Analytical Methods

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

Analytical Methods

2	
2	
4	
4	
5	
6	
7	
8	
ā	
10	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
25	
30	
36	
37	
38	
39	
40	
11	
-1 10	
42	
43	
44	
45	
46	
47	
10	
40	
49	
50	
51	
52	
53	
50	
54	
55	
56	
57	
57 58	

Determination of tetraiodo-L-thyronine in human serum with competitive
 indirect chemiluminescence immunoassay
 Yilin Gao,^{1a} Zhirui Deng,^{1a} Quan Wang,^{*b} and Qin Chen^{**a}
 Based on the monoclonal antibodies against 3, 3', 5, 5'-tetraiodo-L-thyronine (T₄), a

competitive indirect chemiluminescence immunoassay (CLEIA) used for quantitative 6 determination of total T₄ in human serum was established. The relevant results indicated that 7 the determined coating antigen concentration was 2.7 µg mL⁻¹ and the CLEIA titer of ascites 8 was $1:8.0 \times 10^4$. The standard curve was y = -0.495x + 1.095, with coefficient of 9 determination, $R^2 = 0.988$, and derived half inhibition concentration (IC₅₀) of T₄ was 16.0 10 ng mL⁻¹. The system detection limit was 9.23 ng mL⁻¹. The mean inter- and intra-assav 11 variations were 5.89 % and 4.02 %, respectively. The detected data of total T₄ in human 12 serum from seven patients with this method exhibited significant correlation with reported 13 clinical data, suggesting this CLEIA method could be applicable to clinical diagnosis of 14 15 thyroid gland disease.

16

17

18 Yilin Gao and Zhirui Deng contributed equally to this work.

Address correspondence to Qin Chen, School of Life Sciences, Shanghai University, Shanghai 200444, China. E-mail:
 chenqincc@staff.shu.edu.cn; Quan Wang, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural
 Sciences (CAAS), Shanghai 200241, China. E-mail: wangquan@shvri.ac.cn

22

1 Introduction

Thyroid dysfunction is common in general population and quite prevalent among people aged over 60 years.¹ The concentration of 3, 3', 5, 5'-tetraiodo-L-thyronine (T_4) is a useful parameter for thyroid function diagnosis in clinical. Under normal physiological conditions, approximately 99.95% of T_4 , binding to some specific proteins (mainly thyroxine binding globulin), exist in compound form, the rest remain free.² Since free T_4 level is always susceptible to the amount of bound T_4 , and its detection requires complicated procedure,³ the concentration of total T₄ in human serum is generally accepted as an index of thyroid dysfunction. When the concentration of total T₄ in human serum is out of the reference range, 46.62 ng mL⁻¹ to 140.64 ng mL⁻¹, thyroid gland is in abnormal state.

Currently, several immunoassay technologies for total T₄ detection are available. These include radioimmuno-assay (RIA), enzyme linked immunosorbent assay (ELISA), time resolved fluoroimmunoassay (TRFIA), high-performance liquid chromatography (HPLC), and electro-chemiluminescence immunoassay (ECLI). Although, RIA gives sensitive detection limit (5.0 ng mL⁻¹),⁴ the demand for isotopes restricts its application inevitably. Both ELISA and HPLC methods, using safer agents, yet exhibit poor sensitivity (about 13.83 ng mL⁻¹, and 0.10 µg mL⁻¹, respectively).^{5, 6} TRFIA and ECLI can separately offer sensitivity at 5.36 mg mL⁻¹ and lower than 0.30 pmol L⁻¹ level,^{7,8} but sophisticated operations are only managed by specialized technicians.

