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Abstract  

Clinical isolates of glycopeptide resistant enterococci (GRE) were used to compare 

three rapid phenotyping and analytical techniques. Fourier transform infrared (FT-

IR) spectroscopy, Raman spectroscopy and matrix-assisted laser 

desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) were 

used to classify 35 isolates of Enterococcus faecium representing 12 distinct pulsed-

field gel electrophoresis (PFGE) types. The results show that the three analytical 

techniques provide clear discrimination among enterococci at both the strain and 

isolate levels. FT-IR and Raman spectroscopic data produced very similar bacterial 

discrimination, reflected in the Procrustes distance between the datasets (0.2125-

0.2411, p<0.001); however, FT-IR data provided superior prediction accuracy to 

Raman data with correct classification rates (CCR) of 89% and 69% at the strain 

level, respectively. MALDI-TOF-MS produced slightly different classification of 

these enterococci strains also with high CCR (78%). Classification data from the 

three analytical techniques were consistent with PFGE data especially in the case of 

isolates identified as unique by PFGE. This study presents phenotypic techniques as 

a complementary approach to current methods with a potential for high-throughput 

point-of-care screening enabling rapid and reproducible classification of clinically 

relevant enterococci.  
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1. Introduction  

Enterococcus is a highly significant genus of bacteria, which causes important 

clinical infections including urinary tract infections (UTIs), endocarditis, meningitis, 

catheter-related infections, bacteremia, wound infections, pelvic and intra-abdominal 

infections amongst others. Some of these Gram-positive cocci were originally 

classified as Streptococcus spp. until genomic analysis by Schleifer and Kilpper-

Balz in 1984 demonstrated the requirement for a separate genus classification.
1
 This 

well-known genus is part of the normal intestinal microflora of humans and other 

animals.
2
. Enterococcus are also part of the lactic acid bacteria (LAB) group present 

in foods, and whilst they are able to spoil fresh meats 
3
, they are important in 

ripening and development of certain foods (i.e. dairy products), as well as being used 

as probiotics in humans.
4
  

The majority of human clinical isolates of enterococci belong to two species, 

Enterococcus faecalis and Enterococcus faecium.
5
  In addition to their prevalence 

and pathogenicity, another very important factor associated with enterococcus is the 

high level of antimicrobial resistance, particularly resistance to glycopeptide 

antibiotics (such as vancomycin, teicoplanin and telavancin); resistant strains are 

referred to as GRE (glycopeptide-resistant enterococci).
6,7

  

There is a constant requirement to develop analytical methods for the discrimination 

of bacteria, which can be used in clinical diagnostics and food quality control. These 

methods should ideally be rapid, reproducible, easy to use and automated, in 

addition to having high resolution and sensitivity.
8
 Over a decade ago, it was 

common to use methods, such as polymerase chain reaction (PCR) for identification 

of specific DNA sequences and recognition by antibodies via enzyme-linked 

immunosorbent assay (ELISA), to characterize bacteria. Although these techniques 

are sensitive and specific and carried out using relatively inexpensive equipment, 

their use is limited by the complexity of preparation procedures and the requirement 

for specific primers and antibodies.
9-12

 Nowadays, modern analytical techniques, 

such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 

(MALDI-TOF-MS) 
13-16

, Fourier transform infrared (FT-IR) spectroscopy
17-21

 and 

Raman spectroscopy
22-24

 are also used for the characterization of bacteria. High 

dimensional and information rich datasets are produced from these techniques, 

which has also directly led to the requirement of robust and reliable chemometric 
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methods to assist with data deconvolution and in-depth analysis.
25

 This saw the 

introduction, acceptance and use of chemometrics, such as discriminant function 

analysis (DFA) 
22

 and hierarchical cluster analyses (HCA).
26-28

 

Previously, MALDI-TOF-MS has shown promising results for bacterial 

characterization.
13

 FT-IR and Raman spectroscopy complement each other for 

bacterial classification; both are robust metabolic fingerprinting techniques and need 

little sample preparation.
29, 30

 FT-IR spectroscopy is used by many researchers since 

it is not only rapid but also offers a high-throughput and non-destructive method, 

allowing the analysis of intact bacteria and producing unique, reproducible and 

distinct biochemical fingerprints.
31

 Raman spectroscopy shares similar advantages to 

FT-IR spectroscopy and also has the additional advantage of water being a very 

weak Raman scatter
32

 so that samples do not need to be dried. 

  

Here, the aim was to use these three distinct phenotypic approaches (namely 

MALDI-TOF-MS, FT-IR and Raman spectroscopies) in combination with rigorous 

chemometric analysis of the resultant datasets to classify 35 clinically relevant 

isolates of enterococci, which had been previously typed by pulsed-field gel 

electrophoresis (PFGE). This was carried out in order to compare the results from, 

and determine the efficiency of, these analytical techniques for the rapid 

differentiation of E. faecium strains. In future, this may allow clinical diagnostic 

laboratories to analyze multiple bacterial samples rapidly for infection control 

purposes in point-of-care setting within hospitals, clinics, or GP surgeries which 

would significantly accelerate diagnosis, and potentially ensure that the correct 

antimicrobial therapies were used if required.  

