or using an expansion of the excess entropy
related to single-angle correlation functions plus mutual informa-
tion terms associated with higher order terms21 (see the ESI† for

details). When expanded only to three-angle correlations, this
term can be further divided into three terms: a first one related
to the position of two molecules (Spos(θpos,φpos|r)),

Spos(θpos,φpos|r) :=

− 1
Ωpos

∫
g
(
θpos,φpos|r

)
ln
(
g
(
θpos,φpos|r

))
dΩ (3)

a second one related to their relative orientation
(Sori(θori,φori,ψori|r))

Sori(θori,φori,ψori|r) :=

− 1
Ωori

∫
g(θori,φori,ψori|r) ln(g(θori,φori,ψori|r))dΩ (4)

and a third one that depends on cross-terms of positional and
orientational angles Spos?ori.

Spos?ori := Sang−Spos−Sori (5)

Where Ωpos = 4π is the integral over the angles defining the po-
sition θpos and φpos, and Ωori = 8π2 is the integral over the angles
defining the orientation θori, φori and ψori. In these equations, the
angular position of a second molecule at a certain distance r is en-
coded in the correlation function g

(
θpos,φpos|r

)
, and their relative

orientation in g(θori,φori,ψori|r). The aforementioned separation
is justified by analysing how strongly correlated the angular vari-
ables are, via an analysis of the mutual information between them
(see the ESI† for details). This separation into purely positional
and orientational contributions is only possible when the excess
entropy is expanded up to the third order, for higher orders the
variables are inevitably mixed.

It should be stressed that the excess entropies are obtained by
an integration of their respective N-dimensional correlation func-
tions. Just like any other order parameter, excess entropies cap-
ture only selected features of the correlation functions. In the
present case, values of excess entropy close to zero correspond to
a correlation function which is close to the one of an ideal gas,
i. e. a flat distribution without any features. As the values of ex-
cess entropy become increasingly negative, more features appear
in the correlation functions which are related to specific positions
and orientations of the molecules.

3 Results and discussion
Figure 2 shows the different contributions to the excess entropy
along with the radial distribution function gOO(r). There are two
contributions which yield only a very limited amount of physical
insight: Strans and Spos?ori. For the translational excess entropy, it
can readily be seen that its minima line up with extrema (minima
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Fig. 2 (color online). Different contributions to the excess entropy S as a
function of distance on a logarithmic scale. Black thin line: Absolute
translational contribution Strans(r); red thick line: positional contribution
Spos(r); blue dotted line: orientational contribution Sori(r); green
dash-dotted line: mixed positional and orientational contributions
Spos?ori(r) to the total third-order excess entropy. Also shown in the lower
panel is the oxygen-oxygen radial distribution function, with a zoom in
the inset to show the oscillations more clearly. The numbering is related
to the shells described in the text.

or maxima) of gOO(r). This correlation is not surprising due to the
direct connection to the local density, cf. equation (1); whenever
the density is equal to the one of the ideal gas (g(r) = 1), the
corresponding excess entropy approaches zero. The sharp cusps
of this function in the figure are caused by the representation of
these small values on a logarithmic scale, Strans is continuous and
derivable. The contribution of the cross-term Spos?ori (cf. equation
5) is in contrast almost featureless and does hence not provide
any information.

The interesting contributions depicted in figure 2 are Spos(r)
and Sori(r). It is worth noting that the calculation of these magni-
tudes does not involve the radial distribution function gOO(r) (cf.
equations 3 and 4), they are therefore per se independent of fluc-
tuations in the local density. This is a very important fact since
it allows to investigate if the changes in density correlate with
the relative position or orientation of the molecules: Between the
third and fifth node of gOO(r), i. e. at distances between 4.0 Å
and 6.2 Å, there is indeed a correlation between the value of the
translational excess entropy (and thus gOO(r)) and the purely ori-
entational contribution to the excess entropy Sori(r) – the minima
of both functions are located at the same distances. This can
be rationalized by the well-known fact that hydrogen bonding is
highly directional and, therefore, it has a big effect on the water
molecules which are close together.

