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Abstract

We calculated the frequency dependent macroscopic dielectric

function and second-harmonic generation of cubic ZnS, ZnSe

and ZnTe within time-dependent density-polarisation func-

tional theory. The macroscopic dielectric function is calcu-

lated in a linear response framework, second-harmonic gener-

ation in a real-time framework. The macroscopic exchange-

correlation electric field that enters in the time-dependent

Kohn-Sham equations and accounts for long range correla-

tion is approximated as a simple polarisation functional αP

where P is the macroscopic polarisation. Expressions for α
are taken from the recent literature. The performance of the

resulting approximations for the exchange-correlation electric

field is analysed by comparing the theoretical spectra with ex-

perimental results and results obtained at the level of the in-

dependent particle and the random-phase approximation. For

the dielectric function we also compare with state-of-the art

calculations at the level of the Bethe-Salpeter equation.

1 Introduction

At present, one of the most successful approaches to treat

optical excitations in finite gap crystals is the GW+Bethe–

Salpeter equation (GW+BSE) on top of density-functional

theory (DFT).1 In this approach the Kohn-Sham (KS) eigen-

solutions {φn,εn} are perturbatively corrected within the GW

approximation and used as a basis to expand the BSE which

reads schematically:

L = L0 +L0ΞL. (1)

The latter is a Dyson equation for the electron-hole correlation

function L. The first term, L0 is the independent two-particles

Green’s function given by the product of two single-particle

Green’s function. Ξ is the Bethe-Salpeter kernel and contains

the long-range correlation in the form of screened electron-

hole attraction which is the key ingredient to describe opti-

cal excitations in finite-gap crystals.2 Without this term ex-

citation wavefunctions are described by KS-particle products

φv(r)φc(r
′) (v stands for valence, c for conduction): if the hole

is at φv(r)δ (r− rh), the electron φc(r
′) is delocalised over the

whole crystal. This is in stark contrast with what is observed

in finite gap crystals where the optically excited electron is lo-

calised around the hole. For example, the Frenkel exciton in

bulk LiF—a large gap insulator—is delocalised within 2-3 unit

cells.3 Frenkel excitons, and excitons in general, are well cap-

tured within the GW+BSE. Unfortunately, Ξ is computation-

ally expensive so that calculations become quickly awkward

with the system size. It is thus desirable to look for alterna-

tives, as for example time-dependent-DFT (TD-DFT).

Within the linear response, TD-DFT is formulated as a

Dyson equation for the density-response function4 χρρ

χρρ = χ
ρρ
0 +χ

ρρ
0 fHxcχ

ρρ , (2)

with analogous ingredients to Eq. (1), the independent parti-

cles density-response function χ0 and the kernel fHxc, a func-

tional of the electron density which should introduce correla-

tion. In practice standard approximations5 for the exchange-

correlation part of the kernel fxc are missing the long-range

correlation essential for describing excitonic effects6. In

practice optical spectra of finite gap crystals within standard

TDDFT are very similar to those obtained within the Random-

Phase approximation (Eq. (2) with fxc = 0, that is only the

mean-field part of the kernel is included).

The development of fxc kernels able to treat optical exci-

tations in finite gap crystals is ongoing and progresses have

been made in recent years. The works of Marini et al7, and of

Sottile et al.8 proposed a successful approximation by “rewrit-

ing” the GW+BSE [Eq. (1)] within the TD-DFT framework.

This approximation shares with the GW+BSE not only the ac-

curacy, but also the computational cost, and it is therefore re-

ferred as a proof of principle rather than routinely employed

in “real-world” applications. From the BS kernel were derived

simplified approximations9–11 with the same long-range be-

haviour, which is essential to describe excitonic effects. These

approximations work quite well for semiconductors, but tend
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to overestimate the absorption at bound exciton resonances

in large gap insulators. In addition they employed empiri-

cal parameters. The (revised) bootstrap kernel12,13 and the

jellium with gap model kernel14 have the correct long-range

behaviour as well with the advantage of being first-principles

approaches. A common denominator of the these approxima-

tions for the kernel is that there is no corresponding exchange-

correlation potential from which they can be derived. In fact,

kernels with the correct long-range behaviour can be derived

from the macroscopic exchange-correlation electric field15–17,

which is a functional of the macroscopic polarisation and elec-

tronic density rather than of the electronic density alone. Start-

ing from TD-current-density functional theory (TD-CDFT),

Berger17 derived a parameter-free kernel, functional of the po-

larisation, with the correct long-range behaviour which repro-

duces well the optical spectra of semiconductors, insulators

and metals.

