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ABSTRACT 

Techniques of isothermal amplification have recently made great strides, and have generated significant 

interest in the field of point-of-care detection. Nicking endonuclease-mediated isothermal amplification 

(NEMA) is an example of simple isothermal technology. In this paper, a real-time quantitative nicking 

endonuclease-mediated isothermal amplification with small molecular beacons (SMB-NEMA) of 

improved specificity and sensitivity is described. First, we optimized the prohibition of de novo synthesis 

by choosing Nt.BstNBI endonuclease. Second, the whole genome was successfully amplified with 

Nt.BstNBI (6U), betaine (1M) and trehalose (60mM) for the first time. Third, we achieved 10pg sensitivity 

for the first time after adding a small molecular beacon that spontaneously undergoes a conformational 

change when hybridizing to target, and the practical test validated the assay’s application. The small 

molecular beacon has a similar melting temperature to reaction temperature, but is approximately 10bp 

shorter than length of traditional molecular beacon. A new threshold regulation was also founded for 

isothermal conditions. Finally, we established a thermodynamic model for designing small molecular 

beacon. This multistate model is more correct than the traditional algorithm. This theoretical and practical 

basis will both help us monitor SMB-NEMA in a quantitative way. In summary, our SMB-NEMA method 

allows the simple, specific and sensitive assessment of isothermal DNA quantification. 

Key words: nicking endonuclease-mediated isothermal amplification; small molecular beacons; 

quantification; thermodynamic basis; quantitative analysis 
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Introduction 

DNA replication in vitro has been used as an effective method in molecular biology research since the 

1970s
1
. There are two main issues to overcome in amplification methods. One is the simplicity for point-

of-care detection, and the other is the accuracy for real-time quantitative detection. Isothermal 

amplification, as a solution to the first issue, has been developed over several decades because of its high 

specificity and unique convenience. Instead of several melting and annealing cycles, isothermal 

amplification is achieved under a thermal stable temperature for a shorter time than conventional 

polymerase chain reaction (PCR). This type of amplification has been applied in the point-of-care 

detection of foodborne pathogens
2
, cancer genes

3
 and genetically modified organisms (GMOs) 

4
. Nicking 

endonuclease-mediated isothermal amplification (NEMA) is designed and used widely because of its 

extraordinary advantages. This technology, based on the principle of strand displacement, cleaves only one 

strand of duplex DNA to amplify in an exponential form via activity of nicking endonuclease activity
5
. 

Compared with loop-mediated isothermal amplification (LAMP), which is the most popular isothermal 

technology, NEMA requires only two pairs of ordinary primers, which greatly simplify primer designing 

work
6
. On the other hand, NEMA is more inhibited to aerosol pollution than that of LAMP by lowing 

efficiencies. Moreover, NEMA can amplify at most a 400bp product, which is more universal than rolling 

cycling amplification (RCA), helicase dependent amplification (HDA), nucleic acid sequence-based 

amplification (NASBA) and other isothermal technologies. Finally, NEMA is stable and inexpensive 

compared to other isothermal technics
 7-9

. 

However, pollution and low specificity make quantification of NEMA problematic. Considering the 

complex reaction system that NEMA requires, including two types of enzymes and de novo synthesis
10

, 

traditional quantitative methods do not perform well. LAMP stained with fluorescent dye SYBR Green I is 

the most common assay used to quantify target nucleic acids, but it is not useful in other fields because of 

the low specificity of the dyes
11

. Fluorescence resonance energy transfer (FRET) has the inherent 

advantage of high specificity and sensitivity in nucleic acid quantification, and Taqman probes have 

become the international standard detection probe for GMO detection. However, this type of probe cannot 

be used in the absence of 5’ to 3’ exonucleases
12

, which therefore excludes NEMA. Molecular beacons 

(MBs), which possess a loop-stem structure, could be used as a type of hairpin-shaped hybridization 
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probes
13

. MBs function when the sequence of the loop is complementary to the target, leading to the 

separation of fluorophores and quenchers to emit fluorescence. Quantification of NEMA can be achieved 

by molecular beacons without a requirement for special enzymes. This method could accomplish real-time 

measurements of isothermal amplification and allow the calculation of the percentage of the target in the 

whole products. Most importantly, the method could also be useful in research on kinetic patterns of 

amplification, critical influential factor identification for isothermal hybridization and one-step isothermal 

quantitative detection systems, which could also be used in the following detection of genes in living cells. 