2. Experimental 

2.1 General chemicals 

Trifluoroacetic acid (TFA), HPLC grade water, acetonitrile, sinapinic acid (SA), α-

cyano-4-hydroxycinnamic acid (CHCA), and ferulic acid (FA) were purchased from 

Sigma-Aldrich (Dorset, UK).
 

2.2 Media 

Two different types of media were used to culture the enterococci: Lysogeny Broth 

(LB) and Nutrient Agar (NA). LB was prepared by mixing 5 g of yeast extract 

(Amersham Life Sciences, Cleveland, USA), 10 g of tryptone (Formedia, 
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Hunstanton, UK) and 10 g of NaCl dissolved in 1 L of distilled water and the broth 

was then autoclaved (at 121ºC and 15 psi for 45 min). NA was prepared from a 

preparatory mixture (beef extract 3 g/L, peptone 5 g/L, NaCl 8 g/L and agar 2 at 12 

g/L) (Lab-M, Bury, UK) following the manufacturer’s instructions (28 g in 1 L of 

deionised water) and the broth was autoclaved (at 121ºC and 15 psi for 15 min). 

2.3 Enterococci strains 

Isolates were from faecal samples from patients in a surgical ward in a hospital in 

Belfast, UK and were collected following an increase in enterococcal infections on 

the ward. Faecal material samples were screened onto Brilliance VRE (vancomycin-

resistant enterococci) agar (Oxoid, Basingstoke, UK). This agar contains antibiotics, 

which eradicate all Gram-negative bacteria, and a high concentration of vancomycin, 

and therefore, only vancomycin-resistant Gram-positive bacteria can grow, which 

leads to selection of vancomycin-resistant enterococci strains. They were identified 

as E. faecium by a VITEK® system (bioMérieux) and their identity confirmed by 

MALDI-TOF analysis using a Bruker microflex instrument. The 35 isolates were 

typed using pulsed-field gel electrophoresis (PFGE) of SmaI-digested genomic DNA 

by Public Health England’s National Reference Laboratory as described 

previously.
33

 Table S1 summarizes information on the 35 clinical isolates, which 

were classified into 12 groups (12 PFGE-defined types) named: EC04, EC09, EC10, 

EC13, EC14, EC15, EC19, EC20, UNI 156, UNI 178, UNI 191 and UNI 214, where 

‘UNI’ types describe isolates that were unique within the set. All samples were 

collected with ethical approval from the Northern Ireland Research Ethics 

Committee, reference number "10/NIR01/20”.  This work did not involve any 

experimentation on human subjects. 

2.4 Bacterial isolates 

The samples analyzed by the three techniques (viz. MALDI-TOF-MS, FT-IR and 

Raman) were collected from the same flask to avoid any variations between different 

preparations that may affect results obtained using the different anlaytical platforms. 

First, enterococci were cultured on nutrient agar (NA) plates for 24 h at 37ºC. A 

single colony from the agar culture was used to inoculate 50 mL of Lysogeny broth 

(LB) in a 250 mL flask which was incubated overnight at 37ºC with shaking at 200 

rpm. This was followed by measuring the optical density (OD) at 600 nm using a 

Biomate 5 spectrophotometer (Thermo, Hemel Hempstead, UK) for each isolate. 
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The volume of analyzed bacterial suspension was then normalized to account for 

variation in cell biomass in the different replicate cultures (4 biological replicates 

were prepared for each isolate) and used to inoculate a fresh  flask of broth, which  

was incubated at 37ºC for 11 h. This isolate enrichment step is required to reduce 

interference from mixtures of different strains, which can introduce a significant 

level of noise to readings from analytical methods. Subsequently, 10 mL from each 

flask was collected and centrifuged at 4800 g for 10 min and the pellet washed three 

times with sterile deionized water. Figure S1 illustrates the preparation process. 

For vibrational spectroscopic analysis, the collected pellets were suspended in 

suitable volumes of saline (0.9% (w/v) NaCl) depending on the OD (all isolates had 

approximately the same cell density). Then, 15 µL was spotted onto a silicon plate 

(Bruker Ltd., Coventry, UK) and was allowed to dry at 40ºC for 45 min before 

analysis with FT-IR spectroscopy. For Raman spectroscopy, 4 µL of each sample 

was spotted onto a stainless steel plate and then allowed to dry at 40ºC for 45 min. 

For MALDI-TOF-MS, three different matrices were tested to find the most 

compatible matrix with enterococci; these matrices were: FA, SA and CHCA. In 

addition, 3 different deposition methods (sample-matrix) were tested as described 

previously
16

 to find the best method for depositing the samples: mix, overlay and 

underlay (data not shown). SA matrix and the mix deposition method were found to 

be the optimal combination for MALDI-TOF-MS analysis for these samples. On the 

day of analysis of the samples, the biomass was suspended in 1000 µL of 2% TFA 

then vortexed for 3 min. An equal volume of 1 µL of bacterial suspension and matrix 

were vortexed for 2 s and 2 µL of this mixture spotted onto a MALDI stainless steel 

plate and allowed to dry at ambient temperature. 