In this work we calculate the frequency dependent macro-

scopic dielectric function and the second harmonic genera-

tion (SHG) spectra of bulk ZnX (X=S,Se,Te) within a TD-

density polarisation functional theory (TD-DPFT) in which

both the electronic density and macroscopic polarisation are

basic variables (Sec. 2). Calculations are carried out both

within a linear response and a real-time framework (Sec. 3).

The discussion and analysis of the results (Sec. 4) focus on

the performance of the polarisation functionals—derived from

the above-discussed kernels with the correct long-range be-

haviour. The performance is compared with results at the

independent particle and random-phase approximation (RPA)

level and measured against the experimental spectra18–22 and

for the dielectric function against state-of-the-art calculations

at the Bethe-Salpeter equation level. Because of the tech-

nology relevance of bulk zinc chalcogenides, abundant liter-

ature is available on first-principles calculations of both lin-

ear and nonlinear optical properties23–30 of those systems.

Those calculations are all performed at the independent par-

ticle level and with few exceptions30 neglecting the spin-orbit

coupling. In addition of analysing the performance of the

polarisation functional approximations then, the calculations

here presented elucidate the role of crystal-field effects and

electron-hole interaction in these systems. The latter has been

argued to be key in explaining the large difference observed

between the measured SH intensity and model results.18

2 Theory

We consider a periodic crystal with a finite gap with volume

Ω in a (time-dependent) macroscopic electric field E . The

external energy reads

Eext[n,P] =
∫

Ω
n(r)vext(r)dr−ΩE ·P, (3)

where vext is the microscopic external potential, n(r) the elec-

tronic density and P the macroscopic polarisation. When

E = 0 the evolution of the system is fully described by the

density which following the Runge–Gross theorem has a one-

to-one correspondence with the microscopic external poten-

tial.

When E 6= 0, the density alone is not sufficient any-

more,31–34 and the correct framework to describe the evolu-

tion of the system is TD-CDFT.35,36 Alternatively, for finite-

gap crystals one can choose the density and the macroscopic

polarisation37 as key variables (for the static case see Martin

and Ortiz34):

(n,P)↔ (vext,E ).

In fact from the polarisation p(r, t) one can determine the cur-

rent j(r, t) at each t

j(r, t) =
∂p(r, t)

∂ t
. (4)

Then, p and j are equivalent in the sense that they can both

be employed as basic variable. Furthermore the density and

the microscopic, longitudinal components of p can be used

equivalently by virtue of the continuity equation:

∇ ·p(r; t) =−n(r; t). (5)

As in the E = 0 case we can define a Kohn-Sham sys-

tem whose density (in all the following we assume spin-

unpolarised systems, but equations can be straightforwardly

generalised to the spin polarised and noncollinear case)

ns(r, t) = 2
occ

∑ |φnk(r; t)|2 (6)

and macroscopic polarisation (in the α cartesian direction) de-

fined as a Berry phase

Ps
α =−

2ie

(2π)3

occ

∑
n

∫

dk〈ukn|∂kα ukn〉. (7)

should reproduce both the density and macroscopic polarisa-

tion of the physical system, i.e. n = ns and P = Ps. The peri-

odic part unk of the Bloch states φnk(r, t) = exp(ikr)unk(r; t)
is the solution of the time-dependent Kohn-Sham equations

i∂tunk =
(

H
s,0
k +∆vHxc(r, t)−ΩE

s(t) ·∂k

)

unk. (8)

In Eq. (8), H
s,0
k is the ground-state zero-field KS Hamiltonian,

∆vHxc is the change in the microscopic effective potential due

to the changes in the microscopic Hartree vH [n] and exchange-

correlation potential vxc[n,P]. E s is the macroscopic effective

electric field that is the sum of the macroscopic external elec-

tric field, the induced field and the exchange-correlation elec-

tric field

E
s[n,P] = E

ext +E
ind[P]+E

xc[n,P]. (9)
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vxc[n,P] and E xc[n,P] guarantee that the density and macro-

scopic polarisation of Kohn-Sham and physical systems are

equal. In practice both need to be approximated.