Fig. 3 (color online). Spatial density maps and distribution functions
g
(
θpos,φpos|r

)
associated to the regions defined in figure 2:

(1) 2.4-3.3 Å, (2) 3.4-3.6 Å, (3) 6.7-6.9 Å and (4) 7.9-8.1 Å.

For longer distances, the orientational contribution is structure-
less and tends asymptotically to zero as the system gets more dis-
ordered. However, at those distances above 6.2 Å, it is the po-
sitional contribution to the excess entropy Spos(r) which is corre-
lated with the translational excess entropy and therefore also with
gOO(r) – both functions have the same series of minima for these
distances. It is interesting to note that both, Spos(r) and Sori(r)
exhibit a feature at ∼5.4 Å, indicating that there is a smooth tran-
sition between the two regimes: from the orientational one at
distances .5.4 Å to the positional one at distances &5.4 Å, both
“active” at 5.4 Å. In the following, these two regimes will be stud-
ied in more detail.

The features of Spos(r) correlate in the distance range between
6.2 Å and 9.0 Å with the ones of the translational excess entropy.
In order to find out which molecular arrangements cause these
features, the two-dimensional correlation function g(θpos,φpos|r)
is shown in figure 3 for the distance ranges 6.7 Å<r<6.9 Å (in re-
gion 3) and 7.9 Å<r<8.1 Å (in region 4) which correspond to the
positions of the minima of Spos(r). Also plotted in the same figure
are the results for the distance range 2.4 Å<r<3.3 Å (in region 1)
and 3.4 Å<r<3.6 Å (in region 2). The distance range up to the
first node contains roughly the first four water molecules which
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form a tetrahedron, the molecules in region 2 (chosen as those
around the minimum of gOO(r)) are located in the vacancies of
this first tetrahedron. For the sake of completeness, the results
for all distances in steps of 0.1 Å can be found in the ESI†. The
maps are well defined for the whole distance range, even up to
the last minimum of Spos(r) at about 9.3 Å. It should be pointed
out that while the number of molecules in each lobe for the first
region is approximately one, so that each vertex of the tetrahedra
contains one water molecule, this is not the case for region 3. The
number of molecules per lobe is about 5, therefore the lobes are
not representing the position of single water molecules, but rather
the inhomogeneity of the molecular distribution in the shell. This
average distribution has, as shown in figure 3, a tetrahedral sym-
metry.

In agreement with previous works, it can be seen that
molecules continue to fill the gaps of previous hydration shells
in a more or less disordered way32–34. To make the meaning
of g(θpos,φpos) more intuitive, the same information is shown in
this figure also as three-dimensional Spatial Distribution Maps35

(SDM). It is immediately visible both looking at the correlation
function and the generated SDM for regions 3 and 4 that the
structure is astonishingly well defined at these long distances.
Even more surprising is that the structures at such long distances
(maps 3 and 4) reproduce the tetrahedral structure at short dis-
tances (maps 1 and 2). The maps show unambiguously that the
structures are much better defined than one might have expected
from the small values of the excess entropy. Therefore, there is
a correlation between an angular magnitude and both the gOO(r)
and Strans(r), contrary to the results of earlier studies12.

The features in Sori(r) correlate in the distance range between
4.0 Å and 6.2 Å with the ones of the translational excess entropy.
In order to investigate the origin of this correlation, the orienta-
tional contribution was further separated into two independent
contributions, g(cos(θori)) and g(φori,ψori), which correspond to
the angle between the two dipoles and the rotation around this
axis, respectively. Their contributions to the orientational excess
entropy can be calculated as (see the ESI† for details):

S (cos(θori)) =−
1
2

∫
g(cos(θori)) ln [g(cos(θori))]dcos(θori) (6)

S (φori,ψori) =−
1

4π2

∫
g(φori,ψori) ln [g(φori,ψori)]dφoridψori (7)

Figure 4 shows the values of the orientational excess entropy
Sori(r) together with the two parts defined above. They rule the
behaviour of the total orientational excess entropy Sori, exhibiting
all features at about the same distances for 4.0 Å<r<6.2 Å.

