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Abstract  10 

Variable selection and outlier detection are important processes in chemical modeling. 11 

Usually, they affect each other. Their performing orders also strongly affect the 12 

modeling result. Currently, many studies perform them separately and in different 13 

orders. In this study, we discussed the interaction between outliers and variables, and 14 

compared the modeling procedures performed in different variable selection and 15 

outlier detection orders. Because the order of outlier detection and variable selection 16 

can affect the interpretation of the model, it is hard to decide which order is better 17 

when the predictability (prediction error) of different orders is relatively close. To 18 

handle this problem, a simultaneous variable selection and outlier detection approach 19 

                                                        
* Corresponding author. E-mail address: oriental-cds@163.com (Dong-Sheng Cao) 

† Corresponding author. E-mail address: hongmeilu@csu.edu.cn (Hong-Mei Lu) 

Page 1 of 32 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



2 

 

called Model Adaptive Space Shrinkage (MASS) was developed. This proposed 20 

approach is based on model population analysis (MPA). Through weighted binary 21 

matrix sampling (WBMS) from model space, a large number of partial least square 22 

(PLS) regression models were built, and the elite part of models were selected for 23 

statistically reassigning the weight of each variable and sample. Then, the whole 24 

process repeated until the weights of variables and samples were converged. Finally, 25 

MASS adaptively found a high performance model which consisted of the optimized 26 

variable subset and sample subset. The combination of these two subsets could be 27 

considered as the cleaned dataset used for the chemical modeling. In the proposed 28 

approach, the problem of the order of variable selection and outlier detection is 29 

avoided. One near infrared spectroscopy (NIR) dataset and one quantitative 30 

structure-activity relationship (QSAR) dataset were used to test this approach. The 31 

result demonstrated that MASS is a useful method in data cleaning before building a 32 

predictive model.  33 

Key words: outlier detection, variable selection, model population analysis, 34 

shrinkage, model space 35 

1. Introduction 36 

With the development of modern analytical instruments, numerous data which 37 

contain a large number of variables and samples can be obtained through 38 

high-throughput experimental method. Multivariate regression techniques such as 39 

multivariate linear regression (MLR) 
1
, partial least square regression (PLS) 

2
, support 40 

vector regression (SVR) 
3
 and random forest (RF) 

4
 are useful tools to analyze those 41 
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data and have been applied in different fields. However, the applications of a built 42 

model are seriously affected by the quality of the model. To build a robust and reliable 43 

model, variable selection and outlier detection method have been wildly used to 44 

improve the performance of regression models.  45 

In general, variable selection methods can be divided into three categories. One 46 

is classical methods such as forward selection method 
5
 and backward elimination 47 

method 
6
, without considering the combination effect of variables 

7
. One is artificial 48 

intelligence-based method like genetic algorithm (GA) method 
8
, artificial neural 49 

network (ANN) method 
9
 and particle swarm optimization (PSO) method 

10
 which 50 

have been applied to search the optimal subset of variables. One is statistical method 51 

such as uninformative variable elimination (UVE) 
11

, variable iterative space 52 

shrinkage approach (VISSA) 
8
 and iteratively retaining informative variables (IRIV) 53 

12
. They select variables by statistically evaluating some values of a model.  54 

Detecting outlier is troublesome especially when several outliers coexist. 55 

Diagnostics and robust regression are two methods to deal with outliers 
13

. In the 56 

diagnostic method, outliers are identified first, and the rest of samples are used to 57 

build model. Monte-Carlo (MC) method is a typical diagnostic method. It uses 58 

Monte-Carlo sampling method to build a large number of models. Each sample is 59 

predicted by all models. The standard deviation and mean value of predictive error are 60 

calculated. The sample with large standard deviation or large mean value could be 61 

considered as outliers. In the robust regression method, a regression model is 62 

constructed to fit the majority of the data. Outliers are detected by examining the 63 
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residuals which are predicted by the built model. Some representative methods 64 

include least median of squares (LMS) 
14

, robust principal component regression 65 

(RPCR) 
15

 and robust partial least squares (RPLS) 
16

 and so on.  66 

Before building a model, variable selection and outlier detection must be 67 

carefully considered, especially their interactions (i.e., their performing orders). It is 68 

worth to note that outlier detection and variable selection can influence each other 
17

. 69 

Different results may be obtained by performing these two tasks in the opposite order. 70 

