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We investigate a number of formal properties of the adiabatic strictly-correlated electrons (SCE) functional,

relevant for time-dependent potentials and for kernels in linear response time-dependent density functional the-

ory. Among the former, we focus on the compliance to constraints of exact many-body theories, such as the

generalised translational invariance and the zero-force theorem. Within the latter, we derive an analytical expres-

sion for the adiabatic SCE Hartree exchange-correlation kernel in one dimensional systems, and we compute it

numerically for a variety of model densities. We analyse the non-local features of this kernel, particularly the

ones that are relevant in tackling problems where kernels derived from local or semi-local functionals are known

to fail.

I. INTRODUCTION

While a considerable amount of work on the strictly-

correlated-electrons (SCE) formalism1–3 within the frame-

work of ground state Kohn-Sham (KS) density functional the-

ory (DFT) has been carried out,4–8 the study of its perfor-

mances in the time domain is just starting.9,10 The aim of this

work is to begin a systematic investigation of the SCE func-

tional in the context of time dependent problems, in order to

understand its fundamental aspects and its potential in tack-

ling challenging problems for the standard approximations

employed in time-dependent (TD) DFT.

We will hence focus on those physical situations described

by an explicitly time-dependent Hamiltonian, and whose

dynamics is described by the time-dependent Schrödinger

equation (TDSE). Due to the existence of a time-dependent

density-potential mapping11–14 for interacting and non-

interacting systems, a time-dependent Kohn-Sham approach

can be rigorously set up and employed to study the dynam-

ics of quantum systems at a manageable computational cost.

Choosing the initial non-interacting wave function to be a sin-

gle Slater determinant of some spin orbitals ψj(x, t0), one

can reduce the TDSE to a set of single-orbital equations, the

time-dependent Kohn-Sham (TDKS) equations, of the form

(in Hartree atomic units used throughout):

i∂tψj(x, t) =
(

−
1

2
∇2 + vext(r, t) + vH([n], r, t) (1)

+ vxc([Ψ0,Φ0, n]; r, t)
)

ψj(x, t),

with Ψ0 and Φ0 initial states of the true interacting and of the

non-interacting KS system, respectively. The time-dependent

density is thus computed in the familiar way (for simplicity in

this introduction we consider closed-shell systems) as:

n(r, t) = 2

N/2
∑

j=1

|ψj(r, t)|
2. (2)

In Eq. (1), vH([n], r, t) is the usual Hartree potential

computed with the time-dependent density n(r, t), and

vxc([Ψ0,Φ0, n]; r, t) is the exchange-correlation (xc) poten-

tial, depending also on the initial states Ψ0 and Φ0. Trad-

ing the many-body TDSE for the one-particle TDKS equa-

tions has a price to pay, that is the time-dependent exchange-

correlation potential vxc([n,Ψ0,Φ0]; r, t) of TDDFT is an

even more complex object than the vxc for ground state DFT,

as it is a functional of the density at all times t′ ≤ t and, ad-

ditionally, of the initial state of both the interacting and non-

interacting systems. However, whenever the initial state for

the evolution problem described by the TDKS equations is

chosen to be the ground state of the system, then the func-

tional dependence of the xc potential is on the electronic den-

sity alone: since this scenario occurs naturally in many prob-

lems of interest, it doesn’t pose actual limitations and thus it

is often adopted in practical applications.

Similarly to ground state DFT, in order to make use of

Eq. (1) one needs approximations for the exchange correla-

tion potential vxc. A first drastic approximation, which is

used in the large majority of cases in TDDFT, is the so-

called adiabatic approximation, obtained by inserting in a

ground-state approximate vxc([n]; r, t) the instantaneous den-

sity, ignoring the dependence on the density at earlier times.

This approximation has a very specific range of validity –

infinitely slowly varying perturbations, such that the system

is always in its ground state – but it is very often employed

outside it, with results that can vary from very satisfactory

to poor, depending on the nature of the problem addressed.

In certain cases, it is still difficult to disentangle the errors

due to the adiabatic approximation and the errors due to the

approximation for the ground-state exchange correlation po-

tential, but considerable progress has been made in recent

years, by analysing, when possible, the “adiabatically exact”

potential.15–18 In other cases, it is instead well established that

neglecting all “memory effects” in vxc (or equivalently fre-

quency dependence in the so called xc kernel, Fxc of linear

response TDDFT), does not allow TDDFT to describe ex-

citations with a predominantly double character.19–23 In the
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2

TDDFT framework, adiabaticity is thus equivalent to locality

in time.