In what follow we derive approximations for E xc[n,P]
from long-range corrected approximations for the exchange-

correlation kernel proposed in the literature. Within linear

response TD-DFT the kernel f xc(r,r′; t − t ′) describes how

the exchange-correlation potential changes following a per-

turbation of the density. In analogy, we can define a ker-

nel tensor F̄xc(r,r′; t − t ′) that describes how the exchange-

correlation macroscopic field changes following a perturba-

tion of the macroscopic polarisation and the density. In recip-

rocal space (see also Maitra and coworkers35)

E xc(t) =
∫

dt ′
[

F̄XC
00 (t − t ′)P(t ′)

− i ∑
G′ 6=0

F̄XC

0G′(t − t ′)
n′G(t

′)

G′2
G′
]

. (10)

The relation between F̄XC and f XC is found from the relation

between the corresponding response functions (density and

polarisation):

f XC

GG′(q; t − t ′) =
F̄XC

GG′(q; t − t ′) · ḡ

|q+G||q+G′|
, (11)

where ḡ is the metric tensor. When comparing Eq. (11) with

the general expression for the long-range corrected approxi-

mation for the kernel (α > 0)

f LRC
XC (q → 0; t − t ′) = lim

q→0
−

α

|q|2
δ (t − t ′), (12)

one obtains (for cubic systems where ḡ= Ī, the identity tensor)

F̄XC
0G (q = 0, t − t ′) =−α(G; t)Īδ (t − t ′), (13)

and therefore

E xc(t) =−α(0; t)P(t)+ i ∑
G 6=0

α(G; t)
nG(t)

G2
G. (14)

In this work we consider the following approximations for

α:

1. An empirical expression derived by Botti and cowork-

ers10 from the fit of the optimal α for the absorption

spectrum of several semiconductors versus the macro-

scopic static dielectric function εM(0):

αEMP = Aε−1
M (0)+B (15)

with A = 4.615 and B = 0.213 and εM(0) evaluated at the

quasiparticle level.

2. An energy dependent expression derived from a single

Lorentz oscillator model with plasmon frequency ωp and

resonance frequency ωg corresponding to the average ab-

sorption gap of the material:11

αED(ω) = C
(

α0 +βω2
)

(16)

α0 =
ωg

εM(0)ω2
p

, β =
α0

ω2
g

(17)

with C = 104.5 found empirically again by fitting optimal

α values for several materials.

3. The static part of the polarisation functional derived from

a simple model for a bound exciton by Berger17

αBER =
1

χRPAεRPA
M (0)

(18)

with εRPA
M (0) calculated at the RPA level. This expression

for α is the same (but for the choice of the approximation

of εM(0)) as the one in the revised bootstrap kernel13 that

is thus not (explicitly) included in the present analysis.

4. The expression derived by Trevisanutto and coworkers14

from the jellium with gap model (JGM),

α JGM(r; t) = 4πB̃

[

1− exp

(

−
E2

gap

4πnB̃

)]

. (19)

with B̃ = (B+Egap)/(1+Egap), where B = B[n] is a func-

tional of the density found by fitting the local field factor

of the homogeneous electron gas from Quantum Monte-

carlo data.38 The band gap, Egap, is the indirect gap of the

material.

Note that the expressions in Eqs. (15)–(18) approximate only

α(0; t) in Eq. (14), and the microscopic contribution from

α(G; t) is assumed to be negligible. Instead, in the JGM

approximation [Eq.(19)], the cell average of α JGM(r; t) gives

α(0; t) and the Fourier transform α(G 6= 0; t) in Eq. (14).