A promising alternative to above-mentioned assays is chemiluminescence enzyme
 immunoassay (CLEIA). It owns safety, sensitivity, convenience and broad applicability.⁹⁻¹²
 The quantitative analysis is achieved through substance binding to special antibody, further

Analytical Methods

triggering photons release. So far, CLEIA test has been mainly applied in diagnosis of small cell lung carcinoma,⁹ squamous cell carcinoma,¹³ hepatocellular carcinoma,^{14, 15} etc., but satisfactory CLEIA detection for thyroid dysfunction has not been reported. Hence, a sensitive and convenient method, based on CLEIA, is urgent to the clinical diagnosis and life science research.

Using developed monoclonal antibodies against $T_4 (T_4 \text{ McAb})^5$ and specific polyclonal antibodies conjugated with horseradish peroxidase (HRP), we established a competitive indirect CLEIA. Methodology parameters of CLEIA were evaluated and optimized. It is demonstrated that the optimized method satisfies clinical detection criteria, as the examined concentrations of total T_4 in human serum samples are in accordance with the clinical data.

56 2 Experimental

57 2.1 Chemicals and reagents

3,3',5,5'-tetraiodo-L-thyronine (T₄) and horseradish peroxidase (HRP), coupled with goat
anti-mouse IgG were purchased from Sigma-Aldrich, USA. Dimethylsulfoxide (DMSO),
hydrogen peroxide (H₂O₂) and trihydroxy methyl aminomethane (Tris) were obtained from
Sinopharm Chemical Reagent Co., Ltd (SCRC). Luminol and *p*-lodophenol were purchased
from Alfa Aesar, USA.

T₄-BSA, T₄ McAb,⁵ CLEIA washing buffer, CLEIA coating buffer, blocking buffer
 (1×PBST buffer containing 1% gelatin) and chemiluminescence substrate buffer were
 prepared in our laboratory.

67 2.2 Serum samples

Patients' venous blood samples were supplied by Central Hospital of Nanhui District inShanghai.

71 2.3 Instrumentation

Synergy 2 SL Luminescence Microplate Reader (10 amol ATP in flash analysis system and 100 amol ATP in glow system), with Gen 5 Data Analysis Software, was employed for photon signals capturing, multi-analyzing and data-processing. 75004261 centrifuge was from Thermo Scientific, USA. 96-well chemiluminescence white microplates were purchased from Greiner Bio-One, Germany.

78 2.4 Establishment of T₄ CLEIA

2.4.1 Working concentration determination for coating antigen and T₄ McAb. The working concentrations of coating antigen and antibody are critical to sensitivity of immunoassay. According to checkboard assay,¹⁶ with coating buffer, sequentially dilute T₄-BSA (8.0 mg mL⁻¹) solution into 4.0 μg mL⁻¹, 2.7 μg mL⁻¹, 2.0 μg mL⁻¹, 1.6 μg mL⁻¹, 1.3 μ g mL⁻¹ and 1.1 μ g mL⁻¹, and then transfer 100 μ L solution into 96-well chemiluminescence microplate per well, and incubate for 4 h at 37 °C. Wash the microplate three times with 1×PBST buffer and add 200 µL 1% gelatin 1×PBST into each well to block. Then wash three times again, and orderly add 100 μ L T₄ McAb in dilution ratios (1:4.0×10⁴, 1:6.0×10⁴, $1:8.0 \times 10^4$, $1:1.0 \times 10^5$, $1:1.2 \times 10^5$, $1:1.4 \times 10^5$ and $1:1.6 \times 10^5$) into the corresponding blocked wells. Use 1×PBST buffer containing 1% gelatin as negative control. Here, we use 1×PBST

Analytical Methods

buffer that contains 5 % fetal bovine serum (FBS) and 0.05 % Tween-20 as antibody dilution solution. FBS can restrain antibody from nonspecific absorption, and Tween-20 can remove nonspecifically binding antibody and enhance washing effect. Incubate the microplate for 1.5 h at 37 °C. Then, wash the plate three times and add 100 µL goat anti-mouse IgG-HRP $(1:4.0\times10^3$ dilution) to each well. After that, add 1006.225 µL reaction solution (1.0 mL chemiluminescence substrate buffer, 0.625 μ L p-lodophenol, 4.0 μ L Luminol and 1.6 μ L H₂O₂) per well, and detect instantaneous chemiluminescence signals, defined as counting photon per second (CPS), within 5 minutes.