MBs have been used in the scientific research to monitor the short nucleic acid chain, amplifying the 

signal
14-16

. This technology can also be used to understand the temporal expression of genes in vivo, to 

form a detection signal transformed into other biosensor fields and to initiate signal-amplified 

amplification for ultrasensitive detection. Attempts to combine MBs and isothermal amplification instead 

of fluorescence dyes for quantitative detection have not been reported. Considering the small bacterial 

genome and the versatility of bacterial 16s rDNA in genotyping, this paper focuses on the combination of a 

small molecular beacon and NEMA to establish a new quantitative detection method that we call SMB-

NEMA, based on the amplification of Bacillus cereus 16s rDNA. Then the paper identifies some key 

factors that influence the hybridization of small MBs and the target under unchanged temperature, offering 

a theoretical guide for SMB-NEMA quantitative detection system that can be used in a number of fields. 

Materials and methods 

Extraction and quantification of genomic DNA from samples 

Bacillus cereus samples (Genbank Acc. No. ATCC 11778) were supplied from our laboratory. Genomic DNA 

was successfully extracted using the TIANamp Bacteria DNA Kit (Tiangen Biotech Co., Ltd., Beijing, China). 

DNA was quantified by absorbance at 260 nm using NanoDrop UV spectrophotometry (Thermo Scientific, 

Massachusetts, USA). Another source of genomic DNA from genetically modified organisms Bt 176 was also 

prepared like before. To confirm whether the extracted DNA is suitable for the reaction, extracted DNA was 

followed by the amplification of the 16s rDNA target gene (GenBank Acc. No: NC_016784.1) using 16s-F and 

16s-R primers. The PCR procedure was 95°C for 5 min, 95°C for 30 s, 60°C for 1 min, and 72°C for 30 s for 35 

cycles, followed by a hold at 72°C for 7 min. Extracted DNA was evaluated by 2% agarose gel electrophoresis. 

Then, DNA was diluted to several gradients, from 200 ng/µL to 0.001 ng/µL, and stored at -20°C. 
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Primers and probes design 

The primers were designed using Primer Premier 6 software (Premier Biosoft, Palo Alto, USA) and synthesized 

by Invitrogen Co. Ltd. (Shanghai, China). S1 and S2 are located in the region of 16srDNA. Each primer has three 

sections: the first is a sequence that is complementary to the target; the second is the recognition site for nicking 

endonuclease, and the last is a protected sequence. B1 and B2 are located in the outer region of S1 and S2, 

respectively. Detection target length is 245bp. Molecular beacons for the detection were designed using the 

Primer Express 3.0 software (Applied Biosystems, Foster City, CA, USA) and synthesized by Takara (TaKaRa 

Biotech, Dalian, China). They were all labeled by carboxyfluorescein (FAM) at the 5’ end region and 4-([4-

(dimethylamino) phenyl] azo) benzoic acid (DABCYL) at the 3’ end region. The scheme of the NEMA primers 

and the molecular beacons is shown in Table 1. Other primers and small molecular beacons used in this work 

are described in Table S1. 

Real-time quantitative SMB-NEMA assays 

The reactions were performed in a total volume of 25 µL in a S1000 thermal cycler (BioRad, California, USA). 

For an initial denaturation step, 1µL of 10×ThermoPol buffer (New England Biolabs, Beijing, China), 1.6 µM of 

each S1/S2 primer, 0.2 µM of each B1/B2 primer and 1 µL of extracted DNA (from 200 to 0.001 ng/µL, as 

mentioned above) were incubated at 95°C for 5 min in a final volume of 11 µL. After this step, 1.5 µL of 

10×ThermoPol buffer, 4 µL dNTP (TaKaRa Biotech, Dalian, China), 1 mM of Mg2+ (TaKaRa Biotech, Dalian, 

China), 60 mM of trehalose (Sigma-Aldrich, Beijing, China), 1 M of betaine (Sigma-Aldrich, Beijing, China), 