Furthermore α JGM depends on time through the density, con-

trary to Eq. (15),(18) which are time-independent. The energy

dependent expression [Eq. (16)] can be in principle Fourier

transformed into a time-dependent expression, though the par-

ticular expression for the transformation is not straightfor-

ward.

3 Implementation and computational details

The macroscopic dielectric functions have been calculated

within the linear response framework using Yambo.39 The

first order susceptibility χ within the DPFT is calculated

as17,40

χ =
χ0

1−αχ0
(20)
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Approximation ZnS ZnSe ZnTe

αBER 0.75 0.53 0.34

α JGM 1.34 0.87 0.75

αED 0.26 0.24 0.20

αEMP 0.78 0.64 0.49

Table 1 Calculated values of α for the approximations described in Sec. 2,

Eqs. (15)–(19)

Eq. (2)] and the Bethe-Salpeter Equation. In both cases the

KS energies were corrected with a scissor operator of 1.8 eV

to match the experimental bandgap. All the experimental fea-

tures are recognisable in the independent particle spectrum,

but with large errors in their position, shape and intensity: the

absorption edge is far less pronounced than in the experiment,

E1 appears as a shoulder and it is blue shifted by 0.3 eV, the

E2 and E ′
1 peaks are overestimated and blue-shifted by 0.3 eV

as well. With respect to the independent particle approxima-

tion, the RPA corresponds to adding crystal local-field effects.

The latter do not affect either the absorption edge and E1, but

correct the overestimation of the E2 and E ′
1, though they do

not change their position. Even if not plotted, addition of mi-

croscopic exchange-correlation effects (either in the form of

a kernel within the linear response framework, or of a time-

dependent potential within the real-time framework) does not

result in significant changes with respect to the RPA spectra.1

The introduction of electron-hole attraction accounts for

most of the observed differences between the independent

particle/RPA spectra and the experimental curve: the spec-

trum obtained by solving the Bethe-Salpeter equation repro-

duces well both peaks position and intensities. Specifically,

at the absorption edge (E0) where the intensity of the in-

dependent particle/RPA spectra is underestimated the Bethe-

Salpeter shows an exciton corresponding to a transition from

the top valence to the bottom conduction band at the Γ point

of the Brillouin zone and localised on the sulphur atom. Sim-

ilarly the E1 peak that in both independent particle/RPA cal-

culations appears as a shoulder is clearly pronounced and has

an intensity similar to the E2 peak in agreement with what ob-

served experimentally. Lastly, the blue shift of the energy of

the E1, E2 and E ′
1 peaks is also corrected by the introduction

of the electron-hole attraction.52

The bottom panel of Fig. 1 compares the experimental op-

tical absorption spectrum with theoretical spectra obtained by

TD-DPFT with the approximations for the polarisation func-

tional described in Sec. 2. Table 1 lists the values for α ob-

tained in the different approximations. With respect to the

spectrum obtained in the RPA by increasing α the absorption

edge (E0) becomes more pronounced, the E1 peak becomes

more intense and is redshifted and the E ′
1 is reduced and red-

shifted. The intensity of E2 is slightly increased up to a cer-

tain value of α , and then it decreases. In all cases the peak

is redshifted with respect to the RPA result. Even if provid-

ing general improvements over the RPA none of the approx-

imations provides a fully satisfactory agreement with exper-

iment especially when compared with results at the Bethe-

Salpeter level of theory. In particular the E0 exciton is too

weak and the E1, E2 peaks are still blue shifted by about

0.3 eV and 0.5 eV. The best description of the experimental

features is given by the approximation proposed by Berger,

E
xc ≈ αBERP, and the empirical approximation proposed by

Botti and coworkers, E
xc ≈ αEMPP. The energy dependent ap-

proximation, E
xc ≈ αEDP, is “too weak” for low photon ener-

gies, while the JGM approximation overestimates by almost a

factor 2 the intensity E1 peak and underestimates instead the

intensity of the E2 and E ′
1 peaks, though providing a better

agreement for the peaks position.