Thus, the order of variable selection and outlier detection will intensively influence 71 

the application of a model. It is therefore necessary to consider variable selection and 72 

outlier detection simultaneously. Jennifer Hoeting proposes a method for 73 

simultaneous variable selection and outlier identification in linear regression, which is 74 

an early research on this aspect. The approach is based on posterior model 75 

probabilities. A Markov chain Monte Carlo approach is used to approximate the 76 

Bayesian model average over the space of all possible variables and outliers under 77 

consideration. For more detail information see reference 
18

. Later some GA-based 78 

methods 
17, 19, 20

 are proposed for this task and have been applied in different fields. J. 79 

Tolvi et al. uses an ordinary genetic algorithm for outlier detection and variable 80 

selection in linear regression 
17

. Patrick Wiegand combines a robust outlier 81 

determination method with a genetic algorithm for variable selection 
19

. Rachel Cavill 82 

et al. develops a genetic algorithm approach which simultaneously selects sub-sets of 83 

samples and spectral regions (variables) in metabonomics data. Their results indicate 84 

that simultaneous sample and variable selection method improved model performance 85 
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by over 9% compared with those separated method 
20

. Rajiv S. Menjoge gives a 86 

diagnostic method for simultaneous feature selection and outlier identification in 87 

linear regression 
21

. The method performs by adding a dummy variable set to the data 88 

matrix and running backward selection on the augmented matrix. The sequences of 89 

feature-outlier combinations are identified. Another method proposed by Sung-Soo 90 

Kim et al 
22

 consists of two procedures, first identifying the potential outliers 91 

(mean-shift outlier model), then exhaustively searching the possible subset 92 

regressions for the mean-shift outlier model. A recent method is Monte-Carlo Outlier 93 

and Variable Screening approach (MCOVS) 
23

. MCOVS builds a series of 94 

sub-regression models and simultaneously evaluates the importance of variables and 95 

location of outliers statistically. 96 

Model Population Analysis (MPA) 
24

 , proposed by Li et al., is a general 97 

framework for designing new types of chemometrics and bioinformatics algorithms
24

. 98 

In MPA, firstly, randomly produce N sub-training datasets using sampling methods 99 

from the original dataset. Secondly, establish a sub-regression model on each 100 

sub-training dataset. Finally, statistically analyze interesting outputs of all established 101 

N sub-regression models. Many methods such as MCUVE, VISSA, and IRVR are 102 

developed based on MPA. 103 

Here, we proposed a strategy based on MPA called Model Adaptive Space 104 

Shrinkage (MASS). It was applied to select variables and remove outliers 105 

simultaneously. MASS aims to find a high performance model based on a clean 106 

dataset in the model space through a weighted iteration strategy. The variable and 107 
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sample subsets are simultaneously obtained. In addition, MASS considers the outlier 108 

masking effect and variable combination effect through its random sample procedures. 109 

In this study, MASS coupled with PLS was tested on different data. Comparison with 110 

other existing popular methods or method combination showed that MASS is a useful 111 

method to select variables and outliers simultaneously. It should be noted that MASS 112 

can also be coupled to other modeling methods such as artificial neural network 113 

(ANN), support vector regression (SVR).  114 

2. Theory and method 115 

2.1 Definition of Model Space  116 

After obtaining a data with N samples and P variables, a model space is defined 117 

as a set of models which are constructed by all possible combinations of samples and 118 

variables. Fig. 1 is the sketch of model space. The combination of a variable subset 119 

and a sample subset forms a sub-training dataset, and the sub-training dataset is used 120 

to building a regression model. The built model is a member of model space. In Fig. 1, 121 

#1 and #2 are two models (members) in the model space. The number of all the 122 

possible combinations for variables is 2
P
-1 (variable space) and for samples is 123 

2
N
-1(sample space). The model space is the combination of variable space and sample 124 

space. It has (2
P
-1) × (2

N
-1) models (combinations).  125 

 126 

(Insert Figure 1) 127 

 128 
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2.2 The interaction between variables and outliers 129 

Outliers depend on the variables used for characterization 
23

. A sample can be 130 

seen as an outlier when its location represented by variables is far away from the bulk 131 

of samples. As is shown in Fig. 2a, all samples can be well fitted only using one 132 

variable x1. But in Fig. 2b, when added a variable x2, sample 1 turns into an outlier 133 

since its location is far away from other samples. In addition, in the dataset with 134 

outliers, more variables are needed to reduce the influence of outliers. As is shown in 135 

Fig. 2a, with the outlier (sample 1) in dataset, variable x2 is needed to build a model 136 

(the red dotted line) to reduce the impact of this outlier. This explicitly indicates that, 137 

on the one hand, different variables can lead to different outliers in the sample set; on 138 

the other hand, different samples need different variables to build the best model. 139 