2.5 µg of BSA (TaKaRa Biotech, Dalian, China), 3 U of Bst DNA polymerase (New England Biolabs., Beijing, 

China), 6 U of nicking endonuclease (New England Biolabs., Beijing, China), several amounts of extracted Bt 

176 DNA, and different amounts of small molecular beacons (0.2µM, 0.4µM, 0.8µM, 1.2µM) were added to the 

reaction system, and ddH2O was added to a final 25 µL. The reaction was performed at 60°C for 50 min, and 

fluorescence readings were collected every 30 s. All the reactions were performed in the screw type of PCR-

tube that was designed by our labortorary (China Patent Application No. 201510293982.2) and produced by 

Beijing Food Safety Tech. Co, Ltd. (Beijing, China). 

For the assay based on SYBR Green dye, the molecular beacon was replaced with 1.25 µL of 20×SYBR Green I 

(Tiangen Biotech Co., Ltd., Beijing, China). The other reagents and procedures were unchanged. 

For specificity verification, primers and small molecular beacon were replaced with mismatched primers and 

beacon in Table 1 and Table S1. The other reagents and procedures were unchanged. 
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Conventional quantitative PCR assays 

The reactions were performed in a total volume of 25 µL in a S1000 thermal cycler (BioRad, California, 

USA). The reaction system consists of 1× gene expression master mix (Applied Biosystems, Foster City, CA, 

USA), 0.4 µM S1/S2 primer, several amounts of template DNA. ddH2O was added to a final 25µL. The reactions 

were performed at 95°C for 5 min, 40 cycles of 95°C 30 s and 60°C 1 min. Fluorescence were collected at each 

cycle. 

Quantitative analysis 

For absolute quantification, a standard curve was built between the logarithm of the initial and the Ct value. 

Data is also extracted after a new threshold that demonstrates the absolute value of lowest fluorescence was set 

up. In the SYBR Green dye experiment, a standard curve was built between the logarithm of the initial and the 

cycle value of the highest fluorescence. 

To determine the melting temperature of the primers and molecular beacons, the same reagents were added to 

the reaction as in the quantitative method did, except for extracted DNA and primers. A long sequence that was 

complementary to the small molecular beacons or primers was added instead. The reaction was performed at 

95°C for 5 min and 60°C for 10 min. Then, the fluorescence data were acquired by integrating the signal over 5 

s during a linear temperature transition from 40°C to 95°C at 0.5°C /s. The fluorescence data were converted 

into melting peaks by software. 

Kinetic and thermodynamic research of small molecular beacon in SMB-NEMA 

Reactions were performed in a total volume of 25 µL in a S1000 thermal cycler (BioRad, California, USA), 

except for the template. The beacon was first denatured at 95°C for 5 min. Then, the fluorescence profiles were 

acquired by integrating the signal at the end of each stage during a linear temperature transition from 25°C to 

95°C at 1°C /s for 90 s. The fluorescence data were converted into melting peaks using a software package. 

To investigate the molecular beacon-template duplex, the same 25µL reaction system plus different amounts of 

templates were prepared and data were acquired as before. Ratio of molecular beacon and template ranged from 

1:4 to 1:20. 

Kinetic and thermodynamic equilibrium analysis 
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Thermodynamic parameters and secondary structures of all oligonucleotides were calculated using 

bioinformatics software (http:// mfold.rna.albany.edu/) and established algorithms in a two-state model
21,22

. 

Melting temperature of each molecular beacon was calculated by using several algorithms, which are listed in 

Table 2. Free energy of each small molecular beacon was calculated using the multistate model of Bonnet and 

Preyet
20,23-26

. More details of derivations can be found in Supplementary Information. 

Practical samples test 

10 samples were collected and tested using SMB-NEMA method, including polluted water from river, 

foods that out of shelf of life and on sale. Genome extraction and NEMA test are all based on the 

descriptions above. 

Results and Discussion 

Optimization of NEMA reaction system 

In our SMB-NEMA system, target is first amplified with a single strand displaced by another new strand 

under stable temperature conditions (step I in Fig. 1). The duplex is then broken by endonuclease 

recognition site cleavage. Molecular beacons will bind to complementary target, monitoring this 

exponential process (step III in Fig. 1). Without primer and template, dNTP were used in the template 

amplification, showing a light but inevitable background. This phenomenon, namely de novo synthesis, is 

negative to the reaction, because we can barely discriminate target from nonspecific background, as shown 

in Fig. 1(step II in Fig. 1). A real-time fluorescence amplification curve supports our conclusion (Fig. S1). 