The most common approximations used to build the adia-

batic vxc (and Fxc in the linear response case) in TDDFT, are

local and semi-local functionals, which thus add to locality

in time locality in space as well. In these cases, the time-

dependent kernel Fxc([n]; rt, r
′t′) is approximated as

Fxc([n]; rt, r
′t′) =

δ2Eappr
xc [n]

δn(r, t)δn(r′, t′)
, (3)

where Eappr
xc [n] is evaluated at the instantaneous density and

it is often a local or semi-local approximate functional, which

makes the kernel different from zero only on (or very close to)

the diagonal r = r
′. We have already hinted at the shortcom-

ings of the locality in time in this introduction, but also the

locality in space has serious limitations, a notorious example

being the description of charge transfer (CT) excitations, and

even more so when possessing a long-range character.24–26

In the case of closed-shell fragments, the introduction of a

considerable portion of Hartree-Fock exchange (often intro-

duced at long-range only through range-separation) or the use

of orbital functionals within the optimized effective poten-

tial scheme, is able to fix the CT problem in linear response

TDDFT.27–35 However, these solutions do not work for the

very challenging case of homolytic bond breaking excitations,

the prototypical example being the lowest excited singlet state
1Σ+

u of the H2 molecule.36,37 In this case, the kernel should di-

verge in order to compensate the fact that this excitation in the

KS system goes to zero as the bond is broken.36,37 In this con-

text, we will show that, at least in a model one-dimensional

case, the adiabatic SCE (ASCE) kernel shows a very promis-

ing non-local diverging behavior.

In order to construct approximations both for potentials and

kernels in TDDFT, one can be guided by trying to satisfy exact

properties and constraints of many-body theories. In a series

of works38–40 Dobson and Vignale devised a number of con-

straints (named theorems afterwards) that the time-dependent

vxc should comply to, in order to avoid unphysical results or

contradictions in the theory. From their analysis, it appeared

for the first time that the interplay between non locality in

space and non locality in time is a delicate issue in TDDFT

and this fact needs to be kept in mind when looking for ap-

proximations, making this task much more challenging than

in ground state DFT. It is thus natural to ask whether a highly

non-local functional such as the SCE can satisfy these exact

conditions when employed in the adiabatic approximation.

After briefly reviewing in Sec. II the main ideas of the SCE

formalism, we will show in Sec. III how the SCE potential

satisfies exact properties of many-body theories, such as the

zero-force theorem and the generalized translational invari-

ance. Our analysis will also show how, while non-locality

in time and non-locality in space have to go hand in hand,

non-locality in space and locality in time can coexist without

violating the above mentioned properties. In Sec. IV we will

derive an analytical expression for the SCE kernel for one-

dimensional systems, and then compute it numerically for var-

ious density profiles. We will complete the section with a dis-

cussion on some general features of the kernel, pinpointing at

those which arise from its highly non-local nature and which

could be promising for the description of bond-breaking exci-

tations. Finally we will give our conclusions and perspectives

for future work.

II. REVIEW OF THE SCE FORMALISM

The SCE formalism can be put in the DFT context start-

ing with the generalization of the Hohenberg-Kohn functional

F [n] to scaled interactions:

Fλ[n] = min
Ψ→n

〈Ψ|T̂ + λV̂ee|Ψ〉 (4)

where T̂ and V̂ee are the familiar kinetic and two-body in-

teraction operators, while λ is a parameter varying continu-

ously from 0 to ∞, yielding different scenarios: Fλ=0[n] =
Ts[n] corresponds to the non interacting or Kohn-Sham sys-

tem, Fλ=1[n] corresponds to the real physical system, while

limλ→∞ λ−1Fλ[n] defines the strong-coupling limit,1,2 cap-

tured by the strictly-correlated-electron functional

V SCE
ee [n] ≡ min

Ψ→n
〈Ψ|V̂ee|Ψ〉. (5)

The working hypothesis to build the minimizer of Eq. (5) for a

given density is that in this limit the many-body wavefunction

collapses into a 3-dimensional subspace of the full configura-

tion space,

|ΨSCE(r1, . . . , rN )|2 =
1

N !