Building a high performance model not only needs to consider the effects from 140 

variable selection and outlier detection separately but also needs to consider their 141 

interactions. 142 

 143 

(Insert Figure 2) 144 

 145 

2.3 BMS and WBMS 146 

Binary matrix sampling (BMS) is a new strategy for random sampling which is 147 

proposed by Yun and Deng et.al 
8, 12, 25, 26

. It can ensure that all the variables have the 148 

same overall frequency of sampling in the sub-regression models. A final sampling 149 

matrix with a special variable frequency is consisted of a number of sub-binary 150 
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matrices which have different variable frequency. Weighted binary matrix sampling 151 

method (WBMS) 
8, 25

 is a modified BMS which ensure important variables and 152 

samples to have high selected probability in each iteration. In the BMS strategy 153 

sample sampling ratio and variable sampling ratio should be manually set according 154 

to the real problem. 155 

2.4 Model Adaptive Space Shrinkage (MASS) 156 

By combining MPA and WBMS, a novel method called Model Adaptive Space 157 

Shrinkage (MASS) was proposed to select variables and detect outliers 158 

simultaneously. The flowchart of MASS is depicted in Fig. 3. 159 

 160 

(Insert Figure 3) 161 

 162 

Firstly, through BMS, a number of sub-training datasets was sampled from the 163 

original dataset. That is to say, the samples with specific sampling ratio (e.g., 0.95) 164 

and the variables with specific sampling ratio (e.g., 0.5) were randomly selected to 165 

construct one sub-training dataset from the original dataset. Initially (i.e., in the first 166 

iteration), the frequency of each variable or each sample appearing in these models is 167 

somewhat equal according to their sampling ratio. For example, for each 168 

sub-regression model, the sub-training dataset is consisted of 95% samples and 50% 169 

variables. Thus, these sub-training datasets were used to build sub-regression models 170 

which are evenly distributed in model space. Then, these models were sorted by the 171 

coefficient of determination of cross-validation ���
�  (eq. 1) 

27, 28
.  172 
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 173 

���
� = 1 −	

∑ 
��
���	�
��

���

∑ 
��
���	�
��

���

                                      (1) 174 

 175 

where n is the number of samples in the model, ���	is the prediction property value of 176 

the ith sample, and ��� is the mean property value of sub-training dataset. The models 177 

with large ���
�  were extracted. Then, the frequency of each variable and each sample 178 

in the selected models were counted. The weight (ω) of variable i and sample j were 179 

obtained by eq.2 and eq.3, respectively.  180 

 181 

ω� =	
ρ�

�����
                                                 (2) 182 

 183 

ω� =	
ρ�

��� !
                                                 (3) 184 

 185 

Where ρ
�
 and ρ

�
 are the frequency of variable i and sample j in the selected 186 

sub-regression models respectively, K#$%&  is the number of extracted models, and ω 187 

is a number between 0 and 1, which represents the ratio of a sub-regression model that 188 

contain variable i or sample j in the next iteration. In other words, large ω�  and ω� 189 

indicate that the variable i and sample j are more important and have more chance to 190 

appear in sub-regression models. So far, the first iteration finished. 191 

In the next step, WBMS was used to build a number of new sub-regression 192 

models by using the weight of variables (ω�) and sample (ω�) obtained from last 193 

iteration. Unlike the models evenly distributed in model space in the first iteration, the 194 
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models gradually focus on the high performance model in the next iteration, and the 195 

model space is also gradually shrinkage. The procedure for obtaining new weights of 196 

variables and samples was repeated until the weights of all variables and samples 197 

were constant (either 1 or 0). Thus the best model was obtained; the variables and 198 

samples that constructed the best model are simultaneously selected. 199 

MASS aims to find a high performance model in the model space through a 200 

continuous model space shrink procedure. In the beginning, all variables and samples 201 

have the same weight. In each WBMS step, the sampling method focuses on the 202 

variables and samples with larger weight until the weight is up to 1. Thus, the extent 203 

of the best model space shrinks continuously until we find the best model. The 204 

MATLAB codes for implementing MASS are freely available at the Supporting 205 

Information. 206 

3. Datasets 207 

To illustrate the performance of our proposed method, two online available 208 

datasets were used to evaluate the MASS approach.  209 

3.1 Wheat kernel dataset 210 

This dataset represents 43 different varieties or variety mixtures from two 211 

different locations, and consists of 415 samples and 100 variables. Each sample was 212 

analyzed at the range of 850-1050 nm, and 100 wavelengths were recorded as 213 

variables. This data is freely available at http://www.models.life.ku.dk/wheat_kernels. 214 

3.2 ACE dataset 215 
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This is a commonly used real QSAR dataset for testing the proposed approach. 216 

This dataset consists of 114 angiotensin converting enzyme (ACE) inhibitors 217 

originally taken from the work of Depriest et al and 56 descriptors. Activities are 218 

spread over a wide range, with each inhibitor pIC50 values ranging from 2.1 to 9.9 
29

