This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Two microporous metal-organic frameworks constructed from trinuclear cobalt(II) and cadmium(II) cluster subunits

Xingjun Li,‡ Feilong Jiang, Lian Chen, Mingyan Wu, Shan Lu,‡ Jiandong Pang,‡ Kang Zhou,‡ Xueyuan Chen‡ and Maochun Hong‡

Two novel microporous metal–organic frameworks were obtained by combination of a tetratopic linker and linear trinuclear cobalt(II) and cadmium(II) cluster subunits. The complexes exhibit unprecedented topological features and unique properties in magnetism and photoluminescence.

Metal–organic frameworks (MOFs) have recently emerged as a new type of nanoporous materials with tailorable structures and have been attracting intense research interest due to their broad range of possible applications such as gas storage and separation, molecular magnetism, drug delivery, explosive detection, proton conduction, catalysis and nonlinear optics.1–8 Among the various tetracarboxylate ligands, H4TCPBDA and Co(ClO4)2•6H2O in solvothermal reaction between a tetracarboxylate ligand and Co2+ SBUs. Their structures and properties in magnetism and photoluminescence were obtained by a solvothermal reaction between a tetracarboxylate ligand H4TCPBDA and Co(ClO4)2•6H2O in N,N’-dimethylformamide (DMF) with an additional HAc at 100 °C for 2 days (see ESI† for details). The phase purity of above prism product has been confirmed by powder X-ray diffraction (PXRD) (Fig. S8, ESI†). X-Ray crystallography reveals that complex 1 crystallizes in the monoclinic system with space group C2/c. The asymmetrical unit of complex 1 contains one-and-a-half independent Co2+ ions, one fully deprotonated TCPBDA4− ligand and one MeNH3+ cation as counterion (Fig. 1a). In this structure, we assume that the distorted MeNH3+ cations lie inside the accessible void which is the byproduct of in situ decomposition of the DMF solvent, thus leading to the charge equilibrium.16 The central

This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 1

Please do not adjust margins

 accepted Manuscript

Page 1 of 5

CrystEngComm

COMMUNICATION

Two microporous metal-organic frameworks constructed from trinuclear cobalt(II) and cadmium(II) cluster subunits

Xingjun Li,‡ Feilong Jiang, Lian Chen, Mingyan Wu, Shan Lu,‡ Jiandong Pang,‡ Kang Zhou,‡ Xueyuan Chen‡ and Maochun Hong‡

Two novel microporous metal–organic frameworks were obtained by combination of a tetratopic linker and linear trinuclear cobalt(II) and cadmium(II) cluster subunits. The complexes exhibit unprecedented topological features and unique properties in magnetism and photoluminescence.

Metal–organic frameworks (MOFs) have recently emerged as a new type of nanoporous materials with tailorable structures and have been attracting intense research interest due to their broad range of possible applications such as gas storage and separation, molecular magnetism, drug delivery, explosive detection, proton conduction, catalysis and nonlinear optics.1–8 Among the various tetracarboxylate ligands, H4TCPBDA and Co(ClO4)2•6H2O in solvothermal reaction between a tetracarboxylate ligand and Co2+ SBUs. Their structures and properties in magnetism and photoluminescence were obtained by a solvothermal reaction between a tetracarboxylate ligand H4TCPBDA and Co(ClO4)2•6H2O in N,N’-dimethylformamide (DMF) with an additional HAc at 100 °C for 2 days (see ESI† for details). The phase purity of above prism product has been confirmed by powder X-ray diffraction (PXRD) (Fig. S8, ESI†). X-Ray crystallography reveals that complex 1 crystallizes in the monoclinic system with space group C2/c. The asymmetrical unit of complex 1 contains one-and-a-half independent Co2+ ions, one fully deprotonated TCPBDA4− ligand and one MeNH3+ cation as counterion (Fig. 1a). In this structure, we assume that the distorted MeNH3+ cations lie inside the accessible void which is the byproduct of in situ decomposition of the DMF solvent, thus leading to the charge equilibrium.16 The central