∑

℘

∫

dr
n(r)

N
δ(r1−f℘(1)(r))

× δ(r2 − f℘(2)(r)) · · · δ(rN − f℘(N)(r)) , (6)

where ℘ denotes a permutation of 1, . . . , N , such that n(r) =
N

∫

|ΨSCE(r, r2, . . . , rN )|2 dr2 · · · drN . The functional is

then specified in terms of the so-called co-motion functions

fi([n]; r) that determine the set in which |ΨSCE|
2 6= 0,

V SCE
ee [n] =

1

2

∫

n(r)

N
∑

i=2

1

|r− fi([n]; r)|
dr. (7)

The functional derivative of V SCE
ee [n] defines the SCE poten-

tial:

vSCE([n]; r) =
δV SCE

ee [n]

δn(r)
, (8)

which can be computed via a rigorous and physically trans-

parent shortcut2 as the repulsion felt by an electron in r due to

the other N − 1 electrons at positions ri = fi([n]; r),

∇vSCE([n]; r) = −

N
∑

i=2

r− fi([n]; r)

|r− fi([n]; r)|3
. (9)
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All the fi, whose physical meaning is to give the positions of

all the others N − 1 electrons once the position of a reference

electron has been fixed in r, satisfy the following non-linear

differential equation:

n(fi([n]; r))dfi([n]; r) = n(r)dr i = 2, .., N − 1 (10)

which shows their non-local dependence on n(r). Further-

more the co-motion functions obey (cyclic) group properties2

which ensure that the electrons are indistinguishable.

In recent years, it has been realized that the problem de-

fined by the minimization (5) is equivalent to an optimal trans-

port problem with Coulomb cost.41,42 Since then, the optimal

transport community has been able to prove several rigorous

results. In particular, the SCE state (6) has been proven to be

the true minimizer for any number of particles N in one di-

mensional (1D) systems43 and in any dimension for N = 2.41

For more general cases, it has been shown that the minimizer

might not be always of the SCE form44. Even in those cases,

however, SCE-like solutions seem to be able to go very close

to the true minimum,45 and in several cases it is still possible

to prove Eq. (9) .45

In the low-density limit (or strong-coupling limit) the exact

Hartree and exchange-correlation (Hxc) energy functional of

KS DFT tends asymptotically to V SCE
ee [n],42,46 Thus, in the

following we denote vSCE([n]; r) of Eq. (9) as vSCE
Hxc ([n]; r), to

stress that this potential is the strong-coupling approximation

to the standard Hxc potential of KS DFT.4,46

Now that the basics of the SCE formalism at the ground

state level have been reviewed, we can move to the time-

dependent domain.

III. EXACT PROPERTIES FROM MANY-BODY

THEORIES

Since the success of TDDFT relies heavily on the avail-

ability and the quality of the approximations for vxc([n]; r, t)
and for the linear response exchange-correlation kernel

Fxc([n]; rt, r
′t′), there have been intense research efforts to-

wards better approximations. As already mentioned in the in-

troduction, a way to guide such approximations is to resort

to the compliance to exact constraints from many-body the-

ories, similarly to what has been done extensively already in

ground state DFT. A first exact condition is given by scal-

ing relations,47,48 a second one by a sum rule for the time-

dependent exchange-correlation energy47 and just like in the

static case, the time-dependent xc potential should be self-

interaction free.

In addition to the constraints enumerated above, a very im-

portant condition on approximate xc potentials is that they

should be Galilean invariant, as a consequence of the fact

that the TDSE itself exhibits this symmetry. This condition

was first investigated by Vignale,39 as a generalization of an

earlier work by Dobson38 on the so called harmonic poten-

tial theorem (HPT), which states that upon the application of

a time-dependent field to a many-body system confined by

an harmonic potential, its time-dependent density is rigidly

shifted. In Ref. 39 it was demonstrated that the HPT is auto-

matically satisfied whenever the time-dependent xc potential

obeys a precise constraint, that is upon a rigid shift of the sys-

tem’s time-dependent density, the time-dependent xc potential

is rigidly translated by the same quantity. We will refer to this

property as generalized translational invariance (GTI), since it

holds also for coordinates frames which are accelerated with

respect to the original one.49

Thus in general the GTI can be formalized as follows: given

an arbitrary (be or not time-dependent) shift of the density

R(t):

n′(r, t) = n(r−R(t), t) (11)

the xc potential associated with this density has to transform

accordingly to:

vxc([n
′]; r, t) = vxc([n]; r−R(t), t) (12)

A. Properties of the adiabatic SCE potential

We will now show explicitly that the ASCE complies to this

requirement.

We begin by observing that in the SCE limit, upon the shift

of the density, all the relative distances between the electrons

have still to be the same, thus the co-motion functions trans-

form as:

fi([n
′]; r) = fi([n]; r−R(t)) +R(t). (13)

In the one dimensional case, where the co-motion functions

can be expressed in terms of a simple one-dimensional inte-

gral, one can show explicitly that the above relation holds, see

App. A for details. Substituting the transformed co-motion

functions into the expression for the SCE potential gives:

∇vSCE
Hxc ([n

′]; r, t) = −

N
∑

i=2

r− fi([n]; r−R(t))−R(t)

|r− fi([n]; r−R(t))−R(t)|3

= ∇vSCE
Hxc ([n]; r−R(t), t). (14)

Integration and subtraction of the Hartree potential (which sat-

isfy the GTI straightforwardly) yields:

vSCE
xc ([n′]; r, t) = vSCE

xc ([n]; r−R(t), t) (15)

which is the relation we wanted to prove.