2.4.2 Establishment of T₄ competitive indirect CLEIA. In order to avoid the interference of endogenous T₄ in FBS, we use 1×PBST complemented with 1% gelatin instead of 5% FBS to dilute the antibody. With 1% DMSO 1×PBS, prepare 2.0 ng mL⁻¹, 10 ng mL⁻¹, 20 ng mL⁻¹, 40 ng mL⁻¹, 80 ng mL⁻¹, 120 ng mL⁻¹, 160 ng mL⁻¹ and 200 ng mL⁻¹ T₄ standard solution. According to the procedure in 2.4.1, use coating antigen and T₄ McAb at working concentration, respectively, and replace 100 μ L T₄ McAb solution with the mixture of 50 µL T₄ standard solution and 50 µL T₄ McAb solution. The inhibitory effect of different T₄ standard concentrations is expressed as percent inhibition (B/B_0) according to the formula:

Analytical Methods Accepted Manuscript

107
$$(B / B_0)\% = (B / B_0) \times 100\%$$

108 Where, $B_0 = \text{CPS}$ in well containing no T₄, B = CPS in well containing T₄. Accordingly, 109 establish plot T₄ standard curve, where *x* axis represents \log_{10} of standard T₄ concentration 110 while *y* axis stands for relative luminous intensity (B/B_0) . Calculate IC₅₀ value, according

111 to the equation of the standard curve.¹⁷

> **2.4.3 System detection limit.** The limit value of EIA, which represents detecting sensitivity, has to be as low as possible. The CPS values of 16 blank controls, where, physiological saline instead of T_4 standard solution, are measured by CLEIA method. The mean value (\overline{X}) and standard deviation (*SD*) are statistically analyzed. On this basis, calculate the value of " \overline{X} -3*SD*". By introducing the calculated values into the established equation of the standard curve, the corresponding T_4 concentration will be obtained, which is defined as the detectable limit that indicates sensitivity of immunoassay.¹⁸

2.4.4 Precision and accuracy. Precision is expressed as inter- and intra- coefficient of 122 variation (CV%), which are required to be lower than 10% and 5.0% separately in 123 immunoassay. Intra- and inter-assay variations of competitive CLEIA assay for T_4 standard 124 solution in 2.4.2 are analyzed with five replicates on the strength of the formula:

 $CV\% = SD / [1.414 \times (B / B_0)] \times 100\%$

2.5 Sample volume determination

To determine the suitable serum volume for T_4 detection, different volumes (20 µL, 30 µL, 35 µL, 40 µL) are used in CLEIA method. Then, the relative difference between examined data and clinical data is assessed.

2.6 Applicability of T₄ CLEIA

With optimized sample volume, T_4 concentrations in serum samples from seven patients are detected by the established method in 2.4.2 to evaluate analytical accuracy. The correlation between tested data and clinical data is determined through the plotted graph, where *x* axis represents reported data clinically and *y* axis indicates detected data.

2.7 Statistical analysis

The quantitative data of three to five repetitions are expressed as averages \pm SD. Statistical significance is assessed with Student's *t*-test, when P > 0.05, suggesting no significant difference. Analytical Methods Accepted Manuscript

3 Results and Discussion

3.1 Establishment of T₄ CLEIA

3.1.1 Working concentration determination for coating antigen and T_4 McAb. The determined working concentrations of coating antigen (T₄-BSA) and T₄ McAb were shown in Table 1. When the dilution ratio of T₄ McAb kept constant, CPS obviously reduced with decreasing concentration of T_4 -BSA; On the other hand, when the concentration of T_4 -BSA kept fixed, the CPS diminished with the increasing dilution ratio of T₄ McAb. When the 96-well microtiter plate, coated with 2.7 μ g mL⁻¹ T₄-BSA, was applied with 1:8.0×10⁴ dilution of T₄ McAb, the CPS value was 101924, most approximate to 1.0×10^5 . Therefore, the appropriate coating antigen concentration in CLEIA was determined as 2.7 µg mL⁻¹, and the working dilution of T₄ McAb, $1:8.0\times10^4$.