.  219 

4. Results and discussion 220 

4.1 The comparison of Wheat kernel and ACE dataset on different methods. 221 

In this study, for comparison of different approaches, Monte-Carlo sampling 222 

(MCS) method and variable iterative space shrinkage approach (VISSA) were used to 223 

detect the outliers and select compact subset of variables, respectively. MCS method
13

 224 

is an outlier detection method based on MPA. It inherently provides a feasible way to 225 

detect different kinds of outliers by establishment of many cross-predictive models. 226 

MCS has been demonstrated as a practical outlier detection method by a series of 227 

works 
30-32

. VISSA, proposed by our group, is a new variable selection method based 228 

on MPA. Unlike most of the existing optimization approaches for variable selection, 229 

VISSA statistically evaluates the performance of each model and makes full use of the 230 

information obtained in each model to iteratively find the best subset of variable. Its 231 

acceptability has been proved by comparing with other popular methods 
8
. 232 

Furthermore, the combination of MCS and VISSA were employed to improve the 233 

prediction power of the model. Two strategies were considered: removing outliers 234 

with MCS followed by variable selection with VISSA (MCS + VISSA) and selecting 235 

variables with VISSA followed by outlier detection with MCS (VISSA + MCS). 236 

Finally, MASS was compared with PLS, VISSA, MCS, VISSA+MCS, MCS+VISSA. 237 
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All these methods were executed 20 times and used the same parameters to build 238 

models: the optimal number of PLS component was obtained by five-fold cross 239 

validation and was used for building models. The sampling number used in VISSA 240 

and MASS was 2000, and the ratio of selected best sub-regression models was 0.05 241 

(that is 100 models). The initial weight of variables in VISSA is 0.5. In MASS, the 242 

initial weight of variables is 0.5 and the initial weight of samples is 0.95. In addition, 243 

all data were pretreated by mean-center method before modeling. The coefficient of 244 

determination of calibration set (R
2
) and coefficient of determination of cross 245 

validation (���
� ) were used to assess model performance. The number of selected 246 

samples and variables was recorded as Sam and Var. The number of optimal latent 247 

variables (optPC) was also recorded.  248 

The results of wheat kernel dataset and ACE dataset performed by PLS, VISSA, 249 

MCS, VISSA +MCS, MCS+VISSA and MASS were listed in Table 1 and Table 2, 250 

respectively. As shown in Table 1 and 2, PLS has the worst prediction performance 251 

among all these approaches. It gives R
2
 value of 0.880 and ���

�  value of 0.869 for 252 

wheat kernel dataset and gives R
2
 value of 0.745 and ���

�  value of 0.623 for ACE 253 

dataset. MCS (with R
2
 value of 0.899 and ���

�  value of 0.889 for wheat kernel 254 

dataset and R
2
 value of 0.819 and ���

�  value of 0.729 for ACE dataset) and VISSA 255 

(with R
2
 value of 0.894 and ���

�  value of 0.886 and R
2
 value of 0.775 and ���

� value 256 

of 0.694 for ACE dataset) yield better prediction accuracy than original PLS model, 257 

which indicates that PLS is strongly sensitive to outliers and uninformative variables. 258 

Furthermore, the two combination approaches, VISSA+MCS and MCS+VISSA, 259 
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obtained similar prediction accuracy. The results are better than those obtained from 260 

single MCS and single VISSA approach. This indicates that variable selection and 261 

outlier detection method are two interactively promoted methods and are 262 

indispensable in data modeling process. As seen in Table 1 and 2, MASS achieves the 263 

best prediction accuracy. It gives R
2
 value of 0.921 and ���

�  value of 0.913 for wheat 264 

kernel dataset and gives R
2
 value of 0.865 and ���

�  value of 0.823 for ACE dataset. 265 

Compared with PLS which building the model with all the samples and variables, the 266 

R
2
 and ���

�  of MASS increased 4.51% and 5.18% for wheat kernel dataset and 16.1% 267 

and 32.1% for ACE dataset (P value < 0.05 MASS versus PLS), respectively. 268 

Compared with other methods, the R
2
 and ���

�  of MASS for both datasets are also 269 

increased considerably (P value < 1×0.05 MASS versus MCS, P value < 1×10e-3 270 

MASS versus MCS+VISSA, P value < 1×10e-3 MASS versus MCS+VISSA, P value 271 

< 1×10e-5 MASS versus VISSA+MCS). 272 

 273 

(Insert Table 1) 274 

(Insert Table 2) 275 

The accuracies of different orders of variable selection and outlier detection were 276 

similar, but the outliers detected and variables selected by different orders varied 277 

dramatically. Fig. 4 is the outlier detection plot of wheat kernel dataset. It was 278 

detected by MCS method (MCS+VISSA), two blue dash lines separate the picture 279 

into 4 areas, the samples located in the lower left are normal samples, the samples 280 

located in other areas are outliers 
13

. The locations of the dash line are determined by 281 
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3 times of the standard deviation of the mean error Mean and mean error STD 
33