Simulation of de novo synthesis gives a later Ct value than normal, though the sigmoidal shape of de novo 

synthesis can also illustrate self-amplification after generation of many palindrome structures. A tendency 

of amplified potential of negative control could also corroborate our prediction. As we selected two 

nicking endonucleases that have compatible temperature with reaction temperature, we found that Nt. 

BstNBI performed well in prohibiting de novo synthesis. De novo synthesis product amplified in Nt. 

BstNBI is of longer length than the desired product. Combined with reaction temperature, we then decided 

to use Nt. BstNBI in our following research (Fig. 2A). We also added betaine and trehalose to help amplify 

the whole genome based on other reports
27,28

. 1 M betaine and 60 mM trehalose allowed for better 

performance (Fig. 2B, 2C). The NEMA system was better in de novo synthesis prohibition and the whole 
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genome amplification efficiency when we added 6 U of Nt. BstNBI, 1 M of betaine and 60 mM of 

trehalose to the original reaction system. 

Choice of small molecular beacons that classify as qualitative and quantitative-fitted based on the 

amplification curve 

Different amplifications using small MBs with melting temperature (Tm) ranging from 75°C to 50°C were 

conducted. An MB with a Tm of 75°C was designed based on the principle of molecular beacons and probes 

that the melting temperature of the MB is 10-15°C higher than the primer melting temperature13. Here we 

designed a small molecular beacon with a shorter sequence that was complementary to the target. As is shown in 

Fig. 3, MB with a Tm of 75°C did not have a sigmoidal amplification curve. The separation of loop lasted the 

entire reaction time. In addition, MBs with Tm higher than the reaction temperature (60°C) did not perform well 

either. However, these MBs could also be used for qualitative detection, because the curve could be different 

from the negative control. Thus, we can classify these MBs as qualitative-fitted and quantitative-fitted. 

To better identify the quantitative detection dynamic range that these small MBs possessed, the amplification 

curves were transformed into linear regression curves based on the established amplification theory. Linear 

between the logarithm of the initial template DNA concentration and the Ct value are shown in Fig. S2. Small 

MBs with Tm close to the reaction temperature performed well, and MBs with Tm below the reaction 

temperature had narrow quantification range. In this way, small MBs with Tm above the reaction temperature 

were qualitative-fitted, whereas small MBs with Tm below the reaction temperature were quantitative-fitted. 

One important observation was that the fluorescence fluctuated around the threshold at the beginning of the 

reaction. Ct value was easier to distinguish if we make a new threshold regulation, which will be described later. 

Small molecular beacon with 60°C Tm was the best choice after we take amplification curve and quantitative 

dynamic range into consideration, and was used in the following experiments. 

Optimization of small molecular beacon addition to the quantitative detection 

MBs act as a fluorescence probe to emit a signal when spontaneously binding to the template (step III in Fig. 1). 

In our study, we selected five dilution series of small MBs, from 0.2 to 1.2 µM. Having chosen small MB of 

60°C melting temperature as the fluorescence probe, amplification curve generated after adding various amounts 

of MBs is shown in Fig. 4. The top fluorescence signal increased evidently with more addition of small MB. 

However, a larger amount of small MBs could prohibit the reaction, as observed from the later Ct value. A low 
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dose of small MBs is not enough to distinguish the positive curve from negative control (Fig. 4A), while a high 

dose of small MBs could also narrow the quantitative range (Fig. 4C, 4D). Thus, the addition of 0.4 µM of small 

molecular beacon was selected after these two factors were considered comprehensively. In this way, the 

reaction was finished within 40 min, and the fluorescence signal is suitable for determining effective 

quantitative amplification. 