The real part of the experimental macroscopic function of

ZnS is shown in Fig. 2. Signatures of the features discussed in

the absorption spectrum are visible at 3.7 eV, 5.7 eV, 7.0 eV

and 9.1 eV. At the independent particle level the low part of

the spectrum (static limit) is well reproduced. This is likely

due to an almost exact cancellation between crystal local field

effects, that reduces the value of the static dielectric function

(see RPA results) and excitonic effects that enhances the value

of the the static dielectric function (see polarisation functional

results in the bottom panel). Other features in the experimen-

tal spectrum are not well captured by both the independent

particle and the RPA (top panel). Similarly to what observed

for the imaginary part, the introduction of electron-hole attrac-

tion within the Bethe-Salpeter equation framework substan-

tially improves the agreement with the experiment. In gen-

eral adding the polarisation functionals lead as well to a better

overall agreement with respect to the RPA results (with the ex-

ception of the JGM approximation), but again results are not

as good as those obtained by the Bethe-Salpeter equation.

The optical absorption spectra of cubic ZnSe and ZnTe

(Figs. 3 and 4) show analogous features as those discussed

for ZnS. An important difference though is the visible spin-

orbit splitting of the E1 peak of about 0.29 eV for ZnSe and

0.58 eV in ZnTe.21,22 Substituting S with heavier elements

of group 16 of the periodic table has as consequence of in-

creasing the dielectric screening (experimental average value

at room temperature are 5.1 for ZnS20 5.9 for ZnSe21 and 6.9

for ZnTe22) and thus lower the band gap. For ZnSe the ab-

sorption edge (E0) is at 2.8 eV, E1 at about 4.8 eV (E1 +∆SO

at 5.1 eV), E2 at 6.5 eV and E ′
1 at 8.2 eV. For ZnTe the ab-

sorption edge (E0) is at 2.3 eV, E1 at about 3.8 eV (E1+∆SO at

4.3 eV), E2 at 5.2 eV. The independent particle and RPA show

the same shortcomings which were discussed for ZnS. Again

the spectra calculated with the Bethe-Salpeter equation are in

good agreement with the experiment improving both the peaks

position and intensity when compared to the independent par-
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ticle/RPA calculations. As well adding the polarisation func-

tionals to the RPA improves in general the agreement though

to a lesser extend than at the Bethe-Salpeter equation level.

The best agreement with experiment is obtained using the em-

pirical αEMP in Eq. (15) followed by the αBER [Eq.(18)] and by

αED [Eq.(16)]. Regarding the spin-orbit splitting all these ap-

proximations, and the RPA give similar good results (0.3 eV

for ZnSe and about 0.5 eV for ZnTe). For ZnSe, the three

above mentioned polarisation functional correct also the ra-

tio of the E1 and E1 +∆SO intensities with respect to the RPA.

Regarding the JGM approximation, α JGM is too large and over-

corrects the RPA results.

Figures 5 and 6 plot the real part of the macroscopic di-

electric function of ZnSe and ZnTe respectively. Results fol-

low similar trends as for ZnS. The independent particle ap-

proximation reasonably reproduces the low energy part of the

spectra because of cancellation of excitonic and local fields

effects. The agreement though worsens substantially at higher

energies. Consistently with what observed above, the spec-

tra obtained by Bethe-Salpeter equation show a good overall

agreement with the experiment. The polarisation functionals

with α modelled as a function of the static dielectric func-

tion (αED,αBER and αEMP) improved the agreement with the

experiment if compared with the RPA especially in the case

of ZnSe, but again agreement is worse if compared with the

Bathe-Salpeter equation.

As noted in the introduction, calculations of the dielectric

function at the independent particle level for these materials

have been reported already in the literature.23,24,26–30 When

compared with these results we found that our calculations

at the same level of approximation are in good agreement on

peaks position and intensity once the onset of the spectra are

shifted so to coincide.53 Regarding spin-orbit effects we do

not observe the overall reduction of absorption reported by

Karazhanov and coworkers:30 even for ZnTe—for which we

observe the strongest spin-orbit interaction—the main differ-

ence between spectra with and without spin-orbit interaction

is the splitting of the E1 peak discussed above.