2.6 Fourier transform infrared (FT-IR) spectroscopy 

FT-IR spectroscopy plate (Bruker Ltd., Coventry, UK) which contained 96 

locations/spots was washed using 5% sodium dodecyl sulfate (SDS) solution. This 

was followed by washing the plate using deionized water and allowing it to dry at 

room temperature.
34

 High-throughput screening (HTS) was carried out using a 

Bruker Equinox 55 FT-IR spectrometer. The HTX™ module described by Winder et 

al. 
35

 was used with this instrument. Transmission mode was used to analyze the 

dried biomass to produce FT-IR spectra. The parameters used for FT-IR analysis 
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included the following: spectra were collected in the wavenumber range between 

4000 and 600 cm
-1

, resolution was 4 cm
-1

 and each spectrum was the average of 64 

co-adds. Spectral acquisition and subtracting the background were achieved using 

Opus software (Bruker Ltd.). Four biological replicates, each in four analytical 

replicates, were analyzed and analysis was performed in three machine runs, 

resulting in 1680 FT-IR spectra. 

2.7 Raman Spectroscopy 

This was carried out using a confocal Raman system (inVia, Renishaw plc., Wotton-

Under-Edge, UK) coupled with a 785 nm wavelength laser. A power intensity of ~30 

mW was applied on the samples at an exposure time of 20 s. Four biological 

replicates and seven different locations within each sample spot were analyzed, 

resulting in a total of 980 Raman spectra. 

2.8 MALDI-TOF-MS 

The enterococci isolates were analyzed using an AXIMA-Confidence MALDI-TOF-

MS (Shimadzu Biotech, Manchester, UK), equipped with a nitrogen pulsed UV laser 

with a wavelength of 337 nm. The parameters of this device were set as follows: 90 

mV laser power, 91 acquired profiles with each profile containing 20 shots, linear 

TOF, positive ionization mode, and mass-to-charge (m/z) range of 1,000-18,000. The 

spectra were collected using a circular raster pattern. The MALDI-TOF-MS device 

was calibrated using a protein mixture: insulin (5,735), cytochrome c (12,362), and 

apomyoglobin (16,952) (Sigma-Aldrich). Each of 4 biological replicates from the 35 

isolates was analyzed in four technical replicates on four different days; this led to 

the generation of a total of 560 MALDI-TOF-MS spectra (35 isolates × 4 biological 

replicates × 4 analytical replicates). 

2.9 Data analysis  

2.9.1 Data pre-processing 

Opus software was used to export FT-IR data into ASCII format; the data were then 

transferred into MATLAB 2012a (The Mathworks Inc., MA, US). All FT-IR spectra 

were baseline corrected using standard normal variate (SNV) to remove any light 

scattering effect. The analytical replicates were then averaged to reduce the number 

of redundant samples. Due to the large number of samples, 8 separate (96 spot 

silicon) sampling plates were used; therefore, it was necessary to correct for the 

subtle differences in signals from different silicon plates. This was achieved by using 

a piece-wise direct standardization (PDS) model.
36

 The PDS model was built on two 
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different ‘reference’ isolates which were spotted on every plate. The pre-processed 

FT-IR spectra were then subjected to multivariate analysis (MVA, see below). 

Raman spectra were also normalized using standard normal variate (SNV) and then 

subjected to MVA. 

MALDI-TOF-MS data were pre-processed as follows: (i) the baseline was corrected 

using asymmetric least squares (AsLS)
37

, and (ii) spectra were normalized by 

dividing each individual baseline corrected spectrum by the square root of the sum of 

squares of the spectrum.
38

 The pre-processed MALDI-TOF-MS data were subjected 

to the same data analysis flow as Raman and FT-IR spectral data. 

2.9.2 Multivariate data analysis 

A flowchart of multivariate data analysis is provided in Figure 1. For all three 

datasets, two types of classification were performed: one at the strain level (i.e. 12 

classes) defined by PFGE, and the other at the isolate level (i.e. 35 classes, one for 

each isolate). 

For cluster analyses, principal components-discriminant function analysis (PC-DFA) 

39-41
 was applied to reduce the dimensionality of the data and discriminate samples 

from the designated classes. The PC-DFA scores of each class were then averaged 

and subjected to hierarchical cluster analysis (HCA). 
42

 Dendrograms from each 

analysis were generated to illustrate the relative relatedness of these bacteria.  

Partial least squares-discriminant analysis (PLS-DA)
43

, with 1,000 bootstrapping 

validations
44

, was also applied to obtain a validated supervised classification model 

for discriminating different strains or isolates. In each bootstrapping process, the data 

were randomly split into two different sets:  a training set and a test set. A PLS-DA 

model was trained on the training set and then applied to the test set to predict the 

class membership of the samples in the test set. This process was repeated 1,000 

times and the results were recorded and averaged to produce a c×c confusion matrix 

(c is the number of designated classes, either 12 (strains) or 35 (isolates)), in which 

the element at the i
th

 row, j
th

 column is the percentage of samples in class i being 

predicted as class j on average. In order to assess the statistical significance of the 

predictive performance of the PLS-DA models, a corresponding permutation test 

within each bootstrapping resampling was also performed. This means that in 

addition to building the PLS-DA model using the known class membership, another 
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model (called the ‘null’ model) was also built using a randomly permuted class 

membership. The results of the null model were also recorded and from this the null 

distribution was obtained. An empirical p-value was calculated by counting the 

number of cases where the null model had obtained better predictive accuracy than 

the real model and dividing the obtained number by the total number of 

bootstrapping resampling (i.e. 1,000 in this study).  