Specificity improvement in SMB-NEMA 

In order to test specificity of our method, two experiments were conducted in SMB-NEMA. Firstly, unrelated 

templates were added in all reactions mentioned above and gave no positive correspondence. To better prove 

our specificity improvement under SMB involvement, we then devised several primers and beacons with one 

base pair mismatch (Sequences can be obtained from Table S1). Based on the well-know theory, primer with 5’ 

single nucleotide polymorphism (SNP) does not influence PCR reaction. As indicated in Fig.S3, all unspecific 

amplification, no matter which primer and SMB altered and which position mutated, cannot be amplified 

properly. 5’ mismatched primer had little effect on amplification and quantification, which has been in 

accordance to our hypothesis. Only the right primer and SMB will make correct amplification curve. In this way, 

specificity in SMB-NEMA has been improved greatly. 

Sensitive quantitative detection based on SMB-NEMA 

After our previous research, a real-time quantitative SMB-NEMA detection system was finally established (Fig. 

5). In the curve, fluorescence was decreased first and turned back to the initial value before exponential or ultra-

exponential amplification stage. A possible explanation for this ultra-exponential amplification can be 

contributed to exponential amplification in the presence of strand that have an enzyme recognition site and 

nicking endonuclease, as shown in Fig. 1(step III). All these work will greatly improve NEMA specificity and 

sensitivity. Considering that quantification is based on threshold settlement, we established a new definition of 

threshold determination: The threshold value is the value back to the initial one. The core of this threshold 

definition is kinetic of SMB in NEMA reaction and the original description
29

. As fluorescence decreased at first 

and turned back before exponential amplification, this value is also the fluorescence that returned to the initial 

value. Considering the dynamic range and linear correlation coefficient (R
2
), we now established a specific and 

sensitive quantitative method (Fig. 5, left bottom). From this curve, we can detect template DNA from 200 ng to 

10 pg in the reaction system. Under the algorithm of copy number calculation
30

 and the multi-copied number of 
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target 16s rDNA gene, this system achieved a limit of quantification (LOQ) of 113 copies. This LOQ is 

comparable to that of LAMP
31

, which is a widely used isothermal amplification technology.  

 Owing to its equivalent or higher specificity and the lack of requirement of thermal cycling compared with 

conventional PCR, isothermal amplification could be better used in point-of-care detection with an optimized 

system. Target-based amplification was hardly detected quantitatively in isothermal conditions. Quantification 

using the SYBR Green fluorescence dye has been reported
31

. However, this quantification is used negatively in 

other isothermal conditions because SYBR Green dye can bind to all double-stranded DNA, thereby causing 

false-positive results. For example, as shown in Fig. S4, although NEMA with SYBR Green is consistent with 

predicted amplification theory of a standard sigmoidal shape, it is unavailable to build a standard curve using the 

classical quantitative data analysis method. This could be attributed to different amplification efficiencies in 

different template dilution, which can be seen in the slope of each curve. A well-fitting standard curve was 

established if we drew the curve using other published theory
32-35

, as shown in Fig. S4. However, since we may 

use different amounts of SYBR Green dye in different experiments, it is impossible to determine a universal 

paradigm as can be found in the traditional method.  

Determination of influential factors of small MBs suitable for SMB-NEMA 

It is acknowledged that improvements in NEMA efficiency will proceed from two directions: improvement of 

enzyme activity and optimization of thermodynamic parameters between small MBs and template. We have 

successfully improved enzyme activity by prohibiting de novo synthesis. On the other hand, small molecular 

beacons exist in different forms under stable temperature (step IV in Fig. 1). Thus, it is necessary to evaluate 

that thermodynamic data for molecular beacon, template and their duplex. What we discuss in this part is 

melting temperature (Tm) and free energy (∆G
o
). 

In order to investigate the influence of melting temperature on reaction, we first determined the real melting 

temperature of small MBs. Referring to established theory, there are four commonly used methods to calculate 

melting temperature of a short sequence (Table 2). Tm of a long sequence based on nearest-neighbour 

interactions was close to the experimental data. However, it was not assisted in our small MBs selection. 

Referring to the multistate model (step IV in Fig. 1), all MB calculations are close to practical data. It should 

also be noted that under the stable temperature, inner primers and small MBs should have similar Tm to reaction 

temperature, indicating the importance of an identical temperature for small MBs, primers and reaction (Fig. S5). 