Table 1 Working concentration determination for coating antigen and T₄ McAb

155	3.1.2 Confirmation of T_4 CLEIA. Based on the optimized CLEIA assay and data
156	acquired from 2.4.2, a standard curve for T_4 was obtained, showed in Fig. 1. The regression
157	equation was $y = -0.495x + 1.095$ with coefficient of determination, $R^2 = 0.988$. The
158	derived IC_{50} for T_4 was 16.0 ng mL ⁻¹ , slightly lower than that reported with time-resolved
159	immunofluorometric assay by Tan Yuhua ⁷ and 54.4% lower than that with competitive
160	indirect ELISA (ciELISA) we established. ⁵ Excellent linear correlation existed between the
161	relative luminous intensity (B/B_0) and \log_{10} of standard T ₄ concentration. The working
162	range of this assay was determined from 2.0 ng mL ⁻¹ to 200 ng mL ⁻¹ .
163	Fig.1 The standard curve for T_4 obtained with the established CLEIA (Triplications per
164	point).
165	
166	3.1.3 System detection limit. According to T ₄ CLEIA standard curve, the CPS values of
167	16 blank samples (Table S1) were used to calculate the value of \overline{X} -3SD. The assay
168	sensitivity of system detection limit was shown to be 9.23 ng mL ⁻¹ , generally similar to those
169	reported so far. ^{4, 19}
170	Table S1 CPS values of 16 blank standard samples with CLEIA method
171	
172	3.1.4 Precision and accuracy. As shown in Table 2, the mean intra- and inter- assay
173	variations were 4.02 % (< 5.0 %) and 5.89 % (< 10 %), respectively, demonstrating this
174	CLEIA possessed high accuracy.
175	Table 2 The mean intra- and inter- assay variations of CLEIA
176	
177	3.2 Sample Volume determination.

Analytical Methods

As listed in Table 3, when 30 µL sample volume was taken, the relative difference between detected data and reported clinical data of human serum samples exhibited minimum, suggesting that 30 μ L was the most appropriate volume for detection. Furthermore, significant difference among different sample volumes of human sera was analyzed with Least Significant Difference (LSD) method (Table S2), and mean coefficient variation of 30 μ L was quite significantly different from those of 35 μ L and 40 μ L, but not from those of 20 μ L. Consequently, sample volume from 20 μ L to 30 μ L could be used in CLEIA. Table 3 Total T₄ concentrations in serum samples from three patients with CLEIA method Table S2 Significant difference among four mean coefficient of variations in Table 3 using Least Significant Difference (LSD) (Letter notation) 3.3 Applicability of T₄ CLEIA. The correlation between T₄ concentrations detected with CLEIA and those clinically reported in the same seven patients' sera was appraised in Fig. 2. The regression equation was y = 1.003x - 1.357, with coefficient of determination, $R^2 = 0.918$, indicating good linear correlation. Hence, this CLEIA method could satisfy clinical detection criteria. Besides, according to data examined with CLEIA, T₄ concentration in one of human serum samples, was 37.28 ng mL⁻¹, out of the normal reference value range (46.62 ng mL⁻¹ to 140.64 ng mL⁻¹), suggesting the serum-owner's thyroid disfunctioned. Fig.2 Correlation between detected data with CLEIA and reported clinical data (Triplications

Analytical Methods Accepted Manuscript

per point of detected data).