. In 282 

addition, MCS is a very robust outlier detection method and the outlier detection plots 283 

are near the same in 20 times execution. Fig. 5 is the frequency of a wheat kernel 284 

sample located in the outlier area in the VISSA+MCS order in 20 times. As is shown 285 

in Fig. 4, the samples enclosed by red ellipse (sample number 38, 58, 157, 158 and 286 

404) are located in the lower left area. These samples are normal samples. However, 287 

as is shown in Fig. 5, they turned into outliers after variables selection. As is shown in 288 

Fig. 4, the samples enclosed by green ellipses (sample number 18, 25, 104 and 408) 289 

are located in the lower right. These samples are outliers. However, as is shown in Fig. 290 

5, they become normal samples after variables selection. Similarly, for ACE dataset, 291 

Fig. 6 is the outlier detection plot detected by MCS method (MCS+VISSA).  Fig. 7 292 

is the frequency of outlier detected in the VISSA+MCS order in 20 times. Sample 293 

number 18, 48, 63, 64 73 and 81 (enclosed by red ellipse) are normal samples in 294 

MCS+VISSA order whereas they became outliers in VISSA+MCS order. Sample 295 

number 12, 13, 15, 22, 26 and 52 are outliers in MCS+VISSA order whereas they 296 

turned into normal samples in VISSA+MCS order. This indicates that different 297 

variables can lead to different outliers in sample set. These two different process 298 

orders are acceptable if just considering the results of built models. If considering the 299 

interpretation of built model, these is a puzzle to decide the final variable selection 300 

and outlier detection order. Thus, when dealing with datasets with redundant variables 301 

and outliers, it is important to select variables and detect outliers simultaneously. 302 

 303 
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(Insert Figure 4) 304 

(Insert Figure 5) 305 

(Insert Figure 6) 306 

(Insert Figure 7) 307 

(Insert Figure 8) 308 

(Insert Figure 9) 309 

4.2 The visualization of the interaction between variables and outliers 310 

Fig. 8 and Fig. 9 can fully explain the interaction between variables and samples 311 

in MASS iteration process. Fig. 8 and Fig. 9 are the plots of sample and variable 312 

weight against MASS iteration. The weight reveals the trend of sample and variable in 313 

the iteration. The weight is the probability of a sample or a variable to be selected to 314 

build a model. In other words, large weight indicates that the variable and sample are 315 

more important and have more chance to appear in sub-regression models. As shown 316 

in Fig. 8 and Fig. 9, each line represents the weight variation of a sample or a variable. 317 

There are three different weight variation types: 1), the lines which go down all the 318 

time till the weights reach to 0. This kind of variation indicates that these variables (or 319 

samples) are uninformative variables (or outliers) and there is no strong interaction 320 

between these variables and outliers, these outliers and variables can be easily 321 

detected and removed; 2), the lines which go up all the time till the weights reach to 1. 322 

These variables (or samples) are informative variable (or normal samples) and should 323 

be selected to build model; 3), the lines which go up at first, then go down; or go 324 

down at first, then go up till the weights reach to 1 or 0. This kind of variation 325 
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indicates there is strong interaction between these variables and outliers. When the 326 

line goes down, it means that the variable (or sample) may be an uninformative 327 

variable (or outliers) with current samples (or variables). After several iterations, 328 

some outliers (variables) are removed, then the line goes up and the variable (or 329 

sample) became important with current samples (or variables).  330 

With regard to wheat kernel dataset and the ACE dataset, MASS was converged 331 

after 31 and 30 iterations, respectively. The whole MASS iteration process can be 332 

separate into 3 parts: 1), the early iteration period (1-17 iteration for wheat kernel and 333 

1-13 iterations for ACE dataset). In this period, the weights of most samples gradually 334 

reached to 1 except some weights of samples decreased step by step. At the same time, 335 

except the weights of some variables rose up to 1 and the weights of few variables 336 

went down to 0, the weights of most variables fluctuated dramatically up and down. 337 