Finally, similarities between the three different datasets (FT-IR spectroscopy, Raman 

spectroscopy and MALDI-TOF-MS data) were measured using Procrustes 

analysis.
45 

Procrustes analysis is an excellent approach for assessing the differences 

and similarities between different ordination space from cluster analyses and has 

been used previously for the assessment of different analytical techniques.
46 

The 

distances were calculated based on the averaged PC-DFA scores for the biological 

replicates.  

3. Results and discussion  

Table S1 shows all 35 isolates belonging to 12 strains (PFGE-defined 12 types) 

including: EC04, EC09, EC10, EC13, EC14, EC15, EC19, EC20 UNI 156, UNI 178, 

UNI 191 and UNI 214. These strains were previously confirmed to belong to E. 

faecium using a VITEK
®

 system and by MALDI-TOF analysis using a Bruker 

Microflex system (data not shown). The PFGE results (Fig. S2) were compared to 

results obtained in this study using FT-IR spectroscopy 
17, 30, 46-49

, Raman 

spectroscopy 
25, 30, 50, 51

 and MALDI-TOF-MS.
13, 14, 16, 52-54

 We believe that these 

analytical techniques in combination with chemometrics offer an improvement in the 

classification of bacteria due to their higher biochemical resolution.   

3.1 Classification using FT-IR spectroscopy.  

In this study, four biological replicates of bacterial isolates were analyzed in four 

analytical replicates and analysis was performed in three machine runs, resulting in a 

total of 1680 FT-IR spectra. The three machine replicate measurements were 

performed in order to evaluate the reproducibility of the FT-IR technique. Typical 

spectra based on four biological replicates of representatives of 12 strains from 

enterococcus (EC04, EC09, EC10, EC13, EC14, EC15, EC19, EC20, UNI 156, UNI 

178, UNI 191 and UNI 214) are provided in Figure S3A. The infrared spectra 

contain different distinct regions that can be used to characterize bacterial samples. 
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These have been well documented previously and include: wavenumbers around 

3400-2850 cm
-1 

corresponding to fatty acids, at 1705-1454 cm
-1 

related to amide I 

and II regions attributed to peptides and proteins, and around 1085-1052 cm
-1

 

corresponding to polysaccharides.
19, 55, 56

 

Discrimination between the strains based on visual inspection of the spectra was 

difficult 
17

 because these strains are very similar phenotypically. Therefore, in order 

to develop a classification model to distinguish between bacterial samples based on 

similarities in the spectral data, multivariate analysis was used to reduce the high 

dimensionality of the data. First, PC-DFA was applied using 40 principal 

components (PC) to the 12 strains (i.e. 12 classes) and 35 isolates (i.e. 35 classes) 

using the pre-processed FT-IR spectra (Fig. 2A and 3A, respectively). Figure 2A 

shows a clear separation between the 12 strains, displaying 4 main clusters; Cluster 1 

is a single-member cluster (SMC) containing only (EC10), Cluster 2 includes (EC20 

and UNI 156), Cluster 3 (UNI 191, EC04 and EC15) and Cluster 4 formed a large 

group and is a combination of (EC13, EC19, EC14, EC09, UNI 214 and UNI 178). 

Each cluster is represented by a different color in the figure. As described above, 

HCA was undertaken using spectral data in order to simplify the DFA plot and to 

illustrate the related strains. Cluster analysis was based on averaged DFA scores (12 

classes/strains), using Ward’s linkage as shown in Figure 2B. Clusters seen in Figure 

2A are reflected in the HCA dendrogram plot (Fig. 2B). 

PC-DFA was subsequently performed for all the 35 isolates and the results are 

provided in Figure 3. Clear separation between all 35 isolates was observed despite 

the fact that there were a much higher number of classes to be separated than the 

number of strains. For example, clear separation was observed between the two 

representatives of EC10 (139 and 151). Furthermore, results generated using PFGE 

correlated well with FT-IR spectroscopic data. For example, the UNI 156 and 

UNI 178 were seen as unique by both techniques. In addition, the three EC20 

isolates (192, 198 and 204) and EC19 isolates (173, 174 and 175) clustered together 

and were not differentiated using FT-IR spectroscopy, which was also observed in 

the PFGE results, where the bands were quite similar (Fig. 3B). This implies that the 

isolates within each of these groups are highly similar to each other phenotypically 

and genetically. Finally, two more clusters were observed, with one cluster 

containing all the EC04, EC15 and UNI 191 strains and the remainder of the isolates 

forming another cluster. 
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The PLS-DA classification using FT-IR spectral data achieved an average correct 

classification rate (CCR) of 89.4% at the strain level and 54.3% at the isolate level, 

both with an empirical p-value of <0.001, i.e. not a single case where the null model 

obtained better results, indicating that the predictive accuracies were highly 

significant. The null distributions are provided in Figure S4A and B at the two 

levels.  

The confusion matrices of strains and isolates classification are presented in Table 1 

and Table S3, respectively. Most of the 12 strains showed high prediction 

accuracies, for example EC04, EC10, EC13 and EC20 had accuracies of 89.9%, 

99.7%, 99.8% and 99.2%, respectively. However, EC14 and UNI 214 had lower 

prediction accuracies of 47.3% and 58.9%, respectively. The confusion matrix 

showed that there was a certain level of overlap between (EC14 and EC09) and (UNI 

214 and EC19).  