A second important constraint is that the xc potential can-

not exert a net external force on the system, which is nothing

else than the compliance to Newton’s third law of motion. In

DFT this property goes under the name of zero force theorem

(ZFT) and in Ref. 39 it was shown how it is automatically

satisfied for translationally invariant xc potentials. One may

think that this is a trivial requirement to be satisfied, but in

practice it isn’t. For example in Ref. 50 it was demonstrated

numerically that computing the dipole moment of small Na5
and Na+9 clusters, via the exact exchange Krieger-Li-Iafrate

approximation51,52 to vxc, yielded an increased amplitude in
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the dipole oscillations, most likely due to spurious internal

forces appearing as a consequence of the violation of the ZFT.

The ZFT not only has implications for the approximations to

the time-dependent xc potential, but also on another key quan-

tity of TDDFT, namely the exchange correlation kernel. In

Ref. 40 Vignale showed how a frequency dependent (thus non

local in time) Fxc cannot be local in space, in order to satisfy

the ZFT. A notable example of a kernel which violates the

ZFT and the HPT too, is the Gross-Kohn53 Fxc, which indeed

is frequency dependent, but local in space, as it is based on

the homogeneous electron gas. This peculiar issue in TDDFT

is commonly known as ultra non-locality problem and makes

particularly challenging the construction of approximate fre-

quency dependent kernels. Adiabatic Fxc, derived from fully

local functionals, do not violate the ZFT. It is legitimate to ask

if an adiabatic but highly non local functional like the ASCE,

does violate the ZFT. Strictly speaking we already know that

it doesn’t, since it respects the GTI, but in the following we

will explicitly show that while non locality in time requires

non locality in space, the converse is not true.

Let’s consider once again a shift in the density: n′(r) =
n(r − R). Observing that the generalized HK energy func-

tional Fλ[n] is translationally invariant (since both T̂ and V̂ee
are) one has:

Fλ[n] = Fλ[n
′]. (16)

Expansion of the density in powers of R gives:

n′(r) = n(r−R) = n(r)−R · ∇n(r) + O(R2), (17)

and expanding both sides of Eq. (16) yields:

0 =

∫

dr
δFλ

δn(r)
(−R · ∇n(r)) (18)

which is valid for any arbitrary shift R.

The case limλ→∞ λ−1Fλ[n] = V SCE
ee [n] corresponds to the

SCE functional, hence:

0 =

∫

drvSCE([n]; r)∇n(r)

= −

∫

dr∇vSCE([n]; r)n(r) (19)

which shows that the SCE potential does indeed satisfy the

ZFT for static densities. Additionally, since the differentiation

above is completely general and holds for any density, even

time-dependent ones, one has:

0 =

∫

dr∇vSCE([n]; r, t)n(r, t), (20)

which shows that the ASCE xc potential satisfies the ZFT for

time-dependent densities as well.

B. Properties of the adiabatic SCE kernel

Let’s now turn to the ASCE kernel,

FASCE
Hxc ([n]; rt, r′t′) =

δ2V SCE
ee [n]

δn(r, t)n(r′, t′)
δ(t− t′), (21)

Once again we resort to an expansion for the density in R(t),
that is n(r−R(t), t) ≈ n(r, t)−R(t) · ∇n(r, t), combining

this with Eq. (15) and invoking the arbitrariness of R(t) and

the definition of ASCE xc kernel, we obtain:

∫

dr′FASCE
Hxc ([n]; rt, r′t′)∇n(r′) = δ(t−t′)∇vSCE

Hxc ([n]; r, t),

which shows that the ASCE kernel indeed satisfies the ZFT in

the linear response regime.

C. Properties of the co-motion functions

At this point it seems natural to also investigate some prop-

erties of the co-motion functions. Combining again the ex-

pansion for the density of Eq. (17) with Eq. (13) one obtains:

∫

dr′
δfi,α([n]; r)

δn(r′)

∂

∂r′β
n(r′) =

∂

∂rβ
fi,α([n]; r)− δαβ (22)

where α, β run over Cartesian indices x, y, z. Eq. (22) is a

sum rule that can be written also for adiabatic time-dependent

co-motion functions and the static density and may be em-

ployed as constraint to devise approximate co-motion func-

tions. Furthermore it can be used to verify (particularly in the

easier one-dimensional case) the functional variation of the

co-motion functions with respect to the density.