However, the weights of samples and variables which went down to 0 at this period 338 

are without fluctuation or with small fluctuation. As is shown in Fig. 8(a), for wheat 339 

kernel dataset, sample number 199, 3, 25, 363, 158 and 71 were detected as outliers in 340 

this period. As is shown in Fig. 4 and Fig. 5, sample 199, 3, 363, 158 and 71 were also 341 

detected as outliers in both MCS+VISSA order and MCS+VISSA order. In Fig. 9(a), 342 

for ACE dataset, sample number 19, 53, 48, 91, 34 and 108 were detected as outliers 343 

in this period. As is shown in Fig. 6 and Figure 7, sample 19, 53, 91, 34 and 108 were 344 

also detected as outliers in both MCS+VISSA order and MCS+VISSA order. These 345 

outliers can be detected by both separate and simultaneous methods. This means that 346 

these samples are essentially far away from the main part of sample. These outliers 347 
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are not affected by variables. One can easy detect these outliers without considering 348 

the impact of variables. 2), the middle iteration period (18-25 iteration for wheat 349 

kernel dataset and 14-25 iteration for ACE dataset). In this period, the variables and 350 

samples went ahead along with the tendency in the early period and most variables 351 

and samples arrived 0 or 1. The weights of samples and variables which went down to 352 

0 at this period varied dramatically. As is shown in Fig. 9(a), 9 samples were detected 353 

as outlier and located in this period. Among them, none of them were detected in 354 

MCS (Fig. 6), while 4 of them detected in VISSA+MCS (Fig. 7). This means that 355 

these samples and outliers strongly affect each other in this period. When more 356 

variables are selected, some samples with high weights may not proper for current 357 

variables and result in weights decreasing, and vice versa; 3), in the ending iteration 358 

period (26-31 iteration for wheat kernel dataset and 26-30 for ACE dataset), the 359 

weights of the entire sample kept constant and all the outliers were detected and 360 

removed. The rest is to optimize the variable subset which could wonderfully support 361 

current selected samples. Finally, MASS converged to and found out the best model in 362 

the model space through this model space shrink iteration procedure.  363 

4.3 Comparison with other methods 364 

The comparison with the standard procedures for outlier detection and variable 365 

selection such as Williams plot of leverage values versus abnormal residuals (WP)
34

, 366 

Variable importance in projection (VIP)
35

 and genetic algorithm (GA)
36

 were also 367 

performed, which were listed in Table 3. One can clearly see that the variable 368 

selection method based on VIP on these two dataset obtained the poor prediction 369 
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statistics, and its results were similar 
35

to those from original PLS models. VIP could 370 

effectively eliminate some uninformative or noisy variables and therefore obtained a 371 

relatively easy-to-interpret model. Compared to original PLS method without any 372 

variable selection, VIP only selected 59 variables for Wheat kernel dataset and 31 373 

variables for ACE dataset, respectively. Compared to original PLS and VIP method, 374 

GA yields the better prediction results, and obtains the similar prediction performance 375 

to VISSA and our proposed MASS. The final variable number used in the regression 376 

model is also sharply reduced for these three methods. Compared to the commonly 377 

used outlier detection method WP, from the Williams plot of leverage versus 378 

abnormal residuals, there are 22 outliers (3, 25, 52, 71, 83, 104, 114, 199, 18, 33, 158, 379 

208, 221, 231, 341, 363, 371, 397, 406, 408, 409, 411) in wheat kernel dataset and 4 380 

outliers (8, 19, 53, 91) in ACE dataset. All the outliers detected in the first period of 381 

MASS (Fig. 8 and Fig. 9) in wheat kernel dataset and ACE dataset were also detected 382 

by WP, whereas the remaining outliers detected by these methods vary dramatically. 383 

In ACE dataset, besides these four outliers no more outliers where detected by WP but 384 

another 11 outliers were detected by MASS. In wheat kernel dataset, the outliers 385 

detected by WP embodied most outliers in MASS (12 out of 16) and other 10 outliers. 386 

After removing outliers, the R
2
 and ���

�  values WP were listed in Table 5. From 387 

Table 5, compared with WP, MASS is also increased considerably for both datasets.  388 

4.4 The effect of MASS parameters 389 

In our proposed MASS method, three important parameters related to 390 

Monte-Carlo sampling need to be set. The number of Monte-Carlo experiments seems 391 

an important parameter which affects the quality of the distribution. Theoretically, the 392 
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fewer samples are selected randomly from the calibration samples, the more repeats 393 

are needed. Whereas, it has been proven that the number of number of Monte-Carlo 394 

experiments equal to n
2
 (n is the number of the total samples) is generally enough to 395 

make Monte-Carlo strategy better performance. Larger sampling number tends to 396 

generate more accurate and stable results. However, the accuracy improvement is very 397 

small, indicating that MASS is insensitive to this parameter. To save the computing 398 

source, in practice, the number of Monte-Carlo sampling is manually set to 2000. By 399 

means of Monte-Carlo method, the computational complexity could be reduced 400 

substantially. Similar to VISSA, the initial weights of variables (i.e., the variable 401 