Furthermore, in-depth analysis of the confusion matrix (Fig. 4) showed that 

classification of unique strains was generally in line with PFGE results. In Figure 4, 

high percentage class membership assignments are represented by warm colors (e.g. 

red), indicating agreement between predicted classes and known classes. It is also 

interesting to see that representatives from EC19 and EC20 formed two “squares” of 

“tiles” on the diagonal line, in which the colors were similar to each other. Results 

from Figure 4 suggest that the PLS-DA model was not able to differentiate the 

isolates within EC19 and EC20, yet another observation that is consistent with PFGE 

results. On the other hand, all representatives of EC04 and EC09 (160 and 133) were 

unique in the FT-IR spectroscopy profile using the PLS-DA model but had visually 

similar PFGE profiles. This is most likely due to PFGE providing genetic 

information 
57, 58

 while FT-IR spectroscopy describes phenotypes.
27, 59

 This implies 

that isolates from EC19 and EC20 are highly conserved phenotypically, whereas 

those from EC04 and EC09 are not, and such subtle differences in phenotypes were 

detected by FT-IR spectroscopy. Our observations showed that FT-IR spectroscopy 

appears to be a very promising analytical approach for discrimination of enterococci 

at different levels. In line with the results presented in this study, work carried out by 

Guibet et al. showed that clear discrimination and classification of enterococci 

strains can be achieved using FT-IR spectroscopy.
60, 61

 

3.2 Classification using Raman spectroscopy. In addition to the FT-IR 

spectroscopy technique used in this study, Raman spectroscopy was used as a 
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complementary technique.
17, 61-63

 As expected, the two techniques generated 

different spectra. These two approaches are complementary due to the selection 

rules, whereby infrared causes a change in the net dipole moment in a particular 

functional group, induced by molecular vibrations, whereas Raman causes a change 

in the polarization of bonds within a molecule. Therefore, bonds within a molecule 

are generally infrared or Raman active with the result being that the two techniques 

can provide complementary (bio) chemical information.
29, 64

 

 

Raman spectra of the 12 E. faecium strains are shown in Figure S3B. Raman spectra 

for these types appeared almost indistinguishable and no differences were detected 

on visual inspection. Moreover, some specific peaks which were identified in these 

spectra included: peaks at around 722 cm
-1

, 783 cm
-1

, 854 cm
-1

, 1004 cm
-1

, 1098 cm
-

1
, 1334 cm

-1
, 1451 cm

-1 
and 1664 cm

-1
, which correspond to adenine, cytosine/uracil, 

tyrosine, phenylalanine, phosphate, guanine, protein and amide I, respectively.
65-67

  

 PC-DFA scores plot of pre-processed Raman spectra for the 12 PFGE-defined types 

is shown in Figure S5A. The figure shows classification results similar to those seen 

with FT-IR spectroscopy data. There was an obvious overlap between the two 

spectroscopic techniques, especially with representatives of EC10. However, EC20 

overlapped with UNI 156 in FT-IR spectroscopy data, whereas EC20 was closer to 

UNI 178 based on Raman spectroscopy data. These observations can be seen in the 

HCA dendrogram based on Raman data (Fig. S5B), which was quite similar to the 

HCA results generated from FT-IR data. Looking back at the dendrogram in 

Figure S2 based on PFGE data, visual inspection showed that there were some 

similarities between results generated via spectroscopic techniques and those based 

on PFGE; for example, EC04 and EC15 were shown to overlap in both sets of results 

(Fig. S2). 

As with FT-IR data, Raman spectroscopy data on the 35 isolates were also analyzed 

using to PC-DFA and HCA (Fig. S6A and B, respectively). The results suggested 

that Raman spectroscopy was also successful in discriminating the two 

representatives of EC10 (139 and 151), which was also the case using FT-IR 

analysis (Fig. 3). Furthermore, in order to ensure the classification is robust, the data 

were analyzed using a heat map based on PLS-DA (Fig. S6C). The results suggested 
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that all the isolates indicated as unique (UNI) by PFGE were also unique in the PLS-

DA model generated using Raman spectroscopy data. 

In addition, chemometric-based identification was carried out using PLS-DA at both 

the strain and isolate levels and the predictive accuracies were calculated based on 

1,000 bootstrapping resampling using Raman spectral data. The null distribution was 

obtained (Fig. S4C and D) at both the strain (12 classes) and isolate levels (35 

classes) resulting in average CCR of 69.3% (p<0.001) and 21.1% (p<0.001), 

respectively. The CCR from FT-IR data was higher at both levels compared to 

Raman data possibly due to the higher reproducibility of FT-IR data. Confusion 

matrices were also generated at both the strain level (Table S2A) and the isolate 

level (data not shown); these results suggested that Raman spectroscopy can also be 

used as a robust technique for bacterial discrimination. In-depth analysis showed that 

Raman spectroscopy generated around 70% prediction accuracy at the strain level 

which is lower than that of FT-IR spectroscopy (nearly 90%). This is most likely due 

to the low concentration of cells used for analysis: the infrared interrogation beam 

used was ca. 1 mm and passes completely through the dried bacterial film; while the 

Raman microscope delivers a highly focussed laser beam with an interrogation 

volume of ~1 pL and therefore measures very few bacteria. To overcome this 

limitation with Raman, bacteria can be analyzed directly from the agar plates or 

surface-enhanced Raman spectroscopy (SERS) as an alternative technique
68-70

, but 

this is an area for future study. 