This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 1

Please do not adjust margins
crystallizes in the monoclinic space group P21/c. Its asymmetric unit consists of three Cd$^{2+}$ cations, two TCPBDA$^{4-}$ ligands and two MeNH$_3^+$ cations (Fig. 2a). Similarly, complex 2 contains a linear trimetallic unit. However, the three Cd$^{2+}$ atoms adopt different coordinated geometries from each other (Fig. 2b). The independent Cd1 center has a distorted octahedral geometry coordinated by six carboxylate oxygen atoms from four fully deprotonated TCPBDA$^{4-}$ ligands. The Cd1-O bond distances are in the range of 2.218(5)-2.311(5) Å. Whereas, the Cd3 center is linked by seven oxygen atoms from four TCPBDA$^{4-}$ ligands, generating a distorted pentagonal bipyramidal [CdO$_7$] coordination geometry. The Cd3-O bonds range from 2.364(7) Å to 2.511(6) Å. Every TCPBDA$^{4-}$ ligand links to seven Cd$^{2+}$ centers through three pairs of μ2-bidentate COO$^-$ groups and one μ1-bridging monodentate COO$^-$ group (Fig. S5, ESI†). The trinuclear [Cd$_3$(COO)$_3$] SBU’s are bridged by the carboxylate groups of TCPBDA$^{4-}$ to form a three-dimensional (3D) microporous framework with 1D rhombic channels along the a-axis (Fig. 2c). Topologically, if the [Cd$_3$(COO)$_3$] SBUs are viewed as 8-connected nodes and the TCPBDA$^{4-}$ ligands as two 2-connected nodes. As a result, the over-all structure of complex 1 can be simplified to a 3, 3, 8-c 2-nodal topological network with a point symbol of {4.6}$_2$ {4.6}12.8$11$.10}$_2$ {6}1_2 (Fig. 1d). In the literature, as we know, much effort has been paid to the exploration of high nuclear cobalt based coordination polymers and their applications. However, there is still limited research focused on the linear trinuclear cobalt based complexes, which might exhibit unique magnetic properties.

Single crystals of complex 2 were produced by a solvothermal reaction with H$_3$TCPBDA and CdCl$_2$$\cdot$2.5H$_2$O in DMF with an additional HAc at 120 °C for 3 days (see ESI† for details). The phase purity of the block crystals has been confirmed by powder X-ray diffraction (PXRD) (Fig. S8, ESI†). Complex 2 crystallizes in the monoclinic space group P21/c. Its asymmetric unit consists of three Cd$^{2+}$ cations, two TCPBDA$^{4-}$ ligands and two MeNH$_3^+$ cations (Fig. 2a). Similarly, complex 2 contains a linear trimetallic unit. However, the three Cd$^{2+}$ atoms adopt different coordinated geometries from each other (Fig. 2b). The independent Cd1 center has a distorted octahedral geometry coordinated by six carboxylate oxygen atoms from four fully deprotonated TCPBDA$^{4-}$ ligands. The Cd1-O bond distances are in the range of 2.218(5)-2.311(5) Å. Whereas, the Cd3 center is linked by seven oxygen atoms from four TCPBDA$^{4-}$ ligands, generating a distorted pentagonal bipyramidal [CdO$_7$] coordination geometry. The Cd3-O bonds range from 2.364(7) Å to 2.511(6) Å. Every TCPBDA$^{4-}$ ligand links to seven Cd$^{2+}$ centers through three pairs of μ2-bidentate COO$^-$ groups and one μ1-bridging monodentate COO$^-$ group (Fig. S5, ESI†). The trinuclear [Cd$_3$(COO)$_3$] SBUs are bridged by the carboxylate groups of TCPBDA$^{4-}$ to form a three-dimensional (3D) microporous framework with 1D rhombic channels along the a-axis (Fig. 2c). Topologically, if the [Cd$_3$(COO)$_3$] SBUs are viewed as 8-connected nodes and the TCPBDA$^{4-}$ ligands are regarded as two 2-connected nodes, the overall motif of complex 2 will be a 3, 8-c 2-nodal network with a point symbol of {4.6}1_4 {4.6}12.8$11$.9$2$.10}$_2$ (Fig. 2d).

Fig. 1 Description of complex 1: (a) The coordination environment of cobalt(II) atoms in complex 1; symmetry code: A 1.5 - x, 1.5 - y, 1 - z; B x, 1 - y, 0.5 + z; C 0.5 + x, 0.5 + y, z; D 0.5 + x, 0.5 + y, z. (b) The 1D cylindrical channels viewed along the c-axis. (c) The 3D framework of complex 1. (d) The (3,3,8)-c 3-nodal topology of complex 1.