Since the angle between dipoles, and the rotation around this
axis, seem to be the main contributions to orientational excess
entropy, figure 4 shows the probability distribution function of
the cosine of the dipolar angle as a function of the distance. It

Fig. 4 (color online). Upper panel: Orientational excess entropy Sori and
the two independent contributions S(cos(θori)) and S(φori,ψori) as a
function of distance. Lower panel: Probability distribution function of the
cosine of the angle between dipoles cos(θori) as a function of the
distance. Dashed lines serve as an eye guide to delimitate regions of
maxima and minima arising from S(cos(θori)).

shows the existence of an alternating dipole orientation starting
from being parallel in the first hydration shell11, turning to an
antiparallel alignment and back to being parallel before vanishing
in noise at r∼6 Å. This result agrees with previous works since the
spontaneously formed chain of dipoles observed here might be
related to the vortices that were found to form around molecules
in aqueous solution. These structures have been suggested to be
important for mediating interactions between solute molecules
over larger distances13,36.

That positional correlations between molecules hold at long
distances, while dipole orientations cancel out can be rationalized
by the different nature of dipole interactions and steric effects:
while the first are long-ranged and can cancel out at long dis-
tances, the second ones are short-ranged and are the main driv-
ing force for positioning molecules in empty spaces when going
far away from the central molecule.

4 Conclusions
Excess entropy calculations allow to determine if changes in
molecular ordering and in local density are correlated with the
relative position or orientation of molecules. Using these func-
tions it seems that the ordering of liquid water at distances larger
than ∼4 Å is ruled for distances up to about ∼6 Å by an alternat-
ing orientation of water dipoles, while at distances between ∼6 Å
and ∼9 Å it is the position of water molecules that dominates the
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changes in molecular ordering. Even at distances as long as 9 Å
there are “shells” which reproduce the well-known tetrahedrality
of the first four water molecules. While the short-range behaviour
has been observed before, i. e. that the relative orientation of wa-
ter molecules is not random and that this effect is most probably
driven by hydrogen bonding, the long-range behaviour was unex-
pected.

This special positional order could constitute a new mechanism
for long-distance interactions between molecules in aqueous so-
lution, such as for example in molecular recognition or protein-
protein interactions, which would play a role together with long
dipole-chains reported in the literature13,36.

5 Acknowledgements
This work was supported by the Spanish MINECO (grants No.
FIS2014-54734-P and FIS2012-39443-C02-01) and by the Gov-
ernment of Catalonia (grants No. 2009SGR-1003 and 2014SGR-
00581).

References
1 F. H. Stillinger, Science, 1980, 209, 451–457.
2 T. Head-Gordon and G. Hura, Chem. Rev., 2002, 102, 2651.
3 A. K. Soper, Pure Appl. Chem., 2010, 82, 1855.
4 R. H. Henchman and S. J. Irudayam, The Journal of Physical

Chemistry B, 2010, 114, 16792–16810.
5 N. Agmon, Accounts of Chemical Research, 2011, 45, 63–73.
6 T. D. Kühne and R. Z. Khaliullin, Nature Communications,

2013, 4, 1450.
7 P. Wernet, D. Nordlund, U. Bergmann, M. Cavalleri,

M. Odelius, H. Ogasawara, L. Näslund, T. Hirsch, L. Ojamäe,
P. Glatzel et al., Science, 2004, 304, 995–999.

8 T. Tokushima, Y. Harada, O. Takahashi, Y. Senba, H. Ohashi,
L. G. Pettersson, A. Nilsson and S. Shin, Chemical Physics Let-
ters, 2008, 460, 387–400.