sampling ratio) were set to 0.5 in MASS, that is, each variable has 50% probability to 402 

be selected in one sub-model in the beginning. Under the circumstance without any 403 

prior information, it is a relatively natural choice to set the initial weights of variables 404 

to 0.5. Another important parameter is the initial weight of samples (i.e., the sample 405 

sampling ratio). To evaluate the influence of the initial weight of samples on MASS, 406 

different experiments were carried out on the wheat kernels dataset. These results are 407 

shown in Fig.10 and listed in Table 5. From Table 5, one can see that with the 408 

decreasing of the initial samples weights, the number of iteration tends to slightly 409 

increase and the number of outliers and variables changed a little (when the initial 410 

weight is very small such as 0.5, the number of iterations, outliers or variables may 411 

vary relatively large). The accuracy of MASS decreased a little when the initial 412 

weights of samples decreased. Moreover, from Fig. 10, with different initial weight, 413 

the variations of sample weight are similar. This indicates that MASS is insensitive to 414 

the initial weights of samples to some extent. Given a dataset without any prior 415 

information, we could assume that the main parts of samples are normal and only 416 

small parts (e.g., 5%) of samples are outliers. Considering that, in my opinion, it is a 417 

relatively suitable choice to set the sample initial weights to 0.95.  418 

4.5 The effect of variable and sample combinations  419 

Given a dataset, the number of combinations of variables and samples is 420 

extremely high. Assume that we have a data set with n = 100 and p = 60, all 421 
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combinations from model space will be (2100-1)×(260-1), and this will be an 422 

extremely high number for computer simulation. Therefore, it is almost impossible for 423 

current computer simulation to enumerate all model combinations. Alternatively, were 424 

randomly chosen some combinations from all possible combinations by Monte-Carlo 425 

sampling strategy and then use the best part of generated models to represent the 426 

distribution of important variables and samples. In general, Monte-Carlo approach can 427 

be used to generate such a distribution of some statistic of interest by repeatedly 428 

calculating that statistic randomly selected portions of the data because of its good 429 

asymptotic properties. Through this sampling procedure, though the model 430 

combination is usually high, only part of combinations was used which can 431 

dramatically reduce the modeling time. Take a wheat kernel dataset for an example, 432 

we only used about sixty thousands (2000×31 (31 iterations)) combinations to shrink 433 

to a relatively good solution. We calculated the elapsed time of MASS on this dataset, 434 

which is listed in Table 4. Although computation time of MASS is slightly higher than 435 

those from other variable selection or outlier detection programs including MCS and 436 

VISSA, it is worthy to waste somewhat more time to obtain a clean dataset and a 437 

higher performance model. Simultaneous variables selection and outlier detection is 438 

usually a hard task. We applied a computing-intensive method and therefor a little 439 

more time was required. After MASS were performed, no additional codes between 440 

variables selection and outlier detection was needed. From an overall perspective, 441 

MASS takes less time in the model building process.  442 

Conclusion  443 
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In this study, we proposed MASS to simultaneously detect outliers and select 444 

variables before building a final prediction model. The proposed method is based on 445 

MPA which iteratively and smoothly shrinks the model space to obtain the best model. 446 

MASS is a mild stepwise optimization method. The model space shrinks smoothly 447 

which reduce the risk of eliminating informative variables and normal samples. The 448 

weights variation of variables and outliers illustrate the cross interaction between 449 

variables and outliers: if the weights of variables and samples go down to 0 in the first 450 

period, these variables and outliers do not interact with each other and they can be 451 

easily identified. If the weights of variable and samples go down to 0 in the middle 452 

period, these samples and outliers strongly affect each other. In the last period, the 453 

weights of samples were constants, and the rest is to optimize the variable subset 454 

which can wonderfully support current selected samples. The performance of the new 455 

algorithm was compared with several other outlier detection and variable selection 456 

methods and methods combination. The results clearly indicate that: when outlier 457 

detection and variable selection performed separately, there is a great opportunity to 458 

obtain a wrong model that fails to reflect the true relationship between variables and 459 

outliers. To avoid this failure, it is recommended to do these tasks simultaneously. The 460 

results demonstrated that MASS is a useful method in data cleaning before building a 461 

predictive model.  462 
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Tables: 528 

Table 1 The results of wheat kernel dataset performed on different methods.  529 

Method  Sam Var R
2
 '()