The temperature-dependent magnetic susceptibility was measured on crystalline samples of complex 1 at 1000 Oe in the range of 2-300 K. The $g$$\times$T and $g$$\times$ T versus T plots of complex 1 are shown in Fig. 3. At room temperature, the $g$$\times$T value is 7.15...
cm3 mol$^{-1}$ K for complex 1, which is higher than the spin-only value (5.625 cm3 mol$^{-1}$ K) for three isolated HS Co$^{2+}$ metal ions, indicating spin-orbital couplings present. As the temperature decreases to 10.4 K, the $g \cdot T$ value slightly decreases to a minimum of 6.18 cm3 mol$^{-1}$ K, suggesting an appreciable antiferromagnetic coupling between the neighbouring Co$^{2+}$ ions, and then increases to 6.83 cm3 mol$^{-1}$ K at 2 K. The magnetic susceptibility between 2-300 K conforms to the Curie-Weiss law, giving the Curie constant $C = 7.23$ emu mol$^{-1}$ K and the Weiss temperature $\theta = -2.16$ K (Fig. 3 and Fig. S11, ESI†). The negative Weiss temperature shows that the neighbouring magnetic Co$^{2+}$ ions are coupled with an antiferromagnetic interaction exchanges. 19

This work was supported by financial support from the 973 Program (2014CB932101), the National Natural Foundation of China (21401196, 21390392 and 21371169) and the Natural Science Foundation of Fujian Province.

Notes and references
Crystal data for complex 1 (CCDC 1433242): Cu$_2$O$_8$H$_8$N$_4$Co$_3$, $M = 1498.01$, monoclinic, space group C2/c, $a = 40.267(1)$, $b = 12.903(5)$, $c = 25.995(9)$ Å, $\beta = 104.20^\circ$, $V = 14108(8)$ Å3, $Z = 4$, $D_	ext{c} = 0.705$ g/cm3, $F_{000} = 3060$, CuKα radiation, $\lambda = 1.54184$ Å, $T = 100(2)$ K, $2\theta_{\text{max}} = 70.5^\circ$, 28579 reflections collected, 14179 unique ($R_{int} = 0.034$). Final Goof/$F = 1.023$, $R_1 = 0.0393$, $wR_2 = 0.0887$, R indices based on 8471 reflections with I $> 2\sigma$(I) (refinement on F^2). Crystal data for complex 2 (CCDC 1435244): Cu$_8$O$_{16}$H$_{16}$N$_4$Cd$_3$, $M = 1658.42$, monoclinic, space group $P2_1/c$, $a = 26.936(7)$, $b = 22.123(4)$, $c = 26.046(8)$ Å, $\beta = 109.74^\circ$, $V = 14609(6)$ Å3, $Z = 4$, $D_	ext{c} = 0.754$ g/cm3, $F_{000} = 3312$, CuKα radiation, $\lambda = 1.54184$ Å, $T = 100(2)$ K, $2\theta_{\text{max}} = 73.3^\circ$, 27969 reflections collected, 14244 unique ($R_{int} = 0.051$). Final Goof/$F = 1.057$, $R_1 = 0.0826$, $wR_2 = 0.2709$, R indices based on 15755 reflections with I $> 2\sigma$(I) (refinement on F^2). The diffraction data for complexes 1 and 2 were treated by the “SQUEEZE” method as implemented in PLATON to remove diffuse electron density associated with the badly disordered solvent molecules. The final formula of 1 and 2 were determined by combining with thermogravimetric analysis (TGA) and elemental analyses.

Table of Contents Synopsis

Two microporous metal-organic frameworks constructed from trinuclear cobalt(II) and cadmium(II) cluster subunits

Xingjun Li, Feilong Jiang, Lian Chen, Mingyan Wu, Shan Lu, Jiandong Pang, Kang Zhou, Xueyuan Chen* and Maochun Hong*

This work presents two novel microporous metal-organic frameworks which are constructed from a tetracarboxylate ligand and trinuclear cobalt(II) and cadmium(II) cluster subunits.