3.3 Classification using MALDI-TOF-MS. As described in the Materials and 

Methods section, four biological replicates were analyzed in four analytical 

replicates for each bacterial strain, resulting in 560 MALDI-TOF-MS spectra; both 

the biological and technical replicates clustered closely together ensuring good 

bioanalytical reproducibility (data not shown). The spectra for the 35 enterococci 

isolates were pre-processed before data analysis. The typical pre-processed positive 

ion mode MALDI-TOF-MS spectra for all 12 Enterococcus strains (EC04, EC09, 

EC10, EC13, EC14, EC15, EC19, EC20, UNI 156, UNI 178, UNI 191 and UNI 214) 

are provided in Figure S3C. In general, the MALDI-TOF-MS spectra were of high 

quality with high signal-to-noise ratios in the acquisition m/z range 1,000-18,000 and 

a high number of peaks for each studied strain were detected. There are many factors 

that can affect MALDI-TOF-MS results and some of these can differ from lab to 
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another, such as the type of medium used 
71

, sample handling, type of matrix 
72

, 

sample deposition method 
73

, solvents, instrument settings 
74, 75

 and the type of data 

analysis chosen. 
41, 76

 These can inadvertently affect MALDI-TOF-MS results and 

subsequent PC-DFA and HCA. 

 MALDI-TOF-MS spectra are not readily interpretable from the 35 isolates as they 

are similar phenotypically and MALDI-TOF-MS spectra show only two dimensions 

(m/z × intensity). Therefore, as is the case for the vibrational spectroscopy 

techniques, robust multivariate analysis methods were employed for this purpose. 

The results of PC-DFA using 12 classes (12 strains) in a three-dimensional plot of 

DF1 vs DF2 vs DF3 and a two-dimensional plot of DF2 vs DF3 are shown in Figure 

S7A and B, respectively. Four main clusters were observed in the PC-DFA plots; 

SMC (Cluster) 1 contains only UNI 178; Cluster 2 contains EC20; Cluster 3 consists 

of EC04, EC10, EC15 and UNI 191; and Cluster 4 formed a large group of (EC13, 

EC19, EC14, EC09, UNI 214 and UNI 156). Results from the HCA dendrogram 

(Fig. S7C) confirmed the separation between the 12 classes (i.e. 12 strains). This 

indicated that UNI 178 is phenotypically very different from the other strains based 

on MALDI-TOF-MS data. 

PC-DFA was also applied to data from the 35 isolates; the results showed that 

isolates number 160 and 219 (both from EC09) were very different from the other 

isolates. Therefore, another PC-DFA was carried out with these two outliers 

removed and the HCA results are shown in Figure S8D. It appears that all 

representatives of  EC20 (204, 198 and 192) overlap with each other, which was also 

observed in FT-IR and Raman spectroscopy data, with the exception that isolate 192 

slightly differed from the other two representatives (204 and 198) in the HCA 

dendrogram when using Raman data (Fig. S6B). However, analysis by PFGE 

showed that isolates 192 and 198 clustered more closely with each other than with 

isolate 204.  

Furthermore, PLS-DA model applied to MALDI-TOF-MS data achieved an average 

CCR of 78.2% (p<0.001) and 35.7% (p<0.001) for the 12 (strains) and 35 (isolates) 

classes, respectively. When PLS-DA was undertaken with 33 isolates (with isolates 

160 and 219 removed), the average CCR for the isolates increased to 53.95% 

(p<0.001). The prediction accuracies for the 12 classes are shown in Table S2B and 
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those for the 35 classes (isolates) are shown in Table S4. Table S2B shows that 

discrimination between most of the strains (12 classes) using MALDI-TOF-MS data 

achieved high correct classification rates, except for EC14 and UNI 191, which had 

rather low classification rates. Confusion matrices for the 35 classes and the 33 

classes (160 and 219 isolates removed) are shown in Figure S8A and C, respectively. 

From these matrices, it can be seen that all the isolates identified by the reference 

laboratory as unique (UNI), which included isolates 156, 178, 191 and 214, were 

also classified as unique based on MALDI-TOF-MS data. Moreover, EC20 and 

EC19 were assigned the same classification in PFGE typing, and this was in 

agreement with MALDI-TOF-MS, FT-IR spectroscopy and Raman spectroscopy 

data. In addition, based on MALDI-TOF-MS data (Fig.S8A and C), representatives 

of EC13 (152, 154 and 155) belonged to the same cluster, and isolates 177 from 

EC13 was significantly different from the remaining EC13 strains; this was also 

observed in FT-IR and PFGE data. Looking back at Figure S8C, it can be seen that 

all the strains from EC04 were unique in MALDI-TOF-MS and FT-IR profiles when 

using PLS-DA modelling. 