*  optPC Iteration 

PLS 415 100 0.880 0.868±0.005 10  

VISSA 415 32±2 0.894±0.001 0.886±0.003 9 13±2 

MCS 402±0 100 0.899±0 0.889±0.003 10  

VISSA + MCS 404±2 32±2 0.909±0.002 0.902±0.002 9 13±2 

MCS+ VISSA 402±0 31±3 0.911±0.001 0.904±0.003 9 13±2 

MASS 398±2 31±5 0.921±0.003 0.913±0.005 10 31±4 

 530 

Table 2 The results of ACE dataset performed on different methods.  531 

Method  Sam Var R
2
 '()

*  optPC Iteration 

PLS 114 56 0.745±0 0.623±0.038 10 - 

VISSA 114 23±10 0.775±0.023 0694±0.036 10 12±3 

MCS 102 56 0.819 0.729±0.033 10 - 

VISSA + MCS 106±3 23±10 0.837±0.017 0.772±0.044 10 12±3 

MCS+ VISSA 102 30±13 0.841±0.017 0.775±0.031 10 12±3 

MASS 102±3 26±10 0.865±0.021 0.823±0.027 10 24±5 

 532 

  533 
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Table 3 The results of Wheat kernel and ACE dataset performed on VIP and GA. 534 

Dataset  Methods  Sam Var R
2
 '()

*  

Wheat kernel dataset    

WP    393 100 0.913 0.904 

VIP    415 59 0.877 0.861 

GA    415 34 0.891 0.881 

ACE dataset    

WP    110 56 0.774 0.691 

VIP    114 31 0.728 0.624 

GA    114 13 0.772 0.703 

 535 

Table 4 The elapsed time of MCS, VISSA and MASS. 536 

 Wheat kernel ACE 

Methods  Time (second) ���
�  Time (second) ���

�  

MCS 30 0.889 12 0.729 

VISSA 810 0.889 688 0694 

MASS 1260 0.917 981 0.823 

 537 

Table 5 The performance of MASS with different sample initial weight. 538 

Initial weight 0.95 0.9 0.8 0.7 0.6 0.5 

Number of iterations 34 40 37 49 39 54 

Number of outliers 17 13 14 18 13 29 

Number of variables 34 28 36 36 13 17 

+,-
*  0.9173 0.9109 0.9111 0.9155 0.8783 0.9168 

 539 

Page 25 of 32 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



26 

 

Figure captions: 540 

 541 

 542 

Fig. 1 The sketch of model space. A model is constructed by the combination of some variables 543 

and samples like #1 and #2, all the combinations make up the model space. 544 

 545 

 546 

Fig. 2 The interactions between variables and outliers. (a) With only one variable x1, all samples 547 

(including sample 1) can be well fitted. (b) When variable x2 was added, sample 1 turns into an 548 

outlier. 549 

 550 

 551 
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 552 

Fig. 3 The framework of MASS. Firstly, a number of sub-training datasets were sampled from the 553 

original dataset and build sub-regression models. The frequency of each variable and each sample 554 

in the best part models were counted. Then, a number of new sub-training datasets were sampled 555 

using the weight of variables and sample obtained from last iteration. The procedure for obtaining 556 

new weights of variable and sample was repeated until the weights of all variables and samples 557 

were constant (either 1 or 0). Thus the best model was obtained; the variables and samples that 558 

constructed the best model are simultaneously selected. 559 

 560 

 561 
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 562 

Fig. 4 Outlier detection plot of wheat kernel dataset detected by MCS+VISSA order. The samples 563 

enclosed by red ellipse located in lower left area and they are normal samples. Whereas they 564 

turned into outliers after variables selection (see Fig. 5). The samples enclosed by green ellipses 565 

are outliers but they become normal samples after variables selection (see Fig. 5) 566 

 567 
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 568 

Fig. 5 Frequencies of outliers detected in wheat kernel dataset in 20 times in VISSA+MCS order.   569 

 570 

 571 

Fig. 6 Outlier detection plot of ACE dataset detected by MCS+VISSA order. The samples 572 

enclosed by red ellipse located in lower left area and they are normal samples. Whereas they 573 

turned into outliers after variables selection (see Fig. 7). The samples enclosed by green ellipses 574 

are outliers but they become normal samples after variables selection (see Fig. 7) 575 
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 576 

 577 

Fig. 7 Frequencies of outliers detected in ACE dataset in 20 times in VISSA+MCS order. 578 

 579 

 580 

Fig. 8 The weight variation of (a) variables and (b) samples of wheat kernel dataset. Each line 581 

represents the weight variation of a sample or a variable. 582 
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 583 

 584 

Fig. 9 The weight variation of (a) variables and (b) samples of ACE data set. Each line represents 585 

the weight variation of a sample or a variable. 586 

 587 
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 588 

 589 

Fig. 10 The weight variation of samples of wheat kernel data set with different sample initial 590 

weight. Each line represents the weight variation of a sample. 591 

  592 
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