A similar result was also got as we optimized the number of base pair of small molecular beacon (Fig. S6) 
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In addition to melting temperature, hybridization between small MBs and template could be dependent on the 

tendency to bind to the target sequence. Thus we simulated small MBs hybridization activity under an 

isothermal condition (Fig. 6). In the absence of target (Fig. 6A), small MBs behaved as the theory predicted
33

, 

except for a gradual RFU decrease at high temperature. This could be explained by random-coiled MBs winding 

to a close distance between the fluorophore and quencher. Calculations of melting temperature supported our 

hypothesis that MBs with Tm close to the reaction temperature perform better in SMB-NEMA (see 

Supplementary Information). In the presence of template (Fig. 6B), low Tm MBs bind to template and dissociate 

from target gradually before transforming to a random coil. After calculation (Fig. 7. see Supplementary 

Information), a small MB with 60°C melting temperature from these profiles was selected (Table 3),  

Thus a different but similar designing rule for small molecular beacon was formed, mainly paying following 

attentions. First, Tm is the principal factor in small molecular beacon design, and the optimal annealing 

temperature for a reaction may actually be several degrees (1-2°C) above or below that of the Tm of primers, 

which is different from the traditional one that molecular beacons with Tm 10-15°C higher than the reaction 

temperature. Although the number of bases can also affect the hybridization of probe and target
15

, it was not 

observed in our experiment. Second, judging rules of melting temperature and hybridization stability is different 

than the traditional method. Single-stranded DNAs are actually folded molecules, and this folding must be 

broken before binding, particularly for the loop-stem structure, which is not catered to the classical two-state 

theory
36,37

, as indicated in Fig. 1 (step IV). Computations with a two-state model may be misleading in 

predicting performance of molecular beacons. A special molecular beacon has a ∆G increment owing to its 

special loop structure in a multistate model, therefore reducing temperature of unwinding
38-41

. Data provided by 

primer software to evaluate melting temperature can be inadequate, and needs to be corrected under the new 

algorithm in a multistate model.  

Advantage of SMB-NEMA to other techniques 

Compared to the previously widely reported PCR methods based on FRET, SMB-NEMA can accomplish 

equivalent sensitive target detection. Fig. S7 provided a representation of molecular beacon-based qPCR 

Bacillus cereus quantification. Results showed that qPCR can achieve about one copy number limit of 

quantification. Compared to qPCR, sensitivity of SMB-NEMA is not inferior to conventional qPCR, and it is 

the first time that SMB is developed in isothermal quantification based on the whole genome. Furthermore, 

SMB-NEMA is conducted in 20 minutes and finished within 50 minutes, which is much faster than 
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conventional qPCR. The practical samples test offered the similar results. 10 samples were collected and tested 

through SMB-NEMA and qPCR, and five were identified as contaminated (Table S2). This consequence is 

correct and matched to the traditional culture method (data not shown), which indicates SMB-NEMA 

application in food pathogens detection. 

Tendency is showed to develop nicking endonuclease into isothermal quantitative method, some of which is 

similar to our SMB-NEMA. Joneja and Huang reported a linear nicking endonuclease-mediated strand-

displacement DNA amplification, but it needs extra adapter ligation
42

. Schaerli also developed T4 replisome-

based amplification technique to achieve quantitative detection based on the whole genome
43

. Connolly and 

Trau
44,45

 once reported an isothermal method based on beacon-assisted amplification with simplicity and high 

sensitivity, it cannot be available rapidly on the whole genome. It has been reported that isothermal reaction 

based on the whole genome with nicking endonuclease has been limited by the reaction time
46

. SMB-NEMA 

achieve sensitive detection based on the practical samples and is much more applicable in food safety detection. 

Conclusions 

Herein, we have for the first time developed SMB-NEMA method to quantitatively detect nucleic acid target. 

After our optimization, SMB-NEMA can achieve sensitive and accurate detection without pollution. De novo 

synthesis is prohibitive to improve inherent specificity; Amplification based on the whole genome was achieved 

under the interference of other unrelated targets; Mismatched primers and beacons cannot make successful 

amplification. Accurate detection can be obtained from 3 copies limit of quantification (LOQ). Our method can 

also avoid opening the tube cover to prohibit pollution, which is a troublesome problem in isothermal 

amplification detection. 