3.4 Procrustes distance test of the three analytical techniques. Analytical 

techniques such as FT-IR spectroscopy, Raman spectroscopy and MALDI-TOF-MS 

are currently used in clinical research studies worldwide and many reports have been 

published showing advantages of using such techniques. 
24, 54, 77, 78

  

 

Compared to PCR, the ‘gold standard’ technique for enterococci identification, no 

conclusive evidence was identifiable in the literature. Application of PCR to the 

classification of E. coli from five different sources recorded average correct 

classification of 84% (Seurinck et al., 2003), a level comparable to that obtained 

with FT-IR spectroscopy in this study (89.4%) albeit with a different microrganism. 

Kirschner et al. 
61

 demonstrated accurate identification and classification of 18 

strains from 6 different species belonging to enterococci using vibrational 

spectroscopic techniques in combination with chemometrics. This study suggested 

that FT-IR and Raman spectroscopies can offer potential alternatives to the 

conventional typing tests, based on PCR, due to their speed and ease of use, 

demonstrating high consistency between classifications based on FT-IR and Raman 

methods. Based on comparison with classification using PCR, they advocated the 
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use of FT-IR and Raman techniques due to the limited number of Enterococci 

species that could be analysed by PCR and the requirement for very specific 

procedures, which makes these analytical techniques more suitable for routine use. 

Our results are in agreement with their findings; however, Kirschner et al. 
61

 did not 

report comparative analysis of correct classification rates from these techniques. 

Oliveira et al. 
51

 showed that Raman spectroscopy, in combination with a 

chemometric algorithm, can be used to discriminate between seven different colonies 

of Gram-positive and Gram-negative bacteria. In another previous study, it was also 

shown that 59 clinical bacterial strains associated with urinary tract infections (UTIs) 

could be identified using FT-IR and Raman spectroscopy.
17

 As an alternative to 

vibrational spectroscopic techniques, MALDI-TOF-MS is a relatively new technique 

which has shown very promising results for identification in agreement with 

methodologies carried out in microbiological laboratories, and therefore has been 

used for the identification and classification of bacterial species 
15, 79, 80

 and is 

appearing in many clinical microbiology testing laboratories.
54, 81, 82

 

Previous studies have generally focussed on the application of just one or two 

analytical techniques for the classification of Enterococcus spp. However, to 

generate complementary data and more comprehensive analysis, this study combines 

three different analytical techniques – FT-IR spectroscopy, Raman spectroscopy and 

MALDI-TOF-MS – to analyze whole bacterial cells. Successful classification was 

demonstrated at the strain (i.e. 12 classes) and isolate (i.e. 35 classes) levels based on 

data generated by the three analytical platforms. In order to assess the overall 

information content in the spectra that has been revealed by the cluster analysis from 

the scores plots, Procrustes analysis was employed to assess the overall similarity 

between the patterns detected by these three platforms. The results are presented in 

terms of Procrustes distance (Table 2A and B), where the Procrustes distance varies 

from 0 to 1; the lower the distance, the higher the similarity between the results. The 

comparisons were made using averaged PC-DFA scores. For each dataset, there 

were two sets of PC-DFA scores, one at the strain level (12 classes) and another for 

isolates classification (35 classes). For each set of PC-DFA scores, the scores were 

then averaged according to their strain label and isolate label to give two sets of 

averaged PC-DFA scores. 

The findings in Table 2 can be summarized as follows: 
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(i) The patterns in the PC-DFA scores at strain and isolate levels were highly 

similar to each other for all the three analytical platforms. The Procrustes 

distances varied from 0.0681 to 0.1812. This suggested that the variation 

originating from different bacteria is the main factor in PC-DFA, i.e. the 

differences between different strains were significantly higher than those 

between different isolates. 

(ii) The two vibrational spectroscopic techniques (FT-IR and Raman) generated 

highly similar results both at the strain and isolate classification levels, with 

the corresponding Procrustes distances varying from 0.2112 to 0.3187. 

(iii) However, the results generated by MALDI-TOF-MS were significantly 

different from those generated by the two spectroscopic techniques, and the 

corresponding Procrustes distances were all above 0.8. Such differences can 

be mainly attributed to data on isolate UNI 178, which appeared to be very 

different to other strains in the MALDI-TOF-MS dataset.  

Table S5 shows a summative comparison of the 4 main clusters identified based on 

the three analytical techniques using PC-DFA plots of the 12 E. faecium strains (12 

classes). It can be seen from this table that despite the large Procrustes distances 

between data generated by MALDI-TOF-MS and those generated by the other two 

techniques, the main identified clusters patterns observed in all three datasets were 

still largely consistent. 

 

4. Conclusions  

The results obtained from the three analytical techniques (mass spectrometry and 

vibrational spectroscopy) demonstrated that good discrimination between E. faecium 

bacteria can be achieved at both the strain and isolate levels and the detected patterns 

from these techniques were highly similar. However, UNI 178 was detected to be 

different in MALDI-TOF-MS data, which differed from the two vibrational 

spectroscopy techniques employed in this study. 

The results obtained using these spectroscopic phenotyping approaches were mostly 

consistent with previous results obtained from experiments carried out using the 

genotypic classification method, PFGE. Some of the results differed when directly 

comparing our analytical approach with results from the molecular approach and 
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these differences may be due to comparing phenotypic differences from whole-

organism fingerprinting with genotypic differences using PFGE.  