In what follows we analyse the performance of the polari-

sation functional approximations along the S, Se, Te series by

looking at two signatures of excitonic effects: the E1/E2 peak

intensity ratio and the redshift of the peaks position with re-

spect to the independent particle/RPA. Results for the E1/E2

peak intensity ratio in the absorption are summarised for the

different level of theory in Fig. 7. Whereas the experimen-

tal value ranges between 0.9–1.0, the independent particle ap-

proximation gives values between 0.4–0.5, with the ratio in-

creasing with the chacolgenide atomic number. The underes-

timation is due to the underestimation of the E1 (that appears

as a shoulder) and overestimation of the E2. An analogous

underestimation of the E1/E2 ratio is observed in the litera-

ture for other zincblende semiconductors such as silicon or

GaAs.54,55 The error at the independent particle level depends

on the different character of the excitations that originate the

peak. As shown for ZnTe (Fig. 8) the excited electron is much

more localised around the hole for the E1 exciton than for the

E2 exciton (a similar trend is observed for the other systems).

Note that while E1 originates mainly from excitations at the

high-symmetry point L, E2 involves many one particle excita-

tions. In fact in empirical models for the macroscopic dielec-

tric function, the former is modelled as transitions at a two-

dimensional minimum plus a bound exciton while the latter is

modelled by a damped oscillator.19,56,57

As at the independent particle level the excited electron dis-

tribution does not depend on the hole position the error of ne-

glecting electron-hole attraction is larger for E1. Crystal local

field effects, which are included in the RPA, affect differently

the two excitations as well. They are stronger for the E2 exci-

tation (due to larger density inhomogeneities) and as a conse-

quence the intensity of the corresponding peak is renormalised

leading to a better E1/E2 ratio with respect to the independent

particle approximation, though the error is still very large.

Addition of electron-hole attraction both at the Bethe-

Salpeter level and through the polarisation functional dramati-

cally improve the E1/E2 ratio. In particular with respect to the

RPA, the polarisation functional increases the intensity of the

E1 peak, keep the intensity of E2 unchanged (that is correct

already at the RPA level). This can be understood by noticing

that within the Kohn-Sham macroscopic electric field can be

written as

E
S(ω) = (1−αχ(ω))E tot(ω) (22)

where E
tot = E

ind +E
ext in Eq. 9, and we used that P = χE

tot

assuming a small E
ext so that we can consider only the first

perturbation order. The first order susceptibility χ(ω) is a

complex quantity. Its imaginary part is positive for ω > 0

(as it corresponds to the optical absorption), so that the sign

is determined by its real part. The latter indeed is negative for

energies corresponding to E0 and E1 (for which the polarisa-

tion functional increases the intensity) and zero or positive for

energies corresponding to E2 and E ′
1 (for which the polarisa-

tion functional keeps or reduces the intensity).

Besides underestimating the E1/E2 ratio, at the RPA (and

independent particle) level the position of the E1 and E2 peaks

is blue shifted. As shown in Fig. 9 both Bethe-Salpeter and

TD-DPFT correctly redshift the peaks though to a different ex-

tent. In both cases the redshift is larger for ZnS, for which the

electronic screening is smaller. The correction then decreases

by increasing the chalcogen anion atomic number (thus the

electronic screening). The E2 peak is more redshifted than

the E1 peak. Within the Bethe-Salpeter—whose results better

agree with the experiment—corrections are larger than within

TD-DPFT. Furthermore while for the latter the corrections for

E1 and E2 show a similar trend, at the Bethe-Salpeter level the
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redshift of E2 decreases more slowly with the chalcogen anion

atomic number than the redshift of the E1.

In the analysis above we have consider only the αEMPP ap-

proximation which provide the best agreement and whose re-

sults are very similar to the αCURP approximation. The JGM

approximation (which is appealing as it involves the electron

density rather than the static dielectric function) gives for all

the studied systems poor results as the α are too large and the

corrections overestimated. In fact we obtained much better

results (not shown) by calculating the JGM spectra with the

unshifted Kohn-Sham eigenvalues and then shift the spectra.