200	
201	4 Conclusions
202	In this study, we established a competitive indirect CLEIA method to detect total T ₄ in human
203	serum. Meanwhile, we also confirmed methodology parameters of this method, including
204	IC ₅₀ , linear detecting range, system detection limit, inter-assay and intra-assay variation.
205	Concretely, IC_{50} of this CLEIA was 16.0 ng mL ⁻¹ . The linear detecting range was 2.0 ng mL ⁻¹
206	to 200 ng mL ⁻¹ , and the limit value was 9.23 ng mL ⁻¹ . The method we established gave low
207	inter-assay variation (5.89%) and intra-assay variation (4.02%). All results above suggested
208	that we have established a highly-specific and excellently-sensitive T ₄ examination system.
209	
210	Acknowledgements
211	This project was supported by Shanghai Feng Hui Medical Technology Co., Ltd.
212	
213	References
214	1. K. Boelaert, <i>Nature reviews. Endocrinology</i> , 2013, 9 , 194-204.
215	2. J. Bernal, A. Guadano-Ferraz and B. Morte, <i>Nature reviews. Endocrinology</i> , 2015, 11 , 406-417.
216	3. L. F. Maciej Adamczyk, Jeffrey R. Fishpaugh, Donald D. Johnson, Phillip G. Mattingly, Bioconjugate
217	Chem., 1994, 5 , 459-462.
218	4. Y. C. Tyan, S. B. Jong, M. H. Yang, T. L. Wu, T. W. Chung, P. C. Liao, C. Y. Lin and Y. F. Huang, <i>Clinica</i>
219	chimica acta; international journal of clinical chemistry, 2013, 420 , 99-103.
220	5. Y. L. Gao, J. C. Wei, Z. R. Deng, W. J. Zhang, Y. C. Liu, W. Jiang, Y. J. Chen, J. L. Shi, Q. Chen, Animal
221	Husbandry & Veterinary Medicine, 2013, 45 , 54-58.
222	6. H. Gika, M. Lämmerhofer, I. Papadoyannis and W. Lindner, <i>Journal of Chromatography B</i> , 2004, 800 ,
223	193-201.
224	7. H. H. Tan Yuhua, Lu Shunduo, Shen Jian, <i>Chinese Journal of Clinical Laboratory Science</i> , 2008, 26,
225	33-35.
226	8. M. A. Marta S C, Alfayate R., <i>Clin. Biochem.</i> , 1999, 32 , 395-403.
227	9. X. Fu, M. Meng, Y. Zhang, Y. Yin, X. Zhang and R. Xi, <i>Analytica chimica acta</i> . 2012. 722 . 114-118.
228	10. JB. Dai, ZL. Xu, FY. Liu, JY. Yang, YM. Sun. H. Wang, HT. Lei and YD. Shen. <i>Chinese Journal of</i>
229	Analytical Chemistry, 2015, 43 , 871-875.