IV. SCE HARTREE-EXCHANGE CORRELATION

KERNEL FOR ONE-DIMENSIONAL SYSTEMS

In the one-dimensional case with convex repulsive inter-

particle interaction w(|x|), the SCE solution1 is known to be

exact for any number of electrons N ,43 and can be expressed

in a rather simple form in terms of the function Ne([n];x),

Ne([n];x) =

∫ x

−∞

n(y)dy, (23)

and of its inverse N−1
e ([n];x):

fi([n];x) = f+i ([n];x) θ(x−ai[n])+f
−
i ([n];x) θ(ai[n]−x)

(24)

where θ(x) is the usual Heaviside step function, and

f+i ([n];x) = N−1
e ([n];Ne([n];x) + i− 1) (25)

f−i ([n];x) = N−1
e ([n];Ne([n];x) + i− 1−N) ,

with ai[n] = N−1
e ([n];N + 1− i).
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In this case the SCE potential is simply given by

vSCE
Hxc ([n];x) = −

N
∑

i=2

∫ ∞

x

w′(|y − fi([n]; y)|)×

sgn(y − fi([n]; y))dy. (26)

The SCE kernel is then equal to the variation of the SCE po-

tential with respect to the electron density,

FSCE
Hxc ([n];x, x

′) =
δvSCE

Hxc ([n];x)

δn(x′)
, (27)

which can be carried out (the details of the derivation are given

in Appendix B-C), yielding, for densities supported on the

whole real line, the compact expression

FSCE
Hxc ([n];x, x

′) =
N
∑

i=2

∫ ∞

x

w′′(|y − fi([n]; y)|)

n(fi([n]; y))
(28)

× [θ(y − x′)− θ(fi([n]; y)− x′)] dy.

From Eq. (28) it is not evident that the SCE kernel satisfies the

symmetry requirement FSCE
Hxc ([n];x, x

′) = FSCE
Hxc ([n];x

′, x).
An explicit proof of this symmetry is given in Appendix D.

A. Analytical Example

We begin by a case in which Eq. (28) yields a simple an-

alytical expression. We consider N = 2 electrons in the

Lorentzian density profile,

n(x) =
2

π

1

1 + x2
, (29)

for which the co-motion function is simply f2(x) ≡ f(x) =
− 1

x . From the general expression of Eq. (28), we obtain in the

first quadrant

FSCE
Hxc ([n];x, x

′) = G(−max{x, x′}) for x > 0, x′ > 0,
(30)

where we have defined the function G(x)

G(x) =

∫ x

−∞

w′′(|y − f([n]; y)|)

n(f([n]; y))
dy, (31)

which in this case, and with e-e interaction w(|x|) = 1
|x|

(since in the SCE wavefunction the particles never get on top

of each other, the 1/x divergence at x = 0 in 1D does not

pose any problem), is equal to

G(x) =

{

π
2

1
1+x2 x ≤ 0

π
2
1+2x2

1+x2 x > 0.
(32)

Since our density satisfies n(−x) = n(x), in this case the ker-

nel in the third quadrant (x < 0 and x′ < 0) is equal to the

one in the first quadrant. In the second quadrant – and by sym-

metry the fourth, since FSCE
Hxc ([n];x, x

′) = FSCE
Hxc ([n];x

′, x) –

the kernel is given by

FSCE
Hxc ([n];x, x

′) = (G(x′)−G(x) +G(0)) θ(x′ − f(x))

for x > 0, x′ < 0. (33)

The resulting SCE FSCE
Hxc ([n];x, x

′) for this case is plotted in

the first panel of Fig.1: as it is evident from Eq. (30), the

kernel has in the first and third quadrants (x, x′ > 0 and

x, x′ < 0) the same value as along the diagonal (x = x′),
while in the second and fourth quadrants (Eq. (33)) it is dif-

ferent from zero only in the region delimited by the x, x′ axes

and the co-motion function x′ = f(x). The behavior of an

adiabatic kernel local in space, such as the ALDA, is instead

radically different: the FALDA
xc (n];x, x′) has a non-zero com-

ponent only along the diagonal, δ(x − x′), and the Hartree

component, equal to w(|x − x′|), has a maximum on the di-

agonal, decaying as 1/|x− x′| outside it.

B. Model Homonuclear molecule

The second type of density considered is a model 2-electron

density which resembles the one of a homonuclear molecule,

n(x) =
a

2

(

e−a|x−R

2
| + e−a|x+R

2
|
)

, (34)

where a = 1 and where R, the distance between the two

nuclei, can be increased arbitrarily to simulate the molecular

bond stretching. For this case we numerically computed the

SCE kernel for different values ofR, to obtain insights on how

a highly non-local kernel behaves for a problem which bears

a resemblance to the H2 dissociation. The results for R = 3,

R = 8 and R = 12 are presented respectively in panels (b),

(c) and (d) of Fig.1.