For other systems, as those reported in the original publica-

tion,14 we obtained good results. One explanation for those

poor results can be the presence of d bands for which the jel-

lium, even with a gap, may not be such a good model.

The general picture that emerges from the calculation of the

macroscopic dielectric function is that the polarisation func-

tionals with α modelled as a function of the dielectric constant

are successful in reproducing excitonic effects in the systems

here considered. Though they are not very accurate in predict-

ing the position of the peaks they capture rather well the ratio

of the intensities of the E1 and E2 peaks. Further modelling of

approximations for the polarisation functionals should allow

for more flexibility, likely by improving the energy dependent

model or by including dependence of the local density.

4.2 Second Harmonic Generation

The second order susceptibility tensor χ
(2)
i jk (ωn +ωm;ωn;ωm),

where i jk refers to the cartesian directions of the fields, de-

scribes how the nonlinear polarisation field Pi(ωn + ωm) in

a direction i oscillating at a frequency ωn + ωm is propor-

tional to the product of the applied electric field components

E j(ωm)E k(ωn) in directions j and k oscillating at frequencies

ωn and ωm.60 In zincblende structures such as the bulk cu-

bic zinc chalcogenides here studied, the only non-zero inde-

pendent component of the second order susceptibility is χ
(2)
xyz

for which we have calculated the module |χ(2)|xyz at ωn = ωm

(SHG).

The experimental SH intensity spectra |χ(2)|xyz in the 1.0-

2.5 eV range18 for cubic ZnS, ZnSe and ZnTe are plotted in

the left, middle and right panels of Fig. 10. The spectrum of

ZnS shows a sharp peak at about 1.85 eV corresponding to a

two-photon resonance at E0. None of the considered approx-

imations satisfactorily reproduce the experimental spectra in

this range. The TD-DFT, the αEDP and the α JGMP agree with

the experiment for low energies. However at higher energies

the intensity is strongly underestimated with respect to the ex-

periment. The αBERP functional provides a better agreement,

though its intensity is still significantly smaller than experi-

ment. We have also verified that using a broadening of 0.1 eV

instead of 0.2 eV enhances the intensity of the peak, but does

not change the shape of the curve. All the considered theo-

retical methods predict the E0 two-photon resonance at about

1.9 eV. As discussed previously the difference in the E0 po-

sition is mainly due to temperature effects. For ZnSe the ex-

perimental SH spectrum shows a peak at 1.35 eV (two-photon

resonance at E0) and at 2.4 eV (two-photon resonance at E1).

Similarly to ZnS, the TDDFT correctly predicts the SH inten-

sity at low energies, but strongly underestimates the SH inten-

sity for higher energies. The αEDP result is very close to TD-

DFT as the α is relatively small. Results obtained for αBERP

and α JGMP are quite similar: they both worsen the agreement

of TD-DFT at low energy and slightly improve the agreement

at higher energies. The two-photon resonance at E1 is found

at about 2.6 eV in all the methods and E0 is a weak shoulder

at about 1.45 eV visible in the curves calculates with a 0.1

broadening. For ZnTe the experimental SH spectrum shows a

small peak at 1.14 eV (two-photon resonance at E0), and two

larger peaks at about 1.8 eV (two-photon resonance at E1) and

at 2.0 eV (two-photon resonance at E1 +∆SO). As for ZnS and

ZnSe αEDP and αBERP slightly improve the general agreement

with experiment with respect to TD-DFT though it worsen the

agreement at low energy. In this case the spectrum obtained

with α JGMP has a much larger intensity than all the other ap-

proximations and overestimate the experimental SH intensity.

In JGM the two-photon resonance at E1 is a peak at 1.85 eV,

significantly redshifted with respect to the other approxima-

tions that have a shoulder at about 2.1 eV. Note that as we use

scalar relativistic pseudopotentials for those calculations we

cannot reproduce the spin-orbit splitting of the E1 resonance.