With the help of small molecular beacons, SMB-NEMA can be transplanted to a lateral flow strip. This 

type of strip will transform the fluorescence labelled in the amplified target to a visual colour in the 

reaction line
47-49

. Workers on site, such as those from The Agency of Inspection and Quarantine, will 

benefit from this visual improvement. Moreover, advances in point-of-care diagnosis will be faster under 

SMB-NEMA. Therefore, SMB-NEMA will achieve an unprecedented development towards visual and 

quantitative detection. Meanwhile, our method can be developed in combination with biosensors and 

functional nucleic acids, like DNAzyme and aptamer. Biosensors with our method will transmit more sensitive 

signal in a more convenient vehicle 
50-52

. 
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Figure Legends 

Figure 1 Schematic representation of the fluorescence mechanism of SMB-NEMA. The blue arrows indicate all 

process of amplification (I, II and III). The duplex target is amplified with S1 /S2 and B1/ B2 after denaturation, 

producing a new duplex with two nicking endonuclease recognition sites (Step I). Then, the extension strand 

falls into a cycle. S1 /S2 continue to generate a single strand displaced under the activity of Bst DNA polymerase 

(Step III). In this step, one extension strand will produce two identical amplicons, indicating the exponential 

amplification format. Small molecular beacons bind to complementary target to monitor real-time amplification 

process. In addition to this process, dNTPs in the reaction generate another strand with palindromic structure 

and high G-C content in the presence of nicking endonuclease and Bst DNA polymerase. (Step II). This 

phenomenon, as we called de novo synthesis, occurs in all processes of SMB-NEMA amplification. Small 

molecular beacons in the reaction act in dynamic equilibrium with three main states: completely folded (a), 

bound to target (b) and random coil (c). The first two are included in the two-state model (Step IV). 

 

Figure 2. Optimization of NEMA reaction. Lanes 1-3 and 4-5 in Fig. 3A indicate de novo synthesis simulation 

with Nt. BstNBI and Nt. BspQI, respectively. Lanes 6-7 and 8-9 indicate NEMA amplification with Nt. BstNBI 

and Nt. BspQI, respectively. Each condition is outlined in duplicate, except de novo synthesis condition with Nt. 

BstNBI is outlined in triplicate. Primers and targets used in this reaction are shown in Table S1. Lanes 1-10 in 

3B indicate betaine optimization in the presence of the whole genome with addition of 0.5, 1, 1.5, 2, and 2.5 M, 

respectively. Each condition is outlined in duplicate in the figure. Lanes 1-10 in 3C indicate trehalose 

optimization in the presence of whole genome with the addition of 40, 50, 60, 70, and 80 mM, respectively. 

Lane M contains maker DL2000 in both figures. Each condition is outlined in duplicate in the figure. 

 

Figure 3. Amplification curve of different molecular beacons. Letters A-F represent NEMA with addition of 

molecular beacons with Tm of 75°C, 70°C, 65°C, 60°C, 55°C, and 50°C, respectively. The X-axis stands for 

number of cycles, and the Y-axis stands for fluorescence value (RFU). All experiments were performed and 

outlined in duplicate, except negative control that performed in duplicate and outlined in one curve for 

comprehensive appearance. 
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Figure 4. Molecular beacon performance with different additions in NEMA. Letters A-D represent real-time 

amplification curve (blue) and Letters E-H represent the standard curve between the logarithm of the initial 

template DNA concentration and the Ct value, respectively. Negative controls (red) were also included. The best 

linear correlation is indicated in the Figure. without poorly-behaving amplification curves. A, B and D were 

established from 200 ng/µL to 0.01 ng/µL; C was established from 200 ng/µL to 1 ng/µL. All experiments were 

performed and outlined in duplicate, except negative control that performed in duplicate and outlined in one 

curve for comprehensive appearance. 

 

Figure 5. (A) Sensitive quantification of NEMA based on small molecular beacon. Ten-fold dilution templates 

(blue) are presented by three parallels, with negative control (red) included. (B)Linear regression curve between 

the logarithm of the initial template DNA concentration and the Ct value. Dotted square (■), dotted circle (●) 

and dotted triangle (▲) stand for three parallels of each dilution group. The slope and Y-intercept were -3.22 

and 52.92, respectively. The linear correlation coefficient (R2) is 0.975. All experiments were performed and 

outlined in duplicate, except negative control that performed in duplicate and outlined in one curve for 

comprehensive appearance. 