Aside from the peak in the origin, a very interesting fea-

ture displayed by the SCE kernel is the appearance, as R is

increased, of two plateaux, each occupying a large square re-

gion (of size ≈ R × R) of the first and the third quadrants.

As in the case of the Lorentzian density, the SCE kernel has

also non-zero components in the second and fourth quadrants,

but they are now much smaller than the ones in the I and III

quadrants.

The height of the plateaux increases as R increases. A

closer analysis of the function G(x) defined by Eq. (31) for

the case of the density (34) (see Appendix E) shows that the

height and size of the plateaux are approximately given by

FSCE
Hxc ([n];x, x

′) ≈
1

n(0)(R− 1/a)2

for
1

a
. |x| . R−

1

a
, and

1

a
. |x′| . R−

1

a
,

with x, x′ ≥ 0 or x, x′ ≤ 0 (35)

To better visualize Eq. (35), we show in Fig. 2 the SCE ker-

nel along the diagonal for R = 8, 12 and 20, multiplied by

n(0)(R − 1/a)2, where n(0) = e−aR/2. The value of the

SCE kernel on the diagonal also defines the value of the ker-
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of the KS excitation ǫu− ǫg coming from a self-consistent KS

SCE calculation, we see that the FSCE
Hxc ([n];x, x

′) embodies

the right physics: its very non-local dependence on the den-

sity makes it diverge in the atomic region, only when another

distant atom is present.

Finally, the height of the peak in the origin can be easily

obtained from the properties of the function G(x) (see Ap-

pendix E), and it can be shown to be always equal to

FSCE
Hxc ([n]; 0, 0) = 2FSCE

Hxc

(

[n];
R

2
,
R

2

)

≈
2

n(0)(R− 1/a)2
.

(38)

V. CONCLUSIONS AND PERSPECTIVES

In this work we have explored the SCE limit in the context

of time-dependent problems, focusing on the formal proper-

ties of the adiabatic SCE (ASCE) functional. We first exam-

ined some properties of the ASCE time-dependent potential,

in particular the compliance to constraints of exact many-body

theories, such as the generalized translational invariance and

the zero-force theorem, and showed that the ASCE satisfies

both. While it is well known that non-locality in time requires

non locality in space, we have shown that the converse is not

true using the example of the ASCE.

In the second half of the paper we derived an analytical ex-

pression for the SCE Hartree exchange-correlation kernel for

one-dimensional problems, and we have computed it numer-

ically for various density profiles. In particular, we have an-

alyzed the case of a model homonuclear 2-electron molecule

as the bond is stretched, finding that the SCE kernel displays a

very promising diverging behavior that could tackle the prob-

lem of homolytic bond-breaking excitations.

In future works we will implement the whole linear re-

sponse TDDFT equations for one-dimensional problems us-

ing the SCE kernel, analysing if its diverging behavior is able

to open the gap in a model Mott insulator, made of a chain of H

atoms. Work on bond-breaking excitations in real time prop-

agation with the ASCE potential has also shown very promis-

ing results in this sense, and is currently in preparation.10 Last

but not least, we will use our insights to design approximate

kernels based on the SCE form.
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Appendix A: Explicit calculation of the shifted co-motion

functions in 1D

Let us consider the negative semi-axis (the positive one

gives an analogous result). The function Ne([n];x) for a

shifted density n′ reads:

Ne([n
′];x) =

x
∫

−∞

n′(y)dy =

x−R(t)
∫

−∞

n(z)dz

= Ne([n];x−R(t)), (A1)

and taking its inverse,

N−1
e ([n′];Ne([n

′];x)) = x

N−1
e ([n];Ne([n];x−R(t))) +R(t) = x. (A2)

Combining the above relations we have:

fi([n
′];x) = N−1

e ([n′];Ne([n
′];x) + i− 1) (A3)

= N−1
e ([n];Ne([n];x−R(t)) + i− 1) +R(t)

= fi([n];x−R(t)) +R(t)

which is the 1D version of Eq. (13).

Appendix B: Functional variation of the 1D co-motion functions

with respect to the density

Let n be a density of a measure in R such that
∫

R
n(x)dx =

N . Then, the co-motion functions (or the optimal transport

maps) are given explicitly by Eqs. (24)-(25), which corre-

spond to the condition
∫ fi(x)

x
n(y)dy ∈ {i,−N + i}, depend-

ing on whether x ≤ ai or not.