22

25

51

Analytical Methods

2			
3	230	11.	ZS. L. Chao Lin, Dong-Xu Wang, Hong-Lin Ren, Yan-Song Li, Pan Hu, Yu Zhou, Yi-Ping Guo, Xian-Mei
4	231		Meng, Shi-Ying Lu, Analytical Methods, 2014, 6, 7142-7148.
5 6	232	12.	X. L. Feng, H. L. Ren, Y. S. Li, P. Hu, Y. Zhou, Z. S. Liu, D. M. Yan, Q. Hui, D. Liu, C. Lin, N. N. Liu, Y. Y. Liu
7	233		and S. Y. Lu, Analytical biochemistry, 2014, 459, 12-17.
8	234	13.	H. Zhang and S. Qi, Clinica chimica acta; international journal of clinical chemistry, 2011, 412,
9	235		1572-1577.
10	236	14.	QY. Zhang, H. Chen, Z. Lin and JM. Lin, Journal of Pharmaceutical Analysis, 2011, 1, 166-174.
12	237	15.	X. Liu, X. Wan, S. Lu, L. Zhang, S. Yu and X. Lu, Clinica chimica acta; international journal of clinical
13	238		chemistry, 2015, 445 , 54-59.
14	239	16.	Hm. Niu, Xm. Huang, Kk. Han, Yz. Liu, Dm. Zhao, Jf. Zhang, F. Liu, Tt. Li, Xb. Zhou, Xr. Li and
15 16	240		Y. Li, Journal of Integrative Agriculture, 2013, 12 , 1638-1643.
17	241	17.	C. Wyns, L. Derycke, B. Soenen, S. Bolca, D. Deforce, M. Bracke and A. Heyerick, Talanta, 2011, 85,
18	242		197-205.
19	243	18.	X. Wang, Q. Y. Zhang, Z. J. Li, X. T. Ying and J. M. Lin, Clinica chimica acta; international journal of
20 21	244		clinical chemistry, 2008, 393 , 90-94.
22	245	19.	Y. Huang, S. Zhao, M. Shi and Y. M. Liu, Analytical biochemistry, 2010, 399 , 72-77.
23	246		
24			
20	247		

Fig.1 The standard curve for T_4 obtained with the established CLEIA (Triplications per point).

Fig.2 Correlation between detected data with CLEIA and reported clinical data (Triplications per point of detected data).

Analytical Methods

1	
2	>
-	2
	, ,
4	ł
5	5
6	5
7	7
2	2
	, ,
5)
1	0
1	1
1	2
4	2
	3
1	4
1	5
1	6
1	7
1	0
	0
1	9
2	20
2	21
2	2
~	
4	23
Ż	24
2	25
2	26
2	7
2	-1
4	28
2	29
3	30
3	31
	22
0	2
Ċ	33
3	34
3	35
2	36
	70
0	57
Ċ	88
3	39
Z	10
/	11
7	ר ו ו י
2	+2
2	13
2	14
2	15
7	16
7	17
4	+/
2	18
2	19
Ę	50
F	51
-	- 1 - 1
5	2
5	53
5	54
Ę	55
F	56
ر ا	-7
5)/
5	8
5	59
6	60
-	-

TADLE I WOLKING CONCERNIATION DETERMINATION FOR COATING AND SET AND TA WICA	Table	1 Working	concentration	determination	for coating	antigen and	T₄	McAb
--	-------	-----------	---------------	---------------	-------------	-------------	----	------

	U				0 0				
Coating antingen	T ₄ McAb dilution (×10 ⁴)								
concentration (µg mL ⁻¹)	1:4.0	1:6.0	1:8.0	1:10	1:12	1:14	1:16	0	
4.0	214997	175135	154967	140972	118175	114054	84432	449	
2.7	156973	125830	101924	93210	73698	75280	49545	302	
2.0	127560	104857	72649	78028	57100	59605	38530	127	
1.6	67306	59155	35763	36122	25819	28450	18888	213	
1.3	67943	51360	44246	37774	29363	24726	18878	418	
1.1	42680	34183	24667	21981	16281	16170	11503	628	

Table 2 The mean intra- and inter- assay variations of CLEIA

Standard					CV	CV%		
T_4	Intra-	Intra-	Inter-	Inter-				
concentration	replication	(B/B0) ±SD	replication	(B/B0) ±SD	Intra-	Inter-		
(ng mL ⁻¹)								
200	5	0.0088±0.0000	5	0.0161±0.0000	0.00	0.00		
160	5	0.0311 ± 0.0000	5	0.0427±0.0050	0.00	8.28		
120	5	0.1450±0.0141	5	0.1462±0.0250	6.88	12.1		
80	5	0.3658±0.0312	5	0.3387±0.0477	6.03	9.96		
40	5	0.6587±0.0304	5	0.7217±0.0915	3.26	8.97		
20	5	0.8314±0.0529	5	0.9250±0.0335	4.50	2.56		
10	5	0.9036±0.0194	5	0.9869±0.0255	1.52	1.83		
2	5	0.9531±0.0085	5	0.9954±0.0172	0.89	1.73		
mean		0.4872±0.0196		0.5216±0.0307	4.02	5.89		