Results at the TD-DFT level agree closely with the calcula-

tions for the SHG imaginary part from Reshak and Auluck23

and show reasonable agreement with other theoretical results

at the independent particle level for SH intensity in the litera-

ture.25,26

The general performance is not very good with all ap-

proximations substantially underestimating the intensity of the

experimental spectra (except for the JGM approximation in

ZnTe). The underestimation of the theoretical curves is quite

large even considering the error of ±20% in the absolute value

of the SHG due to uncertainties in the measurement.18 Note

that the two-photon resonances at E0 (ZnS and ZnSe) and E1

(ZnSe and ZnTe) are enhanced in SHG because of the E−5

behaviour (rather than E−3 in the dielectric function).26 Re-

garding in particular the E0 it was argued that due to their rel-

atively strong binding energy, excitonic effects are still impor-

tant at room temperature and they are responsible of the dif-

ferences observed with spectra calculated from independent

particle models.18

No clear trend can be observed on how the PF approxima-

tions are performing with the exception of the energy depen-

dent approximation which behaves similarly to TD-DFT with

the size of the correction increasing from S to Se to Te. Differ-
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ently from what we see for the macroscopic dielectric function

there is no clear relation for the size of the correction due the

polarisation functional either with the value of α and with the

results for the macroscopic dielectric function. For example

the JGM has a much larger α and it visibly over-corrects the

RPA for the macroscopic dielectric function in contrast to re-

sults for the SHG of ZnS and ZnSe. We argue that the absence

of a clear pattern in the functional performance is mainly due

to nonlinear effects as αP = αP(1) +αP(2) + . . . , thus con-

tributing both at the laser frequency and at twice the laser fre-

quency. In addition the SH intensity results from summing the

real and imaginary part and the errors in the two parts may

either cancel or sum up.

5 Conclusions

In this work we have calculated the frequency dependent

macroscopic dielectric function and SHG of cubic ZnX, with

X = S, Se and Te, within TD-DPFT. The latter framework,

which has been described in Sec. 2, implies the approximation

of both the microscopic exchange-correlation potential and the

macroscopic exchange-correlation electric field as a functional

of both the electronic density and the macroscopic polarisa-

tion P. In this work we have chosen to neglect microscopic

exchange-correlation effects, that are known to be unimpor-

tant for the macroscopic dielectric function of finite gap peri-

odic crystals, and approximate the exchange-correlation elec-

tric field as αP. For α we have used expressions that have

been proposed in the recent literature and listed in Sec. 2. Re-

sults were compared with the available experimental data, and

with theoretical results at the independent particle and RPA

level and when feasible with results obtained from the solu-

tion of the Bethe-Salpeter equation.

For the macroscopic dielectric function (Sec. 4.1) we have

found that, with respect to results obtained within the RPA, the

polarisation functionals with α approximated as a function of

the static macroscopic dielectric function improve the agree-

ment with the experimental results though differences are still

visible especially in the peaks position. The agreement with

the experimental curves is not as good as that obtained within

the Bethe-Salpeter equation framework, on the other hand the

latter approach is computationally much more expensive. In

fact for the polarisation functionals considered here the addi-

tional computational cost with respect to a RPA or standard

TD-DFT calculation is negligible while they allow in princi-

ple to capture long-range correlation. It is then certainly of

interest to further develop approximations for the polarisation

functionals and the interest is not restricted to Solid State sys-

tems. For example in long (though finite) molecular chains it

has been shown that the exact exchange-correlation potential

counteracts the applied electric field.61 The effect is captured,

at least partially, by orbital dependent approximations62–64 or

within current-density functional theory65 that can be however

awkward to implement. Functionals containing polarisation

(that for finite systems are functionals of the electric density

alone) may be employed instead to mimic the counteracting

component of the exchange-correlation potential in a simpler

and more efficient way.

For the SHG we did not obtain a clear picture of the perfor-

mance of the polarisation functionals. They tend to increase

the SH intensity that is strongly underestimated within TD-

DFT. However in general the intensity is still significantly un-

derestimated and in addition the agreement at low photon en-

ergies (static limit) is worsened with respect to TD-DFT.
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