We consider nε(x) = n(x) + ε(ñ(x)− n(x)) and we want

to determine the corresponding co-motion functions fεi . For

every x ∈ R we define xε as the point such that fi(xε) =
fεi (x), and then we notice that

∫ fi(xε)

xε

n(y)dy −

∫ fε

i
(x)

x

nε(y)dy ∈ {−N, 0, N},

∫ fε

i
(x)

xε

n(y)dy −

∫ fε

i
(x)

x

n(y)− ε

∫ fε

i
(x)

x

(ñ(y)− n(y))dy

∈ {−N, 0, N},
∫ x

xε

n(y)dy − ε

∫ fε

i
(x)

x

(ñ(y)− n(y))dy ∈ {−N, 0, N}.

(B1)

Since this last quantity is for sure less than N in its absolute
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value, then it must be equal to 0 and so

∫ x

xε

n(y)dy = ε

∫ fε

i
(x)

x

(ñ(y)− n(y))dy. (B2)

This implies for sure that if n > 0 everywhere then xε−x is of

order ε and then either fi − fεi is of order ε or (when x = ai)
fi ∼ ±∞ and fεi ∼ ∓∞. In the first case it is clear that the

right-hand side of (B2) can be approximated by
∫ fi(x)

x
(ñ−n)

losing a lower order term; in fact this is true also in the second

case, using the fact that ñ − n has null total integral. Now,

defining the quantity

αi(x) =

∫ fi(x)

x

(ñ(y)− n(y)) dy (B3)

and using (B2), the last observation, and the continuity of n,

we can infer that

xε = x− ε
αi(x)

n(x)
+ o(ε). (B4)

This means that we have

fεi (x)− fi(x)

ε
=
fi(xε)− fi(x)

ε
∼ −(fi(x))

′αi(x)

n(x)
, (B5)

where the derivative is a distributional derivative, which takes

into account also the jumps. Away from x = ai, which is

the only point where the jump can occur, we can make a

simplification, as we have f ′i(x) = n(x)/n(fi(x)), and so

(fi(x))
′ αi(x)
n(x) = αi(x)

n(fi(x))
. For the jump we will get an addi-

tional term in the form of a delta function,

(f+i ([n]; ai)− f−i ([n]; ai))δ(x− ai) ·
αi(x)

n(x)
. (B6)

In the end, noticing that −αi(x) =
∫

R
δn(x′) ·

(

θ(x − x′) −

θ(fi([n];x)− x′)
)

dx′, where δn = ñ− n, we get

δfi([n];x)

δn(x′)
=

(

θ(x− x′)− θ(fi([n];x)− x′)
)

·

(

1

n(fi([n];x)
+
f+i ([n]; ai)− f−i ([n], ai)

n(ai)
· δ(x− ai)

)

(B7)

Appendix C: Functional variation for the 1D SCE potential

(kernel)

Now we want to use the results of the previous section

on the variation of the co-motion functions to derive an

expression for δvSCE
Hxc (x)/δn(x

′), where vSCE
Hxc (x) is given

in Eq. (26). We can write FSCE
Hxc (x, x

′) = KR(x, x
′) +

KS(x, x
′), where KR and KS are, respectively, the contribu-

tion due to the regular and singular part of
δfi(x)
δn(x′) . When the

co-motion functions do not have jumps (that is, when y 6= ai)

we can simply apply the chain rule and find an expression for

the regular part

KR(x, x
′) =

N
∑

i=2

∫ ∞

x

w′′(|y − fi([n]; y)|)·

θ(y − x′)− θ(fi([n]; y)− x′)

n(fi(y))
dy. (C1)

The singular part is more delicate as the classical chain rule

does not apply anymore: we find that δfi/δn is proportional

to (fi)
′. [The chain rule for derivatives when we have a step

function is not trivial: just take the example of g(θ), for which

the derivative is (g(1)−g(0))δ0 and not (g′◦θ)·θ′ = g′(0)δ0.]

In this case, the term coming from the jump, noticing that

sgn(ai − f±i ([n]; ai)) = ∓1, has the form

KS(x, x
′) =

N
∑

i=2

θ(ai − x) ·
(

w′(|ai − f+i ([n]; ai)|)+

w′(|ai − f−i ([n]; ai)|)
)

·
αi(ai)

n(ai)
. (C2)

In particular, whenever n(x) > 0 on the whole real line we

would have f±([n]; ai) = ±∞ and this term becomes 0 if

w′(∞) = 0 which is the case for the Coulomb interaction or

any situation in which the force tends to 0 with the distance.

Thus, for densities supported on the whole R we have only the

term (C1), which coincides with Eq. (28).