In conclusion, we have assessed multiple analytical phenotypic as complementary 

approaches to current molecular methods. All methods provided excellent clustering 

which was in general agreement with genotypic baseline methods, as well as 

allowing excellent discrimination to the strain level and good resolution at the sub-

strain level. We believe that these three different physicochemical techniques have 

excellent potential as high-throughput point-of-care screening tools, and for the rapid 

and reproducible classification of clinically relevant bacteria, such as E. faecium. 

However, further method development may be required to optimise these methods 

for reliable analysis of bacterial mixtures. 
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Figures  

 

 

Fig 1. Workflow of data analysis undertaken for FT-IR spectroscopy, Raman spectroscopy 

and MALDI-TOF-MS. The data were first pre-processed then multivariate analysis MVA 

was applied using PC-DFA at both the (ST) strain (12 classes) and (IS) isolate (35 classes) 

levels. This was followed by PLS-DA. 
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and MALDI)
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Fig 2. (A) Discriminant function analysis (DFA) scores plot from FT-IR data after pre-

processing, illustrating the relationship between the 12 enterococci. (B) Cluster analysis on 

averaged PC-DFA scores (12 classes/strains) using Ward’s linkage.
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Fig 3. (A) PC-DFA plot from FT-IR data after pre-processing which illustrates the 

relationship between the 35 enterococcus isolates. (B) Hierarchical cluster analysis on 

averaged PC-DFA scores (35 classes/isolates) using Ward’s linkage (right) and PFGE 

results (left). Each isolate is represented by the same color in both the boxes around the 

PFGE images and the FT-IR dendrogram. 
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Fig 4. PLS-DA trained on 35 classes (i.e. 35 isolates) from FT-IR spectral data. 

High percentage class membership assignments are represented by warm colors (e.g. 

red) whilst the cold colors (e.g. blue) represent low percentage class membership 

assignments. The diagonal “tiles” are much warmer than off-diagonal “tiles”, which 

indicates agreement between predicted classes and known classes.   
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Table 1. The prediction accuracies of the 12 enterococci strains using FT-IR spectroscopy 

data 

 

Table 2. The similarity between three different datasets using Procrustes distance 

(A) PC-DFA at the strain level 

Averaging on ST 

level 

FT-IR 

(IS) 

FT-IR 

(ST) 

Raman 

(IS) 

Raman 

(ST) 

MALDI 

(IS) 

MALDI 

(ST) 

FT-IR (IS) -           

FT-IR (ST) 0.0858 -         

Raman (IS) 0.2125 0.2933 -       

Raman (ST) 0.2314 0.3187 0.1502 -     

MALDI (IS) 0.8602 0.889 0.899 0.8202 -   

MALDI (ST) 0.9125 0.8846 0.9149 0.8988 0.1812 - 

 

(B) PC-DFA at the isolate level 

Averaging on IS 

level 

FT-IR 

(IS) 

FT-IR 

(ST) 

Raman 

(IS) 

Raman 

(ST) 

MALDI 

(IS) 

MALDI 

(ST) 

FT-IR (IS) -           

FT-IR (ST) 0.1085 -         

Raman (IS) 0.2112 0.2446 -       

Raman (ST) 0.2411 0.3168 0.1132 -     

MALDI (IS) 0.8593 0.8719 0.8196 0.8001 -   

MALDI (ST) 0.8975 0.8608 0.8841 0.8703 0.0681 - 
(ST) and (IS) indicate the PC-DFA was calculated at the strain (12 classes, PFGE-

defined 12 types) and isolate (33 classes) levels, respectively.  

Class 
Known/Predicted EC04 EC09 EC10 EC13 EC14 EC15 EC19 EC20 

UNI 

156 

UNI 

178 

UNI 

191 

UNI 

214 

EC04 89.9% 0.5% 0.0% 0.0% 0.4% 8.3% 0.1% 0.0% 0.0% 0.0% 0.7% 0.1% 

EC09 0.1% 90.3% 0.0% 1.3% 4.8% 0.0% 3.5% 0.0% 0.0% 0.0% 0.0% 0.0% 

EC10 0.0% 0.1% 99.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 

EC13 0.0% 0.0% 0.0% 99.8% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 

EC14 0.1% 48.9% 0.0% 1.1% 47.3% 1.0% 1.4% 0.1% 0.0% 0.0% 0.1% 0.0% 

EC15 6.8% 1.4% 0.0% 0.0% 0.5% 91.1% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 

EC19 1.6% 9.3% 0.0% 0.2% 3.6% 0.0% 83.5% 0.0% 0.0% 0.0% 0.0% 1.8% 

EC20 0.0% 0.1% 0.0% 0.0% 0.0% 0.7% 0.0% 99.2% 0.0% 0.0% 0.0% 0.0% 

UNI 156 0.4% 0.0% 0.0% 0.5% 0.0% 0.0% 0.1% 0.9% 98.1% 0.0% 0.0% 0.0% 

UNI 178 0.0% 5.3% 0.0% 0.1% 0.0% 0.0% 0.4% 0.0% 0.0% 93.9% 0.2% 0.0% 

UNI 191 6.5% 0.9% 0.0% 25.2% 0.0% 1.3% 0.0% 0.0% 0.0% 0.0% 66.1% 0.1% 

UNI 214 1.9% 13.4% 0.0% 1.0% 0.1% 0.0% 20.4% 0.0% 0.0% 0.0% 4.2% 58.9% 
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