 

Figure 6. Thermodynamic melting curve of MBs in NEMA simulated condition. (A) Melting curve of MBs in 

the absence of template. MBs of Tm at 75°C (yellow), 70°C (green), 65°C (red), 60°C (pink), 55°C (blue) and 

50°C (orange) were conducted by at least two parallels. (B) Melting curve of MBs in the presence of template. 

MBs shown are those of Tm at 75°C (yellow), 70°C (green), 65°C (red), 60°C (pink), 55°C (blue) and 50°C 

(orange). 

 

Figure 7. Increase in the melting temperature of the MBs–template duplex that results from increasing the 

concentration of target oligonucleotides was used to determine the thermodynamic parameters that describe the 

dissociation of duplex. The slope of each fitted line is equal to the negative value of the enthalpy and the 

intercept is equal to the entropy.  
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Table 1. Scheme of primers and molecular beacons 

Sequence 

function 

Sequence 

name 

Sequence (5’-3’) Reference 

16s rDNA 16s-F AACGCTGGCGGCGTGCCTAA 

This study 

16s-R CCTTCCGATACGGCTACCTTGTTA 

B. cereus 

outer primer 

B1 CCAGACTCCTACGGGAGGCAGCAGT 

17 

B2 GTTTACGGCGTGGACTACCAGGGTA 

B. cereus 

inner primer 

S1 ATGAATAGTCGGTTACTTGAGTCTCCGCAATGGACGAAAGTCT 

S2 ATGAATAGTCGGTTACTTGAGTCCTTGCCACCTACGTATTACC 

molecular 

beacon 

Beacon-75 CTCGAGCGTGAGTGATGAAGGCTTTCTCGAG 

This study 

Beacon-70 CTCGACGTGAGTGATGAAGGCTTTTCGAG 

Beacon-65 CTCGAGTGAGTGATGAAGGCTTCGAG 

Beacon-60 CTCGAGAGTGATGAAGGCTCGAG 

Beacon-55 CTCGAGTGATGAAGGTCGAG 

Beacon-50 CTCGAGAGTGATGATCGAG 

Beacon-60 M CTCGAGAGTGATCAAGGCTCGAG 

 

 

Table 2.  Melting temperature (Tm) based on different algorithms 

 Basis Formula Reference 

1 Number of bases Tm = 2°C (A+T)+4°C (G+C) 18 

2 G/C content, DNA 

length and salt 

concentration 

�m = 81.5 + 16.6 log 
 �SALT�
1 + 0.7�SALT�� + 0.41�%G + C� −

500
�  

19 

3 Nearest-neighbor 

interactions in two-

state model 

�m = �∆ 
∆ − ∆! + "�#$�%� + 16.6 log 


�SALT�
1 + 0.7�SALT�� − 269.3 

19 

4 Multistate model Tm is the temperature at which K12 equals T-0.5B 20 
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Table 3. Melting temperature of MBs based on different algorithms. 

 Tm calculations ∆G calculations 

MB name Tm1
a Tm2

b Tm3
c Tm4

d Tm5
e Tm6

f Estimated Practical 

beacon-75 74.9 100 75.78 74.74 69 70.11 -13 1.9 

beacon-70 70 88 73.78 72.51 66 67.53 -11.9 -1.2 

beacon-65 65.4 80 72.66 69.16 64 63.98 -10.7 -0.9 

beacon-60 61.5 72 71.25 67.03 58 59.67 -8.5 -2.9 

beacon-55 56.2 62 67.37 61.74 51.5 52.31 -5.6 —g 

beacon-50 49.9 58 65.08 59.24 51.5 51.12 -3.7 —g 

a Tm1 stands for the melting temperature of MB in the software. 

b Tm2 stands for the melting temperature of MB in method 1. 

c Tm3 stands for the melting temperature of MB in method 2. 

d Tm4 stands for the melting temperature of MB in method 3. 

e Tm5 stands for the melting temperature of MB in experiment (more details are listed in Figure S3). 

f Tm6 stands for the melting temperature of MB in method 4. 

g — indicates that data are unavailable from the experiment. 
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