However, if the support of n is compact, denoting

by n−, n+ the extremes of the support, we would have

f±([n]; ai) = n± and the contribution would be nonzero. We

can write it in a clearer form (using θ(f+i ([n]; ai)− x′) = 0)

KS(x, x
′) =

N
∑

i=2

θ(ai−x)·
(

w′(|ai−n
+|)+w′(|ai−n

−|)
)

·

θ(ai − x′)

n(ai)
. (C3)

Appendix D: Symmetry of the SCE kernel in 1D

The symmetry in x and x′ of the singular termKS(x, x
′) of

Eq. (C3) is obvious, while for KR(x, x
′) of Eq. (C1) it is sub-

tler. In order to prove it we compute ∂2

∂x∂x′
KR(x, x

′): if we

can prove that this quantity is symmetric, then the symmetry
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of the whole kernel is automatically proven:

∂2

∂x∂x′
KR([n];x, x

′) =

N
∑

i=2

w′′(|x− fi([n];x)|)
δ(x′ − x)− δ(x′ − fi([n];x))

n(fi([n];x))

=

N
∑

i=2

w′′(|x− fi([n];x)|)δ(x
′ − x)

n(fi([n];x))
−

N
∑

i=2

w′′(|x− x′|)δ(x′ − fi([n];x))

n(fi([n];x))
. (D1)

For the first term we will use the fact that h(x)δ(x′ − x) =
h(x′)δ(x − x′), while for the second term we will use also

that δ(g(x)− g(x′)) = 1
g′(x)δ(x− x′). In particular we have

x′ = fi(fN−i+2(x
′)), hence since f ′i([n], y) =

n(y)
n(fi([n];y)

:

δ(x′ − fi([n];x)) = δ(fi(fN−i+2(x
′))− fi(x))

= δ(fN−i+2([n];x
′)− x)

n(fi([n];x))

n(x)
. (D2)

Plugging in this expression and using again the fact that

h(x)δ(y − x) = h(y)δ(x− y) we find that

∂2

∂x∂x′
KR([n];x, x

′) =

N
∑

i=2

w′′(|x− fi([n];x)|)δ(x
′ − x)

n(fi([n];x))

−

N
∑

i=2

w′′(|x− x′|)δ(x′ − fi([n];x))

n(fi([n];x))

=
N
∑

i=2

w′′(|x′ − fi([n];x
′)|)δ(x− x′)

n(fi([n];x′))

−

N
∑

i=2

w′′(|x− x′|)δ(fN−i+2([n];x
′)− x)

n(x)

=

N
∑

i=2

w′′(|x′ − fi([n];x
′)|)δ(x− x′)

n(fi([n];x′))

−

N
∑

i=2

w′′(|x− x′|)δ(fN−i+2([n];x
′)− x)

n(fN−i+2([n];x′))

=
∂2

∂x∂x′
KR([n];x

′, x), (D3)

where in the last step we just relabeled the second sum.

Appendix E: Properties of the function G(x) for the

homonuclear 1D density

For the 2-electron density of Eq. (34) with a = 1 it is easy

to show that the co-motion function satisfies

f([n];x→ 0+) = ln(x)−R+ ln

(

2

1 + e−R

)

, (E1)

yielding

n(f([n];x→ 0+)) = x e−R/2. (E2)

The case x → 0− can be obtained from f([n];−x) =
−f([n];x) and n(−x) = n(x). Inserting these expansions

in the definition of the function G(x) of Eq. (31) we see that

its derivative is given by

G′(x→ 0+) =
2 eR/2

x|R− ln
(

2
1+e−R

)

− ln(x)|3
, (E3)

showing that G(x) has an infinite slope in x = 0. Further-

more, we also have, from the properties of the co-motion func-

tion and from the symmetry of the density n(−x) = n(x) that

G(−x) = 2G(0)−G(x) (E4)

G(f(x)) = G(x)−G(0) for x > 0 (E5)

G(f(x)) = G(x) +G(0) for x < 0. (E6)

Since f([n];−R/2) = R/2, for x = −R/2 both properties

(E4) and (E6) must hold, implying that G(0) = 2G(−R/2),
which is Eq. (38).

When R is large, if x is well inside one of the atomic re-

gions then f∓([n];x) ≈ x ± R, yielding the constant dis-

tance |x− fi([n];x)| ≈ R, producing the plateaux regions in

the kernel. This behavior holds until the electron in f([n];x)
approaches the origin and starts to “see” the second density in

the overlap region present in the midbond. This happens when

x ≈ ±(R− 1/a). At this point, the large negative x behavior

of G(x) starts to appear,

G(x→ −∞) =
1

n(0)x2
, (E7)

yielding the plateau value of Eq. (35).
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