9 C. Huang, K. T. Wikfeldt, T. Tokushima, D. Nordlund,
Y. Harada, U. Bergmann, M. Niebuhr, T. Weiss, Y. Horikawa,
M. Leetmaa et al., Proceedings of the National Academy of Sci-
ences, 2009, 106, 15214–15218.

10 A. Nilsson and L. G. M. Pettersson, Chem. Phys., 2011, 389,
1–34.

11 L. C. Pardo, A. Henao, S. Busch, E. Guàrdia and J. L. Tamarit,
Phys. Chem. Chem. Phys., 2014, 16, 24479–24483.

12 Y. Liu and L. Wu, J. Chem. Phys., 2013, 139, 041103.
13 J. Higo, M. Sasai, H. Shirai, H. Nakamura and T. Kugimiya,

Proceedings of the National Academy of Sciences, 2001, 98,
5961–5964.

14 H. S. Green, The molecular theory of fluids, North-Holland
Publishing Company Amsterdam, 1952.

15 R. Nettleton and M. Green, The Journal of Chemical Physics,
1958, 29, 1365–1370.

16 T. Morita and K. Hiroike, Progress of Theoretical Physics, 1961,
25, 537–578.

17 R. D. Mountain and H. J. Raveché, The Journal of Chemical
Physics, 1971, 55, 2250–2255.

18 D. C. Wallace, The Journal of Chemical Physics, 1987, 87,
2282–2284.

19 T. Lazaridis and M. Karplus, The Journal of Chemical Physics,
1996, 105, 4294–4316.

20 D. J. Huggins, J. Chem. Phys., 2012, 136, 064518.
21 H. Matsuda, Phys. Rev. E., 2000, 62, 3096–3102.
22 B. Hess, C. Kutzner, D. van der Spoel and E. Lindahl, J. Chem.

Comput., 2008, 4, 435–447.
23 J. L. F. Abascal and C. Vega, J. Chem. Phys., 2005, 123,

234505.
24 J. Zielkiewicz, The Journal of Chemical Physics, 2005, 123,

104501.
25 L. Pusztai, O. Pizio and S. Sokolowski, The Journal of Chemical

Physics, 2008, 129, 184103.
26 Z. Steinczinger and L. Pusztai, Condensed Matter Physics,

2013, 16,.
27 B. Hess, H. Bekker, H. J. Berendsen, J. G. Fraaije et al., Journal

of Computational Chemistry, 1997, 18, 1463–1472.
28 D. J. Evans and B. L. Holian, J. Chem. Phys., 1985, 83, 4069–

4074.
29 M. Parrinello and A. Rahman, J. Appl. Phys., 1981, 52, 7182.
30 T. Lazaridis and M. Karplus, J. Chem. Phys., 1996, 105, 4294.
31 This program can be downloaded from, http://gcm.upc.

edu/en/members/luis-carlos/angula/ANGULA, [On-
line; accessed 19-January-2016].

32 N. Veglio, F. Bermejo, L. Pardo, J. L. Tamarit and G. Cuello,
Physical Review E, 2005, 72, 031502.

33 L. Pardo, N. Veglio, F. Bermejo, J. L. Tamarit and G. Cuello,
Physical Review B, 2005, 72, 014206.

34 M. Rovira-Esteva, A. Murugan, L. Pardo, S. Busch, M. Ruiz-
Martin, M.-S. Appavou, J. L. Tamarit, C. Smuda, T. Unruh,
F. Bermejo et al., Physical Review B, 2010, 81, 092202.

35 I. Svishchev and P. Kusalik, The Journal of Chemical Physics,
1993, 99, 3049–3058.

36 A. N. Dickey and M. J. Stevens, Phys. Rev. E, 2012, 86,
051601.

6 | 1–6Journal Name, [year], [vol.],

Page 6 of 6Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t