Table 3 Total T ₄ conce	entrations in serum s	amples from three	patients with	CLEIA method
------------------------------------	-----------------------	-------------------	---------------	--------------

Sample 1			Sample 2				Sample 3		
Detected	Reported	Relative	Detected	Reported	Relative	Detected	Reported	Relative	Mean relative
data	data	difference	data	data	difference	data	data	difference	difference
91.97	106.68	13.79%	82.25	77.08	6.71%	46.42	57.07	18.67%	13.06%
108.23	106.68	1.45%	86.97	77.08	12.83%	53.37	57.07	6.48%	6.92%
132.19	106.68	23.91%	98.61	77.08	27.93%	65.79	57.07	15.28%	22.37%
127.37	106.68	19.39%	95.45	77.08	23.83%	65.18	57.07	14.21%	19.14%
	Detected data 91.97 108.23 132.19 127.37	Sample 1 Detected Reported data data 91.97 106.68 108.23 106.68 132.19 106.68 127.37 106.68	Sample 1 Detected Reported Relative data data difference 91.97 106.68 13.79% 108.23 106.68 1.45% 132.19 106.68 23.91% 127.37 106.68 19.39%	Sample I Detected Reported Relative Detected data data difference data 91.97 106.68 13.79% 82.25 108.23 106.68 1.45% 86.97 132.19 106.68 23.91% 98.61 127.37 106.68 19.39% 95.45	Sample 1 Sample 2 Detected Reported Relative Detected Reported Relative data data difference data data <td>Sample I Sample 2 Detected Reported Relative Detected Reported Relative data data difference data data difference 91.97 106.68 13.79% 82.25 77.08 6.71% 108.23 106.68 1.45% 86.97 77.08 12.83% 132.19 106.68 23.91% 98.61 77.08 27.93% 127.37 106.68 19.39% 95.45 77.08 23.83%</td> <td>Sample I Sample 2 Detected Reported Relative Detected Reported Relative Detected data data difference data data difference data 91.97 106.68 13.79% 82.25 77.08 6.71% 46.42 108.23 106.68 1.45% 86.97 77.08 12.83% 53.37 132.19 106.68 23.91% 98.61 77.08 27.93% 65.79 127.37 106.68 19.39% 95.45 77.08 23.83% 65.18</td> <td>Sample 1 Sample 2 Sample 2 Detected Reported Relative Reported Relative Reported Relative Reported Relative Relative</td> <td>Sample 1 Sample 2 Sample 3 Detected Reported Relative Detected Reported Reported</td>	Sample I Sample 2 Detected Reported Relative Detected Reported Relative data data difference data data difference 91.97 106.68 13.79% 82.25 77.08 6.71% 108.23 106.68 1.45% 86.97 77.08 12.83% 132.19 106.68 23.91% 98.61 77.08 27.93% 127.37 106.68 19.39% 95.45 77.08 23.83%	Sample I Sample 2 Detected Reported Relative Detected Reported Relative Detected data data difference data data difference data 91.97 106.68 13.79% 82.25 77.08 6.71% 46.42 108.23 106.68 1.45% 86.97 77.08 12.83% 53.37 132.19 106.68 23.91% 98.61 77.08 27.93% 65.79 127.37 106.68 19.39% 95.45 77.08 23.83% 65.18	Sample 1 Sample 2 Sample 2 Detected Reported Relative Reported Relative Reported Relative Reported Relative Relative	Sample 1 Sample 2 Sample 3 Detected Reported Relative Detected Reported Reported

Detection of T_4 by the established CLEIA method.